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Abstract: Change detection in multi-temporal remote sensing images has usually been treated
as a problem of explicitly detecting land cover transitions. To date, multi-dimensional change
vector analysis has been an effective solution to such problems. However, using change vector
analysis makes it hard to calculate multiple directions or kinds of change. Through combining
multi-feature object-based image analysis and change vector analysis, this paper presents a novel
method for object-based change detection of multiple changes. Our technique, named self-adaptive
weight-change vector analysis, carries out: (1) change vector analysis to determine magnitude
and direction of changes; and (2) self-adaptive weight-based analysis of the standard deviation
of image objects. Furthermore, a polar representation has been adopted to acquire visual change
information for image objects. This paper proposes an automatic technique that can be applied to
the field of multi-feature object-based change detection for very high resolution remotely sensed
images. The two-step automatic detection strategy includes extraction of changed objects using an
expectation-maximization algorithm to estimate the threshold under a Gaussian assumption, and
identification of different kinds of changes using a K-means clustering algorithm. The effectiveness of
our approach has been tested on both multispectral and panchromatic fusion images. Results of these
two experimental cases confirm that this approach can detect multiple kinds of change. We found
that self-adaptive weight-change vector analysis had superior capabilities of object-based change
detection compared with standard change vector analysis, yielding Kappa statistics of 0.7976 and
0.7508 for Cases 1 and 2, respectively.

Keywords: change vector analysis; object-based change detection; self-adaptive weights;
multi-dimensional change; remote sensing; image analysis

1. Introduction

Object-based change detection (OBCD) plays an important role in many application domains
related to multi-temporal remote sensing images, especially for very high resolution (VHR) images [1,2].
However, an OBCD technique using a single feature is unable to identify different types of change,
and does not take advantage of the feature diversity of image objects. It is clearly necessary to develop
effective change detection techniques for multiple features using OBCD for VHR images.

Several change detection approaches have been proposed, although the most well-known and
widely used technique is change vector analysis (CVA) [3], proposed by Malila in 1980. This is a
bi-temporal method that was originally designed for only two spectral dimensions. It exploits all the
available change information from two remote sensing images acquired at different times, using a
change vector (CV) described by the magnitude and direction of change within a two dimensional
(2-D) feature space. These two attributes give us insight into the type of change occurring between the
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two time points. In particular, magnitude indicates to what degree the image radiance has changed,
and contains limited thematic content, whereas direction indicates the type of change [4,5]. CVA is
typically applied to multispectral images by considering two spectral channels at a time. Thus, it
represents all change information contained in the CVs obtained by subtracting corresponding spectral
bands of two images. CVA has been successfully applied in many fields [6–18].

CVA has been extended to higher dimensional feature space, using the same calculation for
magnitude. Because it is difficult to describe the change direction in n-dimensional (n-D) feature space,
which would comprise a complicated output array with multiple directional cosines, the directional
component is disregarded [19]. Hence, many researchers have concentrated on describing how n-D
change directional information can be conveyed in CVA. Nackarets et al. [6] propose a modified CVA
technique, using a Cartesian coordinate system, in which different kinds of change are detected using
clustering algorithms. In [8], the CVA sector-coding approach was developed to solve issues related
to multiple dates. Allen and Kupfer [14] use the direction cosines to calculate the direction of CVs,
a technique also widely used in [15]. Carvalho et al. [20] propose the use of a spectral correlation
mapper to measure direction, and Mahalanobis distance to measure magnitude. In [10], Bovolo et al.
propose a polar-coordinate system to describe the change direction in n-D feature space in CVA. Most
of these applications simplify the input feature space to two bands; however, limiting CVA to a 2-D
feature space requires prior knowledge, and may lead to poor analysis because of ill-informed band
selection [16]. In addition, all features are normalized to the same value range, which causes loss of
information about the different contributions of features, especially textural features of an image object.

Standard spectral-based CVA requires that a change vector be described by the angle of change
(vector direction) and the magnitude of change, using data from different dates. In practice, all kinds
of features of an image object or pixel are represented by one-dimensional column vectors of image
wavelengths. Usually, the modulus of the CV calculated by Euclidean distance denotes its magnitude
of change, and the direction of the CV denotes its type of change.

Let us consider two co-registered multispectral images, acquired over the same area on different
dates t1 and t2, which are represented by Xt1 and Xt2, respectively, where b is the number of spectral
bands (b = 1,2, . . . , B). Most change detection techniques use a comparison operator between two
specific image pixels [21]. In the CVA approach, this comparison operator is usually the vector
difference applied to an n-D feature space to extract spectral change information [3]. Thus, a
multispectral difference image ∆X is obtained by subtracting the spectral feature vectors of the two
images, and the CVs in this difference image are obtained from:

∆X “ Xt2 ´ Xt1 (1)

where ∆X represents the change information for the two images for a given image object. Thus, ∆Xb
is the image representing the b-th component of ∆X. To exploit the change information present in
∆X, researchers commonly reduce this n-D problem to a 2-D problem by only taking into account the
magnitude of the CVs [22–24]. The change magnitude ρ can be calculated using:

ρ “

g

f

f

e

B
ÿ

b“1

p∆Xbq
2 (2)

This formula represents the spectral difference between two dates; thus, the greater the ρ value,
the higher the possibility of change. A threshold can be set to discriminate between changed and
unchanged objects in this difference image.

Types of change can be identified using vector angles in two dimensions. If there are more than
two spectral dimensions, however, then not all the direction variables are involved, and multiple
changes cannot be distinguished. A possible alternative is to split the multi-dimensional problem into
various 2-D problems by selecting two from among the N bands [7]. Such a selection depends on prior
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knowledge to limit the information loss that can occur. However, in practice, prior information is not
often available, and it is usually not possible to ensure that the change information is constrained to
two dimensions. Herein lies the need to define a framework for multidimensional CVA, in which
multiple changes can be easily identified in an n-D feature space without neglecting any feature.

In the standard CVA approach, when considering other features as image spectral bands, these
features are normalized to have the same value range as the spectral bands of the image. Given that
different kinds of change have different effects on different features, any standardization procedure
will smooth out the different contributions of these features in multidimensional CVA, making it hard
to identify change types because of the concentration of CVs. Thus, any approach to n-D CVA should
integrate effective OBCD techniques to distinguish multiple changes based on multiple-features of an
image object, while retaining information on the difference of angles of the CVs.

To overcome the aforementioned limits of standard CVA, we propose a new approach to n-D
CVA for multi-feature OBCD using a self-adaptive weight for each feature. This preserves both the
difference of the feature and helps interpret its change direction in n-D feature space. The self-adaptive
weights for each image object, including its spectral and textural features, are calculated based on
the standard deviation of the image object, by selecting the dominant change feature. This method of
weighting not only uses a constant and unique value, but also retains the individual feature difference
of each image object. This highlights the advantages of multi-feature OBCD. Our new approach to n-D
CVA is called Self-Adaptive Weight-Change Vector Analysis (SAW-CVA).

Here, we outline the theory of our proposed SAW-CVA approach, and show that it can detect
multiple kinds of change in two experimental cases, with superior capabilities over the standard CVA
technique. Our paper is organized into four sections. Section 2 presents the theoretical constructions
behind our proposed SAW-CVA approach using a polar representation, and illustrates how our
technique can be used for change detection of multiple features. Analysis and discussion of our results
obtained for two experimental cases are reported in Section 3, while Section 4 outlines our conclusions.

2. Theory of Self-Adaptive Weight Change Vector Analysis

To obtain a multiple-feature space for CVA, in which it is easy to identify different kinds of
change, and to preserve most of the difference information present in the n-D feature space, we
propose a SAW-CVA approach, which considers the weight of different CVs or features. The theoretical
framework for our SAW-CVA has three components: (1) the magnitude of the CVs; (2) the direction of
the CVs, which contains the information on different kinds of change without rejecting any feature;
and (3) a self-adaptive weight, which controls the different contributions of all the features or channels.
A polar representation for our proposed SAW-CVA approach has been adopted, as described here. In
addition, this section introduces a technique for multi-feature OBCD based on our SAW-CVA approach.

2.1. Magnitude and Direction of Change Vectors

The magnitudes of CVs in SAW-CVA carry the presence/absence of change information in n-D
feature space. Similar to the standard CVA, the magnitude ρ of a CV in our proposed SAW-CVA is
defined as:

ρ “

g

f

f

e

N
ÿ

n“1

pωn ¨ p∆Xnq
2
q, p0 ă ωn ă 1,

N
ř

n“1
ωn “ 1q (3)

whereωn is the weight of image feature n that controls the impact of different features on the magnitude
of the CV, N is the number of features, and ∆Xn is the n-th component of the difference image ∆X. In
the difference image ∆X, changed objects always have higher values than unchanged objects. Several
approaches to extract the changed objects from the ∆X are based on automatic thresholding [25].

In 2-D CVA, the direction θ of a CV is calculated by:

θ “ arctanp
∆X2

∆X1
q, p´π

2 ď θ ď
π
2 q (4)
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Because this procedure tends to be complex and impracticable for SAW-CVA, we elected to use the
direction cosines procedure, which offers a more practical approach that can be extended to SAW-CVA.
We use a direction variable α that effectively compresses the information on different types of change,
to distinguish multiple changes in SAW-CVA. The direction variable α in our SAW-CVA is defined as:

α “ arccos

¨

˝

N
ÿ

n“1

pωn ¨ ∆Xnq{

g

f

f

e

N
ÿ

n“1

pωn ¨ p∆Xnq
2
q

˛

‚, p0 ď α ď π, 0 ă ωn ă 1,
N
ř

n“1
ωn “ 1q (5)

whereωn is the weight of image feature n that controls the impact of different features on the magnitude
of the CV, N is the number of features, and ∆Xn is the n-th component of different image ∆X. All
of direction variables in n-D feature space are defined in this way. These direction variables can be
clustered into several classes representing different types of change.

2.2. Proposed Self-Adaptive Weight

Some researchers have used similar self-adaptive weighting in other fields of image analysis;
they confirm that self-adaptive weights can retain the diversity of features for image analysis [26–29].
Wang et al. [26] propose a self-adaptive weight using prior knowledge, which is hard to extend to other
studies. Similarly, Hu et al. [27] propose a self-adaptive weighting to estimate the contributions of
texture, intensity and color features in image segmentation. An estimation probability was calculated
according to a comparison with a given threshold, but this threshold setting also was not objective or
convincing. In our study, we propose using the standard deviation (std) of an image object to calculate
its self-adaptive weight.

The basic concept behind self-adaptive weights for our SAW-CVA approach is that the discrete
degree of features in n-D feature space can be measured by the std of these image objects. The std of
an image object denotes individual differences in the pixels of this object, and the dominant change
feature of the image object can be identified by comparing the different std of all image objects. The
richer the spectral feature of an image object, the lower its corresponding std compared with other
features. Likewise, the richer the textural feature of an image object, the higher its corresponding std
with respect to other features. Hence, if the std of image object is lower than a given threshold, then
the dominant feature is a spectral feature; otherwise, the dominant feature is a textural feature [28].
Any given threshold is computed based on information from the whole image. The dominant feature
reflects the main changed feature in the CVA.

Let ∆Xs and ∆Xt be the spectral and textural components of the difference image ∆X, then ∆X
can be described by:

∆X “
b

ωsp∆Xsq
2
` p1´ωsqp∆Xtq

2 (6)

where ωs is the weight of the spectral feature, and (1 ´ ωs) is the weight of the textural feature,
respectively. Let the std of an image object at time t1 and t2 be std1 and std2, then their given thresholds
are k1 and k2, respectively, and the weight of the spectral feature is described by:

ωs “

#

maxpstd1, std2q{pstd1 ` std2q, i f std1 ă k1 and std2 ă k2

minpstd1, std2q{pstd1 ` std2q, other
ki “ meani `mistdi, i=1,2

,

/

.

/

-

(7)

where meani is the spectral mean value of the image object at time ti, stdi is the spectral standard
deviation of the image object at time ti, and mi is the self-adaptive index, such that ´2 ď mi ď 2.
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To make full use of all change information of each spectral or textural feature, we use a weighted
average of each feature as a component of ∆Xs and ∆Xt:

p∆Xsq
2
“

Ns
ř

i“1
ωsip∆Xsiq

2, p∆Xtq
2
“

Nt
ř

i“1
ωtip∆Xtiq

2

ωsi “ |Gi| {
Ns
ř

i“1
|Gi|, ωti “ |Gi| {

Nt
ř

i“1
|Gi|

,

/

/

/

.

/

/

/

-

(8)

where Ns and Nt are the number of spectral and textural features,ωsi andωti are the corresponding
weights of each spectral and textural feature, and Gi is the gradient of i-th feature.

2.3. Representation of Proposed SAW-CVA

Standard CVA is described in a Cartesian coordinate system [6,8,19,20]. Here, we compare the
standard CVA and the SAW-CVA in a Cartesian coordinate system using a 2-D feature space. In
Figure 1a, eight CVs are represented in this system, three of them (CV3, CV6, CV8) exceed the range of
the threshold circle, which indicates they represent changed image objects. After being given weights
consistent with the standard CVA, our proposed SAW-CVA is represented in Figure 1b.
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Figure 1. The comparison of standard CVA and SAW-CVA in Cartesian coordinate system. (a) 
Representation of Standard CVA; (b) Representation of SAW-CVA. 

In Figure 1b, the coordinate axes have become ΔF1′ = ω1 × ΔF1 and ΔF2′ = ω2 × ΔF2. Now, four 
of the CVs exceed the range of the threshold circle (cv3, cv6, cv7 and cv8). In contrast to the standard 
CVA shown in Figure 1a, the image object corresponding to cv7 is now a changed object. 

After defining all three components of the proposed SAW-CVA, these can be used to represent 
results in a polar coordinate system. The change detection problem can now be represented by multiple 
CVs. Although several studies of CVAs describe the magnitude and direction of 2-D CVA using a 
Cartesian coordinate system [6], it is complex and difficult to represent a SAW-CVA in this system. 
Thus, this paper uses the polar coordinate system described by Bovolo et al. [10] to represent the SAW-
CVA. A polar representation of our proposed SAW-CVA with three CVs is shown in Figure 1. 

Clearly, the proposed SAW-CVA domain is bounded by the ranges of both magnitude and 
direction variables (ρ and α). The domain consists of four parts, where the magnitude variable ρ 
determines the changed area, and direction variable determines the types of change. The first region 
is the semicircle SCu of unchanged objects (light gray area; Figure 1), which is close to the origin of 
the domain. The other three regions form the semi-annulus SAc of changed objects (dark gray area; 
Figure 1); they represent different types of change, as defined by direction variables αk1 and αk2. These 
regions are defined mathematically, as follows: 
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Figure 1. The comparison of standard CVA and SAW-CVA in Cartesian coordinate system.
(a) Representation of Standard CVA; (b) Representation of SAW-CVA.

In Figure 1b, the coordinate axes have become ∆F11 = ω1 ˆ ∆F1 and ∆F21 = ω2 ˆ ∆F2. Now, four
of the CVs exceed the range of the threshold circle (cv3, cv6, cv7 and cv8). In contrast to the standard
CVA shown in Figure 1a, the image object corresponding to cv7 is now a changed object.

After defining all three components of the proposed SAW-CVA, these can be used to represent
results in a polar coordinate system. The change detection problem can now be represented by multiple
CVs. Although several studies of CVAs describe the magnitude and direction of 2-D CVA using a
Cartesian coordinate system [6], it is complex and difficult to represent a SAW-CVA in this system.
Thus, this paper uses the polar coordinate system described by Bovolo et al. [10] to represent the
SAW-CVA. A polar representation of our proposed SAW-CVA with three CVs is shown in Figure 1.

Clearly, the proposed SAW-CVA domain is bounded by the ranges of both magnitude and
direction variables (ρ and α). The domain consists of four parts, where the magnitude variable ρ
determines the changed area, and direction variable determines the types of change. The first region
is the semicircle SCu of unchanged objects (light gray area; Figure 1), which is close to the origin of
the domain. The other three regions form the semi-annulus SAc of changed objects (dark gray area;
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Figure 1); they represent different types of change, as defined by direction variables αk1 and αk2. These
regions are defined mathematically, as follows:

SCu “ tρ,α : 0 ď ρ ď T, 0 ď α ď πu

SAc1 “ tρ,α : T ď ρ ď ρmax, 0 ď α ď α1u

SAc2 “ tρ,α : T ď ρ ď ρmax,α1 ď α ď α2u

SAc3 “ tρ,α : T ď ρ ď ρmax,α2 ď α ď πu

,

/

/

/

.

/

/

/

-

(9)

where T is the threshold value that discriminates changed and unchanged objects in the domain, while
α1 and α2 are the two angular thresholds that separate different kinds of change. The location of each
CV gives its compressed change information. For example, CV1 located within SCu represents an
object that is not changed between t1 and t2, whereas CV2 located in region of SAc2 represents an object
that has changed, having change type Oc2. Therefore, it is critical to define the thresholds T, α1 and α2
in our proposed SAW-CVA approach.

2.4. Proposed Technique for Multi-Feature Object-Based Change Detection

The proposed SAW-CVA for multi-feature OBCD has a two-step procedure: (1) extraction of the
semi-annulus SAc of all changed objects based on an analysis of histogram curvature of the magnitude
variable ρ; and (2) identification of annular sectors in the semi-annulus SAc based on analysis of the
distribution of the direction variable α. The first step discriminates changed and unchanged objects,
while the second step detects different types of change within the set of changed objects.

2.4.1. Extraction of Changed Objects

The changed objects are extracted by user-defined thresholds, which are utilized to distinguish
the changed and unchanged objects. The prior knowledge is required to obtain the thresholds [30,31].
Because of the lack of observed data on the changed objects and the subjective interference of
supervised threshold determination, we used the expectation-maximization (EM) algorithm [22,32] to
define thresholds in an unsupervised way. This method has been widely used for change threshold
determination [11,28,33]. Thus, changed objects are extracted based on threshold segmentation of the
CVA magnitude image.

Let O = (O1, O2, . . . , OI) be the set of image objects, and Oc, Ou be the class of changed objects
and class of unchanged objects, respectively. Let P(Oc), P(Ou), p(ρ|Oc) and p(ρ|Ou) be the prior
probabilities and the conditional probability density functions of classes Oc and Ou, respectively.
Assuming that the distribution of the observed magnitude variable can be expressed as a mixture
Gaussian distribution [34], then:

ppρiq “ PpOcqppρi |Oc q ` PpOuqppρi |Ou q (10)

where i is the number of image objects or CVs in the SAW-CVA, where i = (1, 2, . . . , I), and P(Oc) +
P(Ou) = 1. According to the Bayes decision theory, the conditional probability of class l is given by:

ppρi |l q “ expp´pρi ´ µlq
2
{2δ2

l q{

b

2πδ2
l (11)

where the corresponding class probability p(l), the mean value µl, and the standard deviation δl are the
parameters to be retrieved. As this defines a problem of parameter estimation with missing data, the
EM algorithm can be used. The following iterative equations of the EM algorithm allow us to solve the
estimation problem:

pt`1plq “
I
ÿ

i“1

ptpl |ρi q{I (12)
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µt`1
l “

I
ÿ

i“1

ptpl |ρi qρi{

I
ÿ

i“1

ptpl |ρi q (13)

µt`1
l “

I
ÿ

i“1

ptpl |ρi qρi{

I
ÿ

i“1

ptpl |ρi q (14)

where t is the iteration, and the initial values for all statistical parameters are computed using the
K-means clustering algorithm. The procedure for obtaining our initial values using the EM algorithm
is as follows: (1) using the K-means clustering algorithm to separate the classes Oc and Ou, obtain
initial parameters for p(l), µl and δl; (2) update parameters p(l), µl and δl using Equations (12)–(14);
and (3) repeat step 2 until the interval between two iterations is less than a given value [35]. Once the
statistical parameters are estimated, the posterior probability of various classes is given by:

ppl |ρi q “ ppρi |l qpplq{ppρiq (15)

Bayes’s decision rule can be used for pattern labeling, whereby each image object O(i) is assigned
to the class of changed or unchanged objects, using:

#

ppρpiq|OcqppOcq ą ppρpiq|OuqppOuq, Oi P Oc

ppρpiq|OcqppOcq ď ppρpiq|OuqppOuq, Oi P Ou
(16)

The threshold T used to separate the classes Oc and Ou can be obtained from the explicit solution
of Equation (16).

2.4.2. Identification of Different Types of Change

After the extraction of changed objects, attention is focused on separating the contributions of
different possible types of change within the changed data set Oc = (Oc1, Oc2, . . . , Ock). The different
types of change Ock are identified based on classification of the direction variable α. Because no prior
knowledge about the location of the classes associated with different types of change can be acquired,
the K-means clustering algorithm [32] is used to determine classes in an unsupervised way.

K-means clustering sorts data vectors into a predefined number of clusters, using Euclidean
distance as the similarity measure. It is commonly used in computer vision as a form of data
segmentation, where the purpose of data segmentation is to divide α into k clusters. If the direction
variable set is α = (α1, α2, . . . , αn), then the subset of data vectors that form cluster k is Ck. Its centroid
is zk, giving the clustering centroid set Z= (z1, z2, . . . , zk). The objective function J also meets the
clustering criterion:

J “
K
ÿ

k“1

n
ÿ

i“1

µkpαiqrdpαi, zkqs
2 (17)

zk “
1

Nk

ÿ

@αiPCk

αi (18)

where µk(αi) is the membership degree of αi to Ck; and dpαi, zkq “ ||αi ´ zk|| is the Euclidean distance
of zk from αi. The J is constructed using the minimum sum-of-squared-error criterion. For a cluster
Ck, the mean vector zk is the best vector to represent all samples in Ck in terms of minimizing the sum
of the squared error vector d(αi, zk). Thus, J evaluates the sum of squared error generated from α,
belonging to Z. Through iteration, the cluster centers continually move to make J as small as possible.
During this process, the similarity of direction variables in the same cluster is gradually increased,
while the similarity between different clusters is decreased. Iterations continue until the cluster centers
no longer update. At this point, the pair of thresholds αk1 and αk2 in the direction domain for each
kind of change have been defined. These thresholds are used to segment the different regions in a
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polar representation (SAc1, SAc2 and SAc3; Figure 2). Now, each CV that falls in one of these regions is
assigned to one of the identified kinds of change, according to Equation (9).Remote Sens. 2016, 8, 549  8 of 19 
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3. Experimental Results and Discussion

To validate the reliability and effectiveness of SAW-CVA to carry out multi-feature OBCD,
two experiments were carried out on two pairs of remote sensing images. The first case is a change
detection problem having 57 features in the Worldview-3 VHR multispectral images of farmland. The
second case represents a change detection problem having 73 features in Worldview-2 VHR fusion
images of a construction site. Details for each case are described below.

3.1. Case 1: Change Detection of Farmlands Using WV-3 VHR Multispectral Images

3.1.1. Material and Study Area

The first experimental case focuses on change detection in farmland; the data set is made up of
a pair of Worldview-2/3 VHR images acquired on the Modern Agricultural Demonstrative Garden
of Beijing (China) on 27 September 2010 and 20 October 2014. The spatial resolution of both remote
sensing images is 1.8 m. Images have been cropped into sub-images of 500 ˆ 500-pixel size with four
spectral bands (blue, green, red and near-infra red). During data preprocessing, relative radiometric
and geometric corrections were carried out to make the two images as comparable as possible. In
the field of object-based image analysis, each image should be segmented into image objects, which
are the basic unit of image analysis or processing. These two multiple-feature temporal images were
segmented into 350 objects using the Multi-Resolution Segmentation (MRS) algorithm [36], available
in eCognition Developer 9.2 software (Trimble Navigation Ltd., Sunnyvale, CO, USA). The parameters
of MRS algorithm, such as scale, weight of shape criterion and weight of compactness criterion,
were obtained by statistics-based automated parameters estimation [37]. In this study, we used the
ESP (Estimation of Scale Parameter) tool [38] and calculated the mean value of local variance of
image objects to obtain the optimal parameters by iterations on three levels. The optimal parameters
(scale, weight of shape criterion and weight of compactness criterion) were set to be 130, 0.6 and 0.4,
respectively. To guarantee that corresponding objects at different times were segmented exactly the
same way, we carried out image segmentation on eight image layers overlain on the two images with
the four spectral bands.

These images, corrected by true color synthesis, are shown in Figure 3. They show that there are
three kinds of change that occurred between the two acquisition dates: (1) changes in construction
or crop field areas, often related to new structures built to cover fields, labeled as Oc1; (2) seasonal or
morphological changes to vegetated crop fields and wooded zones, labeled as Oc2; and (3) changes in
the river area or the river bank geometry, related to a decrease in water level or river eutrophication,
labeled as Oc3. The reference data set for the study area was defined after detailed field investigation,
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such that visual analysis involved some prior knowledge. This reference data set contained 203
changed image objects and 147 unchanged image objects. In detail, 104 objects were classed as Oc1,
73 objects as Oc2, and 26 objects as Oc3. Identification of these three kinds of change is very useful
for evaluating crop growth or tillage condition of farmland, but distinguishing these three kinds of
change, especially class Oc2, was critical to this case. Using the right feature selection of image objects,
our SAW-CVA approach was able to extract changed objects and identify all three kinds of change.
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Figure 3. True color synthesis of images of study area nearby the Modern Agricultural Demonstrative
Garden of Beijing (China) acquired by Worldview-2/3 VHR multispectral sensor on (a) 27 September
2010 and (b) 20 October 2014.

3.1.2. Procedures and Results

First, the feature space of the image objects was built through the extraction and selection of
features. Image object features mainly consist of spectral, geometric and textural characteristics.
Although more kinds of features are helpful to OBCD, they can also lead to more interference or
redundant information. It is necessary to extract and select the right features for OBCD. In this
case, 57 features were ultimately extracted and selected to build a high dimensional feature space
from the image objects. These features consisted of: mean value layers (four bands), their standard
deviation layers (four bands), the normalized difference vegetation index, gray-level co-occurrence
matrices (GLCM)-Contrast (4 bands ˆ 4 directions), GLCM-Correlation (4 bands ˆ 4 directions), and
GLCM-Ang.2nd moment (4 bands ˆ 4 directions) [39].

Second, we represented the change information in the SAW-CVA domain. According to the
proposed framework for SAW-CVA described in Section 2, the self-adaptive weights of each feature
were computed according to Equations (6)–(8), while the magnitude ρ and direction α of each CV
were calculated using Equations (3) and (5), respectively. Figure 4a shows the polar scattergram
for the SAW-CVA, in which changed objects define scatterpoints in the region SAc (colored dark
gray), and unchanged objects produce scatterpoints in the region SCu (colored light gray). These
two regions are separated by the threshold value T, obtained using the EM algorithm, as described
in Section 2.4.1. Figure 5a shows the real distribution of the histogram for the magnitude of CVs
(red bars), and the distribution of estimated parameters from a mixture of Gaussian distributions
(black line). It can be seen that the estimated distribution is well-fitted to the real distribution, which
confirms that a reasonable approximation was obtained with the EM algorithm. The threshold value
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T used to distinguish the changed and unchanged class can be identified through comparison between
P(Oc)p(ρi|Oc) (red line) and P(Ou)p(ρi|Ou) (black line) in Figure 5b, giving a threshold T = 600.Remote Sens. 2016, 8, 549  10 of 19 
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Figure 5. (a) The real histogram of magnitude (red bars) and estimated probability density curve (blue
line) by the EM algorithm under Gaussian assumption; (b) The curves of estimated probability of
unchanged (black line) and changed (red line) classes, and the estimated threshold value (blue point)
to separate these two classes.
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Third, to separate contributions from different kinds of change, threshold values also were
identified using K-means clustering, as described in Section 2.4.2. In Figure 4a, which shows the
scattergram obtained from SAW-CVA in polar representation, three clusters can be identified with high
magnitude and three distinct directions. These three clusters corresponding to three kinds of change
are divided by the two angular thresholds α1 and α2, according to Equations (17) and (18), where
K = 3 in Equation (17) gives angular thresholds α1 = 42˝, α2 = 80˝. After carrying out the thresholding
procedure, the regions shown in Figure 4a can be defined mathematically, as follows:
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where sectors SCu, SAc1, SAc2 and SAc3 are associated with classes Ou, Oc1, Oc2 and Oc3, respectively.
To compare with our SAW-CVA approach, the scattergram in the polar domain for a standard

CVA is shown in Figure 4b. The standard CVA has no self-adaptive weighting for each feature, which
means that the weight of each feature has ω = 1. Under a Gaussian assumption, the EM algorithm
estimates the threshold T = 680, using Equations (10)–(16). Because only two sectors can be identified
in Figure 4b, the value of K was set to 2, and the threshold α1 = 84˝ was computed using K-means
clustering criteria, as outlined in Equations (17) and (18).

Using these threshold values (both for magnitude and direction) to classify the image objects
obtained from multi-resolution segmentation, the OBCD result maps were computed based on
SAW-CVA and standard CVA in Figure 6. As expected, three kinds of change have been identified and
coded using different colors in the SAW-CVA (Figure 6a), but only two kinds of change are identified
in the OBCD map produced using a standard CVA (Figure 6b).
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standard CVA approach.



Remote Sens. 2016, 8, 549 12 of 19

3.1.3. Analysis and Discussion

A quantitative analysis of the results achieved using these two approaches is shown in Tables 1 and 2.
Using the reference data set, data in these tables were computed with an error confusion matrix. An
error confusion matrix is constructed to validate the accuracy of OBCD in the whole image area. The
accuracy evaluation for the OBCD results is based on a false positive rate (FPR), a false negative rate
(FNR), overall accuracy (OA), and Kappa accuracy. The FPR and FNR denote the possibility of false
detection and missing detection, respectively.

Table 1. The accuracy assessment for the OBCD result obtained by the proposed SAW-CVA approach.

SAW-CVA
True Class FPR or User Accuracy

Ou Oc1 Oc2 Oc3

Resulting Class

Ou 136 3 3 2 94.44%
Oc1 3 78 2 2 91.76%
Oc2 8 21 67 2 68.37%
Oc3 0 2 1 20 86.96%

FNR or Producer Accuracy 92.52% 75.00% 91.78% 76.92%

Overall Accuracy 86.03% Kappa 0.7976

Table 2. The accuracy assessment for the OBCD result obtained by the standard CVA approach.

Standard CVA
True Class FPR or User Accuracy

Ou Oc1 Oc2 Oc3

Resulting Class

Ou 130 2 25 0 82.80%
Oc1 10 100 38 1 67.11%
Oc2 0 0 0 0 0.00%
Oc3 7 2 10 25 56.82%

FNR or Producer Accuracy 88.44% 96.15% 0.00% 96.15%

Overall Accuracy 75.86% Kappa 0.6283

From Tables 1 and 2, it is clear that SAW-CVA has much better precision in its OBCD result,
relative to the standard CVA. The OA and Kappa accuracy of SAW-CVA (86.03%, 0.7976) also are
higher than the standard CVA (75.86%, 0.6283). The standard CVA allows us to detect only two kinds
of change, while SAW-CVA detected three kinds. Some seasonal or structural changes in vegetated
area were not easily and fully identified by standard CVA, with the objects belonging to Oc2 being
wrongly divided into other classes in Table 2. It is worth noting that despite many false detections
for Oc2 and missing detections for Oc1 in our SAW-CVA approach, Table 1 shows that the FPR of
Oc2 (68.37%) and FNR of Oc1 (75%) are lower than other values. Therefore, our proposed SAW-CVA
approach effectively detected most information about change available in the representative sample,
based on our accuracy assessment of the OBCD results.

This experiment confirms that the proposed SAW-CVA approach can identify different kinds of
change and is more effective than a standard CVA. However, noise still exists, leading to some false
detections of Oc2, especially when differentiating Oc2 from Oc1. Clearly, we also need to evaluate the
effect of feature selection on the SAW-CVA approach for multi-feature OBCD.

3.2. Case 2: Change Detection for Construction Sites Using WV-2 VHR Panchromatic Fusion Images

3.2.1. Material and Study Area

This experiment was conducted on Worldview-2 VHR images, acquired on the area around Beijing
Olympic Park (China) on 12 September 2012 and 20 September 2013, respectively. Image preprocessing
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included pan-sharpening, registration and relative radiometric corrections. Gram-Schmidt Pan
Sharpening [40] has been used on fusion images integrated from a panchromatic channel and four
bands of multispectral images. As for Case 1, the registration process uses a nearest neighbor
interpolation, with 15 ground control points. The relative radiometric correction applies robust
regression to normalize images, subtracting from each spectral channel with reference to 202 pseudo
invariant features.

The final data set was cropped into images of 2500 ˆ 1500-pixel size, with a spatial resolution
of 0.5 m. These experimental images were segmented into 512 objects. In this study, the optimal
parameters (scale, weight of shape criterion and weight of compactness criterion) were set to be 120, 0.7
and 0.3, respectively. Three kinds of change can be observed (Figure 7): Oc1 denotes changed objects
on buildings or other construction areas, Oc2 denotes changed objects in grassland or other vegetated
areas, and Oc3 denotes changed objects caused by the shooting angle offset of the sensor. It is worth
noting that Oc3 does not represent a real class of changed objects, but comprises artifacts related to
differences in shooting angle of the sensor, which causes changes to the shadows of high buildings.
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The study area, located in the urban center, has complicated change information, which is hard to
identify using a standard CVA approach. In particular, pseudo or slightly changed objects are hard
to identify. Hence, the purpose of this case was to verify whether the proposed SAW-CVA approach
could detect slight change or pseudo change.

3.2.2. Procedures and Results

For this fusion data set, 73 features were selected to compute the magnitude and angle of each CV
in the image objects. Image object features consisted of mean value layers (4 bands), standard deviation
layers (4 bands), the normalized difference vegetation index, GLCM-Contrast (4 bands ˆ 4 directions),
GLCM-Entropy (4 bands ˆ 4 directions), GLCM-Ang.2nd moment (4 bands ˆ 4 directions), and
GLCM-Mean (4 bands ˆ 4 directions). Figure 8a shows the scatter of results of the SAW-CVA, with
a threshold value T = 235 that separates Ou and Oc obtained using the EM algorithm (Figure 9). Clearly,
the reliability of the EM algorithm is confirmed in Figure 9a because our visual analysis shows that the
estimated distribution (blue line) fits the behavior of the real histogram (red bars).
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Figure 9. (a) The real histogram of magnitude (red bars) and estimated probability density curve (blue
line) by the EM algorithm under Gaussian assumption; (b) The curves of estimated probability of
unchanged (black line) and changed (red line) classes, and the estimated threshold value (blue point)
to separate these two classes.

Four main clusters were identified in the polar representation of our SAW-CVA (Figure 8a). These
four sectors were defined using angular thresholds α1, α2 and α3. According to the K-means clustering
algorithm described in Section 2.4.2, SAc1 is made up of CVs with αP[(0˝, 32˝), SAc2 with αP[32˝, 65˝),
SAc3 with αP[65˝, 113˝), and SAc4 with αP[113˝, 180˝). According to the reference data, it can be shown
that objects associated with Oc1 fall within SAc2, objects associated with Oc2 fall within SAc4, objects
associated with Oc3 fall within SAc1. Otherwise, objects in SAc3 are associated with pseudo changes
created by shadows of high buildings, or cars on the road, and are labeled as Oc4. To compare with our
SAW-CVA approach, a scattergram in the polar domain for the standard CVA is shown in Figure 8b.
Under a Gaussian assumption, the EM algorithm estimates its threshold T = 180, yielding only two
sectors in Figure 8b. Setting the value of K to 2, a threshold having α1 = 88˝ was computed using the
K-means clustering algorithm.

Using the threshold values estimated with our proposed SAW-CVA approach, OBCD maps were
generated (Figure 10). Four kinds of change can be identified in Figure 10a, although classes Oc3 and
Oc4 belong to the unchanged class in the real situation. The reference data set, defined from visual
analysis of the Google Earth image and detailed field investigations, contains 347 unchanged objects
and 165 changed objects. Of these, 53 objects are related to Oc1, and 112 objects are related to Oc2.
Compared with the OBCD map for the standard CVA, our SAW-CVA approach was able to distinguish
most of the pseudo changed objects from real changed objects, although differences exist in the kinds
of change identified in the OBCD result and the ground truth data.
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Figure 10. The OBCD result map obtained with (a) the proposed SAW-CVA approach and (b) the
standard CVA approach.

3.2.3. Analysis and Discussion

A quantitative analysis of the results obtained using these two approaches is shown in Tables 3
and 4. These data were computed using the error confusion matrix. Clearly, the SAW-CVA has higher
accuracy (88.28%, 0.7508) than the standard CVA (84.96%, 0.6601). The standard CVA approach could
not distinguish between artifacts caused by the incident angle of the sensor from changes to roof
cover. It is worth noting that some noise and pseudo changed objects are still visible in both OBCD
maps, slightly affecting the accuracy of other classes (Table 3). Overall, we conclude that the proposed
SAW-CVA approach and the estimations obtained using the EM algorithm are effective and reliable,
according to quantitative analysis of the OBCD results. Moreover, although the proposed SAW-CVA
approach makes some false detections for pseudo changed objects, it was able to separate this kind of
change from other change classes.

Table 3. The accuracy assessment for the OBCD result obtained by the proposed SAW-CVA approach.

SAW-CVA
True Class FPR or User Accuracy

Ou Oc1 Oc2 Oc3 Oc4

Resulting Class

Ou 346 4 3 2 0 97.46%
Oc1 2 38 6 3 0 77.55%
Oc2 6 5 36 5 0 69.23%
Oc3 8 2 2 32 0 72.73%
Oc4 10 1 0 1 0 0.00%

FNR or Producer Accuracy 93.01% 76.00% 76.60% 74.42% 0.00%

Overall Accuracy 88.28% Kappa 0.7508

Clearly, the experimental results have shown that our proposed SAW-CVA approach is able to
identify some pseudo or slightly changed objects in the context of a complex urban environment. The
results also reveal that our technique was not able to reduce or eliminate the interference of shadows
in OBCD in an urban context.
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Table 4. The accuracy assessment for the OBCD result obtained by the standard CVA approach.

CVA
True Class FPR or User Accuracy

Ou Oc1 Oc2 Oc3

Resulting Class

Ou 356 6 4 9 94.93%
Oc1 3 38 2 24 56.72%
Oc2 13 6 41 10 58.57%
Oc3 0 0 0 0 0.00%

FNR or Producer Accuracy 95.70% 76.00% 87.23% 0.00%

Overall Accuracy 84.96% Kappa 0.6601

4. Conclusions

Here, we propose an automatic technique for object-based change detection (OBCD) of
multiple features in very high resolution (VHR) remote sensing images, referred to as Self-Adaptive
Weight-Change Vector Analysis (SAW-CVA). Our SAW-CVA approach uses CVA with self-adaptive
weights to solve n-D OBCD problems (where n is the number of features or channels acquired by the
image objects or sensor). It computes the magnitude of change vectors (CVs) and direction (angle)
between the difference vector and a reference one. Unlike the standard CVA in a Cartesian coordinate
system, the proposed SAW-CVA approach is presented in a polar coordinate system, which better
preserves the change information present in all CVs. The CVs also have been stretched to be more
easily distinguished. This representation assists visualization of change information, without the
need to select a pair of spectral channels, as for a standard CVA. Our proposed approach uses the
expectation-maximization (EM) algorithm to estimate the threshold to extract changed objects under a
Gaussian assumption. It also uses the K-means clustering algorithm to classify or identify different
kinds of changes. These thresholds define sectors in the polar domain of our SAW-CVA, which
represent different changed object classes.

Two experiments carried out on Worldview-3 VHR multispectral images and Worldview-2
panchromatic fusion images confirmed the effectiveness of our SAW-CVA approach for change
detection in farmlands and construction sites. Both qualitative and quantitative results indicate
that the SAW-CVA approach has better capabilities in OBCD than the standard CVA; this also confirms
the suitability of the EM algorithm used in our approach. Our SAW-CVA was able to retrieve the main
information related to change and to distinguish all the different kinds of change present at our field
sites. In particular, the proposed SAW-CVA can identify seasonal and structural changes in vegetated
areas (as shown in Case 1), and separate pseudo changes and artifacts caused by the shooting angle of
the sensor from real changes (as shown in Case 2). This suggests that the SAW-CVA can preserve more
change information than a standard CVA, in which the dimension reduction process results in loss of
information about the distribution of different kinds of change. However, there were some false or
missing detections caused by noise in the OBCD results using SAW-CVA.

In contrast to the standard CVA, the advantages of our SAW-CVA are three-fold. First, the
SAW-CVA approach is able to identify multiple kinds of change because it can retain the difference of
directions of CVs simultaneously. Second, the SAW-CVA approach is more accurate than the standard
CVA, because it can preserve more change information using self-adaptive weights to control the
contribution of each type of feature. Third, when using polar representation to show the distribution
of CVs, the CVs obtained using the SAW-CVA approach have more diversity than the standard CVA,
which is useful to extract changed samples and distinguish different samples.

In future work, it would be worthwhile to exploit the potential of the SAW-CVA technique for
noise elimination, when using SAW-CVA in the context of more complex OBCD problems. It also needs
further experimental validation because edge effects may affect the std of the image object. Finally,
we plan to analyze the sensitivity of SAW-CVA to exploit multiscale or multiresolution information
intrinsically present in VHR images.
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