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Abstract: The savannas of Southern Africa are an important dryland ecosystem as they cover up
to 54% of the landscape and support a rich variety of biodiversity. This paper evaluates landscape
change in savanna vegetation along Chobe Riverfront within Chobe National Park Botswana, from
1982 to 2011 to understand what change may be occurring in land cover. Classifying land cover in
savanna environments is challenging because the vegetation spectral signatures are similar across
distinct vegetation covers. With vegetation species and even structural groups having similar
signatures in multispectral imagery difficulties exist in making discrete classifications in such
landscapes. To address this issue, a Random Forest classification algorithm was applied to predict
land-cover classes. Additionally, time series vegetation indices were used to support the findings
of the discrete land cover classification. Results indicate that a landscape level vegetation shift
has occurred across the Chobe Riverfront, with results highlighting a shift in land cover towards
more woody vegetation. This represents a degradation of vegetation cover within this savanna
landscape environment, largely due to an increasing number of elephants and other herbivores
utilizing the Riverfront. The forested area along roads at a further distance from the River has also
had a loss of percent cover. The continuous analysis during 1982–2011, utilizing monthly AVHRR
(Advanced Very High Resolution Radiometer) NDVI (Normalized Difference Vegetation Index)
values, also verifies this change in amount of vegetation is a continuous and ongoing process in
this region. This study provides land use planners and managers with a more reliable, efficient and
relatively inexpensive tool for analyzing land-cover change across these highly sensitive regions, and
highlights the usefulness of a Random Forest classification in conjunction with time series analysis
for monitoring savanna landscapes.
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1. Introduction

During the last 100 years, anthropogenic changes in land use and land cover have altered up to
50% of the global landscape [1]. Patterns of land conversion by humans can be seen from the local to
the global scale. Drivers of global environmental change occur at multiple scales including agricultural
expansion and urbanization [2,3]. Over the last three-quarters of a century, there has been a major
increase in the speed and scope of global environmental change, which has altered many natural
phenomena such as basic biogeochemical flows, atmospheric composition, climatic, and sea level,
much of which has been attributed human induced land cover conversion [3]. Understanding the
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patterns and drivers of environmental change has been at the forefront of land change science. With
an ever expanding population and the threat of further climatic change it is essential to document
changes across the landscape in order to develop better monitoring and management strategies.

Dryland ecosystems cover more land globally than any other ecosystem type, approximately
50% [4]. Of the different dryland ecosystem types, savannas are a key component because these systems
occupy one-fifth of the world’s landmass and they support large human and wildlife populations.
Additionally, savannas are an important ecosystem because they are estimated to comprise up to
13.6% of global net primary production and play a large role in the carbon cycle [5]. Savannas, which
are defined as grassland with scattered trees or shrubs, are the delicate ecosystem between forest
and grasslands [4]. African savannas are a highly heterogeneous mixture of woody and herbaceous
vegetation [6,7]. Unlike many ecosystems in classical ecology, savannas are considered to be in a state
of non-equilibrium, meaning large- and small-scale shocks and stresses have the potential to induce
large ecological shifts [8]. In southern Africa, savannas cover up to 54% of the landmass [9].

In global drylands, such as savannas, the primary drivers of land cover change are fire, herbivory,
human induced pressure from grazing and agriculture, and most well noted, climate variability [10,11].
One of the major drivers of change not yet mentioned is landscape management. Across southern
Africa, numerous wildlife and landscape management strategies have been put in place, which have
resulted in vegetation composition and abundance changes. For instance, different bans have affected
savannas, such as the burn ban in Botswana that occurred over 20 years ago which has led to an overall
lower fire frequency [12]. Different fire frequency affects species compositions, and lower fire frequency
can lead to bush encroachment [13]. Hunting bans were also implemented in Botswana in 2014 [14].
Changes in these drivers produce differential responses of woody covers, encroachment or decline, as
well as herbaceous cover [15–18]. An increase in CO2 may also be a contributing driver in woody cover
change [15,17]. According to Vogel and Strohback’s [9] definition of degradation, we can see degrading
landscapes as: a decrease in vegetation cover or a complete loss of vegetation; a shift in species towards
annual plants; bush encroachment (vegetation densification); long-term overgrazing which weakens
perennial grass; or a decrease in biodiversity. Overall, degradation of savanna landscapes can lead to
broad changes in abundance and structure of woody and herbaceous vegetation. Upwards of 31% of
southern Africa’s savannas are estimated to be affected by degradation [9].

The complex intermingled array of drivers of spatial heterogeneity makes using remote sensing
for land cover classifications in these highly heterogeneous systems especially difficult. However,
despite these challenges, land-cover classification is useful to better understand ongoing land-cover
changes across these very sensitive regions, including bush encroachment, which is generally regarded
as an indicator of savanna degradation. Bush encroachment has been documented across southern
Africa for the last few decades [19,20]. Biophysical and biogeochemical changes can induce bush
encroachment. The most commonly noted causes of bush encroachment include increased rainfall
variability, suppression of fire, soil properties, and overgrazing [13]. To truly understand the onset of
bush encroachment one must analyze such local to broad drivers and very importantly vegetation
competition (grasses vs. woody vegetation).

This research was conducted within Chobe National Park in northern Botswana. In this study we
analyze changes in land cover at two varying spatial and temporal scales, to understand land cover
change within the highest use zones in Chobe National Park. Specifically, we will look at a finer spatial
scale, utilizing Landsat data, to determine discrete land cover change from 1989–1990 to 2008–2009.
Secondly, we will embed this finer scale study within a longer temporal sequence of monthly NDVI
(Normalized Difference Vegetation Index) data, extending from 1982 to 2011, to determine if land
cover changes at the discrete time points, fit within the longer time series of vegetation change in the
park. Utilizing both data series will extend the capabilities of remote sensing to increase the temporal
frequency (Advanced Very High Resolution Radiometer-AVHRR- study, 8 km spatial scale from 1982
to 2011 at a monthly time step) and spatial frequency (Landsat data across seasons from 1989–1990
and 2008–2009 at 30 m spatial resolution). Within this park, these time frames represent a time of rapid
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change, especially in regard to growing human utilization of the landscape and increasing elephant
populations across the region. This park was chosen because it has the highest density of elephants on
the planet [21]. Specifically, this research is focused on the most heavily utilized portion of the park,
from the Chobe Riverfront to the main road (Figure 1). The main hypothesis is that the landscape
has degraded over the study period, defined as bush encroachment or a conversion towards bare
ground [20], due to an increasing number of elephants and tourists that utilize this riverfront. This
research will therefore address the following three questions: (1) What is the dominant pattern of
land-cover change, at a finer spatial scale, across the Chobe Riverfront from 1982 to 2011? (2) At a
more regional level, do the monthly patterns of NDVI from 1982 to 2011 match up with the finer scale,
discrete classification results? (3) Do these lines of evidence support the theory of increased landscape
degradation across the park landscape? Management of savanna parks is a very complex balance
between the conservation and management of wildlife for tourism while also maintaining landscape
health and diversity [22]. The results of this research will be of real significance to park managers in
that it will allow for the improved quantification of savanna land-cover change, which will thus allow
for improved park management strategies.
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2. Materials and Methods 

2.1. Description of Study Area 

This study area is situated along the riverfront of Chobe National Park in northeastern 
Botswana, as seen in Figure 1. The geographic location of the park is approximately 18.7°S and 24.5°E. 
The average temperature in the park fluctuates between 15.2 °C and 30.2 °C with mean annual rainfall 
of 600–700 mm, mostly occurring during the rainy season from November to March. Since it is well 
stated in the literature that climate is a driver on this landscape [23], the mean annual precipitation 
was calculated from the nearest station in Maun, Botswana over the last 30 years. A water year, one 
full cycle of the wet and dry season, is defined as 1 October of one year to 31 September of the 
following year (Figure 2).  

Figure 1. Map of Botswana, focusing on Chobe National Park and the Riverfront area highlighting the
training sample locations. The top image is the generated Landsat wet season composite image from
Google Earth Engine.

2. Materials and Methods

2.1. Description of Study Area

This study area is situated along the riverfront of Chobe National Park in northeastern Botswana,
as seen in Figure 1. The geographic location of the park is approximately 18.7˝S and 24.5˝E. The average
temperature in the park fluctuates between 15.2 ˝C and 30.2 ˝C with mean annual rainfall of
600–700 mm, mostly occurring during the rainy season from November to March. Since it is well
stated in the literature that climate is a driver on this landscape [23], the mean annual precipitation was
calculated from the nearest station in Maun, Botswana over the last 30 years. A water year, one full
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cycle of the wet and dry season, is defined as 1 October of one year to 31 September of the following
year (Figure 2).Remote Sens. 2016, 8, 623 4 of 16 

 

 
Figure 2. Total Annual Precipitation for Maun, Botswana from 1982 to 2011 with the 30-year mean 
subtracted to highlight years above and below the mean.  

The northern boundary of the study area is the Chobe River. The tourist-oriented town of Kasane 
is on the eastern boundary, and a bridge into Namibia is on the western boundary. The southern 
boundary of the study area is a paved road, but there are also other dirt roads within the study area. 
The Chobe Riverfront area was chosen specifically because Chobe River is the main permanent water 
source for animals in the park, and becomes a key resource during the dry season. In 1995, it is 
estimated that 62,998 elephants occupied northern Botswana, and by 2013 the population had more 
than doubled to 133,453 [24,25]. This high population of elephants has a strongly destructive 
influence on vegetation, especially along the riverfront [24,25]. It is also where the majority of the 
park’s tourists visit, driving the need for conservation and management as this area has both the 
strongest human and animal pressures over time.  

Across Chobe National Park there are three main ecoregions of grassland, shrubland, and 
woodland. Within these, there is a broad array of vegetation ranging from low herbaceous to scrubby 
to woody cover. The vegetation directly around the river is floodplain grass, which has replaced reed 
that previously fringed the river until it began to disappear in the 1960s [26,27]. Bordering these 
grasses is a thin strip of riparian woodland. From there, shrublands extend back from the riverfront 
in a gradient into mixed shrubland–woodland for 1–2 km. In this area, where shrubland used to be 
dominated by thickets of Dichrostachys cinerea in the presence of cattle herding in the 1950s [28], is 
now dominated by Capparis tomentosa (evergreen shrubs). Going farther south to approximately 10 
km from the river, the landscape is dominated by woodlands.  

2.2. Data and Image Analysis  

Remotely sensed imagery from the Landsat Thematic Mapper (TM) and Advanced Very High 
Resolution Radiometer (AVHRR) sensors was utilized in this study in order to understand long term 
trends in vegetation cover and to complete discrete land cover classification with high spatial 
resolution, embedded within a coarser spatial resolution analysis of monthly NDVI change from 
AVHRR data. The Landsat data (bands 1–7), used in the multi-date classification, have a 30 m spatial 
resolution, whereas the AVHRR is much more coarse at 8 km. The Landsat imagery was obtained 
from Google Earth Engine, but the original data are part of the USGS Landsat catalog. These images 
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subtracted to highlight years above and below the mean.

The northern boundary of the study area is the Chobe River. The tourist-oriented town of Kasane
is on the eastern boundary, and a bridge into Namibia is on the western boundary. The southern
boundary of the study area is a paved road, but there are also other dirt roads within the study area.
The Chobe Riverfront area was chosen specifically because Chobe River is the main permanent water
source for animals in the park, and becomes a key resource during the dry season. In 1995, it is
estimated that 62,998 elephants occupied northern Botswana, and by 2013 the population had more
than doubled to 133,453 [24,25]. This high population of elephants has a strongly destructive influence
on vegetation, especially along the riverfront [24,25]. It is also where the majority of the park’s tourists
visit, driving the need for conservation and management as this area has both the strongest human
and animal pressures over time.

Across Chobe National Park there are three main ecoregions of grassland, shrubland, and
woodland. Within these, there is a broad array of vegetation ranging from low herbaceous to scrubby
to woody cover. The vegetation directly around the river is floodplain grass, which has replaced
reed that previously fringed the river until it began to disappear in the 1960s [26,27]. Bordering these
grasses is a thin strip of riparian woodland. From there, shrublands extend back from the riverfront
in a gradient into mixed shrubland–woodland for 1–2 km. In this area, where shrubland used to be
dominated by thickets of Dichrostachys cinerea in the presence of cattle herding in the 1950s [28], is now
dominated by Capparis tomentosa (evergreen shrubs). Going farther south to approximately 10 km from
the river, the landscape is dominated by woodlands.

2.2. Data and Image Analysis

Remotely sensed imagery from the Landsat Thematic Mapper (TM) and Advanced Very High
Resolution Radiometer (AVHRR) sensors was utilized in this study in order to understand long



Remote Sens. 2016, 8, 623 5 of 17

term trends in vegetation cover and to complete discrete land cover classification with high spatial
resolution, embedded within a coarser spatial resolution analysis of monthly NDVI change from
AVHRR data. The Landsat data (bands 1–7), used in the multi-date classification, have a 30 m spatial
resolution, whereas the AVHRR is much more coarse at 8 km. The Landsat imagery was obtained
from Google Earth Engine, but the original data are part of the USGS Landsat catalog. These images
came atmospherically and geometrically corrected, as well as mosaicked together from Google Earth
Engine. A pixel-by-pixel composite using the “Simple Landsat Composite Tool” of the study area was
made of each of the wet and dry season images that had the lowest cloud cover from the 1989–1990
and 2008–2009 water years (1 October–30 September). The AVHRR time series imagery was obtained
from the GIMMS3g (Global Inventory Monitoring and Modeling System, third generation) NDVI data
that were generated by NASA. The data are available from July 1981 through December 2011, with
an 8 km spatial resolution and a 15-day repeat time, which was compiled to create a maximum value
composite for each month. The monthly repeat time enables us to detect trends in phenology and total
productivity for our time period of interest, for 1982–2011.

For the classification analysis based on the composite Landsat data, all of the raw image bands,
for both the wet and dry season imagery were included in the classification. In addition a number
of additional layers were created for inclusion in the analysis. For both the Landsat classifier and
the AVHRR time series the NDVI, one of the most commonly used indices, was calculated [29–31].
NDVI is a strong indicator of vegetation productivity [32,33] and has been used to study landscape
degradation [34]. In this landscape, the NDVI values ranged from ´0.4 to 0.4, making it an appropriate
technique for this area because the numbers did not saturate. This index has been heavily used
across savanna type landscapes with strong results in terms of linkages between NDVI values and
vegetation health and productivity [35]. A Tasseled Cap Analysis (TCA) was performed on each
Landsat image to extract Brightness, Greenness, and Wetness variables. In addition, a Principle
Components Analysis (PCA) Forward Rotation was also run on the Landsat imagery and the bands
for components 1, 2, and 3 (which explain over 95% of the variance in the image) were extracted.

2.2.1. Land Cover Classes

According to the literature, the dominant land covers found in the Chobe Riverfront are
shrublands, woodlands, and grasslands (which in the dry season will appear as the “bare” cover).
Grasslands were defined as non-woody vegetation but also included areas of floodplain vegetation
and also soil depending upon the acquisition time of the image. Shrublands were defined as woody
vegetation less than 3 m tall, and woodlands were defined as woody vegetation over 3 m tall. Phenology
of savannas presents another challenge in trying to classify images. In southern Africa, the rainy
season lasts from November to April. Due to the phenology of these systems, ideally for classification
purposes, both a wet season image and a dry season image across the same water year should be used
to create a single date classification representative of that overall “water year”. Image years closest to
the mean precipitation years were used in order to control for climatic variability and to prevent the
use of an anomalous climatic year—potentially leading to erroneous conclusions on land cover change.

2.2.2. Field/Training Data

Training samples were acquired from two primary sources: field data from the summer of 2009
(during the dry season), and Google Earth high-resolution imagery from 2009 (also during the dry
season). In the field, transects were collected along roads due to limited access off-roading in the
Park. There were 373 points in total across three broad vegetation types: grassland (62), shrubland
(94), and woodland (217). These sample numbers are in accordance with their relative abundances
across the landscape. The spectral signatures of the spectral bands at each of the training points from
the 2008–2009 and the 1989–1990 images were graphed in order to check for outliers and consistency
within class types.
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A number of different classification techniques were used to allow statistical comparison. In order
to ensure accurate comparison, the same image products were used for all image classifications.
In addition, the same set of training sites was used for training and testing. Part of the dataset
was used in the creation of the class signatures for each of the classifications (298 points or 80% of
the samples-training) and the other part of the dataset was held in reserve for use in the accuracy
assessment (75 points or 20% of the training samples-testing). In this manner, there was complete
control of all data such that a true comparison of techniques was possible. All of the land cover
types listed above were extracted at each of the training sample points to be used in the classification.
These were randomly split by the Random Forest model.

2.3. Methods

2.3.1. NDVI Accumulation and Trends

Prior to classification, a NDVI accumulation analysis was conducted to look at long-term trends
across the landscape. One of the major objections to discrete multi-date classifications is that it is not
representative of temporal dynamics and change across the landscape. With this accumulation analysis
we can address the trends in greenness, but not vegetation structural groups. This NDVI analysis
utilized zonally averaged pixel-by-pixel AVHRR NDVI data across the entire study area, independent
of land cover type. Using R (package: dplyr), the NDVI values were cumulatively summed in
two different ways: (1) across all months and all years; and (2) by season and across all months.
The seasonal accumulation utilized the southern hemisphere seasons with summer (DJF: December,
January, and February), autumn (MAM: March, April, and May), winter (JJA: June, July, and August),
and spring (SON: September, October, and November). For the seasonal accumulation, the NDVI
values for each season are summed (maximum value of 3 for each season) for each year (maximum
value of 87 per season over time). This seasonally summed NDVI data were then cumulatively
summed across the time series. By looking at the accumulation rates we can see if greenness values
were steady over time, similar to a 1:1 line, or if the slope changed indicating changing patterns of
greenness over time.

2.3.2. Classification Techniques

The most common technique used to monitor land-cover change is through the use of image
classification. There are a multitude of different types of classifications methods used in mapping land
cover with remotely sensed data. Some of the more common methods are supervised classifications
using algorithms such as maximum likelihood, which assumes that the statistics for each class are
normally distributed and then calculates the probability that a certain pixel belongs in a certain
class [36,37]. In this study, our data do not meet the requirements of normality, and therefore Maximum
Likelihood is an inappropriate classifier.

Recently, efficient and accurate machine-learning algorithms have been developed and applied
more so than traditional parametric algorithms, especially in the case of large and complicated data
and mapping large areas [38–40]. The reason that these algorithms are more efficient and effective is
because they do not assume normal data distributions, unlike other statistical methods.

Random Forest is one type of machine-learning algorithm, which allows the use of a
non-traditional classifier for nonparametric testing with many variables for which it will produce
the most important variables for prediction as an output. This ensemble learning technique has
been applied in land-cover classifications though multi-spectral imagery [41,42]. The accuracy of
the classification of this technique may be greater than traditional classifications because it grows
an ensemble of statistical trees and they in turn “vote” for the most popular class [43]. This allows
one to use a wide variety of variables of any type. Any variable that needs to be tested for relevance
can be added to the model and the Random Forest will highlight the most important covariates.
The pseudo random number generator was seeded with the same number every year the model
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was run. The model can start out by having 1000 trees; it may be found that a lesser number of
trees are sufficient after running the model. The “mtry”, which is the number of variables randomly
sampled as candidates at each split, should be calculated by taking the square root of the number of
covariates [43]. In this study, the square root of 28 covariates (14 covariates per season) is equal to 5.29,
or approximately 5. Other constraints can be optionally added to the model and then it can be run.
One of the greatest advantages of Random Forest is that it does not overfit the data because with the
large number of trees, there is a low generalization error [43]. This technique is not yet widely used,
but it seems ideal for remote sensing classification, especially in heterogeneous landscapes such as the
complex, temporally and spatially constrained, savanna landscapes of Southern Africa. An additional
benefit of using the Random Forest classification is that you can obtain several measures of variable
importance including Mean Decrease in Accuracy and the Mean Decrease in Gini coefficient, which
can then be used to aid in image classification.

3. Results

3.1. Cumulative NDVI

The greening trends across the Chobe riverfront showed no sharp or rapid changes in greenness.
The accumulations, both total and seasonal, illustrate that while there is variability in NDVI across
time there were no major breakpoints. The total NDVI accumulation across all months and all years
(Figure 3b) showed a consistent increase with no large change in slope; meaning that the cumulative
summation for the most part followed that 1:1 line, with only a slight divergence in the later portion
of the time series. Figure 3a shows the trends in NDVI by season across the study area. The DJF
season throughout the time series has the highest NDVI. This is the wet season in this study area
and a time of great vegetation flush. The wet season continues into March, ending around late April
to early May. The NDVI seasonal summation shows that the MAM season has the second highest
in production. The dry season in the study area runs through the JJA season and the SON season,
resulting in the lowest NDVI summations. However, the JJA season has higher NDVI accumulation,
as woody vegetation stays green late into the dry season. Figure 3 also highlights that the years of
selection for the land cover classifications: 1989–1990 and 2008–2009 are not in any way anomalous
years either seasonally or across the full water year.
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3.2. Random Forest Classification

One of the most important products of the Random Forest classification was a land cover map of
Chobe National Park across both dates (Figure 4). These maps show the grassland, shrubland, and
woodland classes across the landscape. Other types of traditional supervised classification techniques
result in high confusion in the shrubland class—which can be expected in these savanna systems
because they can be spectrally similar to other classes as we divided them by their height difference.
Of interest then is whether the increased complexity of the Random Forest classifier allows for any
improvement in classification accuracy when the identical training data and accuracy assessment data
are used within the model. Random Forest proved to have superior statistical power in this analysis.
The overall accuracy of the Random Forest classifier was the highest of the classifiers tested, at 79.8%
for 1989–1990 and 78.5% for 2008–2009 (Table 1). Results from the other classifiers include the minimum
distance to means (53% in 1989–1990 and 72% in 2008–2009) and parallelepiped (67% for 1989–1990 and
72% for 2008–2009). The error matrix (Table 1) shows that misclassification, and therefore a decrease in
classification accuracy, occurred mostly in the shrubland class. This is because it is a difficult class to
discern. Shrublands often represent the same species as the woodland class, but are shorter (less than
3 m in height) and so spectrally have the most confusion. The confusion with the woodland and
shrubland classes is therefore understandable, although the Random Forest classifier does the best
differentiation overall.
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Table 1. Error Matrix for Random Forest classification results based on the Landsat imagery for
1989–1990 and 2008–2009 image series.

Error Matrix Woodland Shrub Land Grassland Total Class Error
Omission %

Class Error
Commission %

1989–1990

Woodland 165 13 3 181 8.84 14.9
Shrubland 24 36 6 66 45.5 37.9
Grassland 5 9 36 50 27.5 19.6

Total 194 58 45 297

2008–2009

Woodland 161 17 3 181 11.0 15.3
Shrubland 24 36 6 66 45.5 41.9
Grassland 5 9 37 51 27.5 19.6

Total 190 62 46 298

Kappa Coefficient: 0.6237 Overall Accuracy: 79.9%; Kappa Coefficient: 0.6025 Overall Accuracy: 78.5%.

An additional strength of the Random Forest classifier, when compared to the more traditional
supervised classification techniques comes from the relative influence plots (Figure 5), which allow us
to determine the importance of each of the covariates within the analysis. The importance of using
both the wet season and the dry season imagery is evident—with different covariates from both being
pulled into the analysis as the most important variables, making the results more robust (Figure 5).
The 1989–1990 classification (Figure 5a) has wet season green band, dry season NDVI, dry season PCA
Band 3, and dry season TCA bands 2 (greenness) and 3 (moisture) as the most important covariates in
the model. These variables are readily explained, in terms of their top selection by the model because
they are the variables associated with vegetation health and vigor. For 2008–2009 (Figure 5b), dry
season blue band, dry season PCA band 3, wet season NDVI, dry and wet season green bands, dry
season TCA greenness, wet season TCA brightness and wet season PCA component 1 are the most
important covariates in the model. Again both dry and wet season variables are selected as important
and although in differing order of importance the NDVI, TCA, PCA component 3 and green bands
are all key. Again these variables do suggest the vigor and health of vegetation being the dominant
cover to discern. Interestingly, the same bands are not selected in the same order and some trends vary
across dates, although once the extent of the change in vegetation cover is seen (Figure 6) we can see
that more soil based indices and bands are selected in 2008–2009, as these are more dominant in the
dry season imagery for this date, due in part to the land cover changes which have occurred across
the two composite image dates. This certainly highlights the importance of including both dry and
wet season images within the study and classification of land cover, and also highlights some of the
value of the Random Forest classifier, when interpretation of the selected variables can be discussed
and explained. The Mean Decrease in Accuracy shows the Mean Squared Error when the variable
is randomly permuted in the model, and the Mean Decrease in Gini is an impurity criterion, which
shows when a particular predictor variable played a larger role in partitioning the data that defined
the classes. These two measures are often consistent.
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3.3. Change Trajectory for Random Forest Classification

A land-cover classification change trajectory was then created using the results of the Random
Forest classification (Figure 6). The pixel counts and percent change for each of these class conversions
is defined in Table 2. This trajectory shows a significant loss of grassland and also trends of woody
vegetation conversion along the dirt roads/fire breaks. There was also an increase in woody vegetation
along the river on the west side of the Park. The land-cover change trajectory from the Random Forest
classifier (Figure 6) produced clear spatial trends of land-cover classes across the region. Directly
along the riverfront there was a conversion from woodland towards grassland. Just south of that,
the dominant conversion was towards shrubland. Woodland is found in the region the furthest back
from the riverfront. The overall patterns of vegetation cover over the two dates clearly showing
an expansion of shrubland at an increasing distance from the river. Some areas of conversion from
shrubland to woodland (woodland growth and aging) also occur farther back from the riverfront,
especially along areas of roads and development, which were initiated in the 1970s and 1980s and are
kept cut and cleared as part of the park management.

Table 2. Change trajectory percent change from 1989–1990 to 2008–2009 across landscape using the
Random Forest classifier.

Random Forest Classifier (Pixel Count) Random Forest Classifier (% Change)

Woodland to Grassland 6890 1.46
Woodland to Shrubland 18,218 3.87

No Change 411,754 87.4
Shrubland to Woodland 28,425 6.03
Grassland to Woodland 5802 1.23

Total 471,089 99.99

4. Discussion

Based on Vogel and Strohbach’s 2009 definition of degradation, we can clearly state that some
forms of degradation are occurring in the Chobe National Park Riverfront. Spatially, we see the
conversion from woodland to grassland, or woodland to shrubland (both a loss of woodland) occurring
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directly along the river and just behind it, which has the most animal and tourist traffic. The primary
conversions in the area away from the river were from shrubland to woodland, and woodland to
shrubland (woody conversions). The patterns found in this region match those patterns found across
southern Africa where there has been an increase in woody vegetation (mostly shrubland) and a
decrease in grassland [19,20,44]. Degradation of the herbaceous layer in this region began in the 1960s
due to human land use, such as cattle, fire, logging, and agriculture [45].

Remote sensing in savanna landscapes can be a complex pursuit due to the heterogeneous nature
of the landscape and possible spectral confusion due to the definition of a shrub versus a tree, which is
determined solely by height. Ultimately, the Random Forest classifier was the best method for use in
differentiation of the savanna vegetation types. This study was important in testing the Random Forest
classifier in a savanna landscape, where it has only been tested a limited amount thus far. The Random
Forest classifier did very well, as evidenced by the accuracy assessments and kappa values, given the
complex heterogeneous nature of the savanna landscape with overall accuracies close to 80%. In other
landscapes, studies have shown that the Random Forest classifier consistently outperformed all other
traditional methods tested [42,46,47]. The Random Forest classifier also provided valuable insight as
to which variables were significant in creating the classification scheme, which differed across years.
This is of key importance in such savanna landscapes, especially for studies using only a single season
for analysis, where findings or interpretations based only on one season, might be incorrect. It also
highlights the dynamic nature of savanna landscapes, both spatially and temporally, again, linking
back to our reason for using this complex classification methodology versus much more static methods,
which usually fail to work well in savannas. Classification highlighted the increases in bare land and
soil in the later date and this is seen also in the images highlighted in the analysis.

AVHRR data provide one of the longest remotely sensed datasets currently available. The monthly
composites based on the maximum 16-day data from 1982-present enable long term landscape level
analysis to be completed. While the spatial resolution is not as fine as Landsat, the large swath width
allows for landscape to global scale analysis of ecosystem dynamics that are not currently available
with finer scale data. In this study, the AVHRR data are utilized to understand trends across the
entire time series while the Landsat data are used to classify the landscape only at discrete dates.
Additionally, the AVHRR time series illustrates the longer-term dynamics within which our discrete
Landsat imagery is located. By looking at seasonal NDVI accumulation we can detect deviations in the
greening trends over time. The seasonal NDVI can be viewed as a time series (Figure 3a) or can be
considered cumulatively (Figure 3b), which is a metric of NDVI, or a proxy for production. We see
a weak declining trend across all seasons. The season with the highest NDVI accumulation is DJF,
indicative of both the grass and woody component. The season with the lowest NDVI accumulation
is SON. Most might think that JJA is the lowest since this is the core of the dry season. However, by
the time SON comes, months of depleted soil moisture have occurred leading to grass brown down
and loss of woody vegetation leaves. With the total accumulation (Figure 3b) you can readily see the
seasonal effect. The DJF and MAM seasons represent the time of greatest vegetation flush. Typically
the wet season starts in late boreal autumn (October–November) and with the 4–6 weeks delay from
onset of precipitation to flush that leads to the DJF season.

There have been some distinct vegetation changes in this savanna ecosystem along the Chobe
Riverfront between 1989 and 2009. The data show that there are no significant longer-term trends here,
e.g., due to precipitation changes or the like, that could influence vegetation. Furthermore, the lack
of real trends in precipitation or NDVI show that climate, the major driver of land cover change in
savannas, is not the main driving force of change here, but rather people, management and herbivory
are. In addition, fire is excluded as a major driver due to the extensive fire ban across Botswana. Unlike
across the border in Namibia, where managers operate on yearly burn cycles, burning for management
has been banned in Botswana for the last two decades [12]. When natural fires do occur, they are
suppressed and this low fire frequency is also known to contribute to increased bush encroachment
in this landscape [12,13]. So this analysis is also pointing out that the main drivers of change are not
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fluctuating, but areas on our landscape are. This must then be due to management and people, or
more specifically herbivory and elephants (and lack of control over their numbers, i.e., hunting ban in
Botswana and exploding elephant populations over this time period).

Using the Random Forest classifier, the conversion of woodland to grassland and woodland to
shrubland directly along the river (Figure 7) is likely linked to an increase in the elephant population
in northern Botswana from an estimated 62,998 in 1995 to 133,453 in 2013 [25]. Through time, as
the elephant population has increased, the amount of degradation in the area has increased with
it, especially focused on the riverfront area. Utilization of this area by animals is thought to be one
of the major causes of this degradation [21]. The piosphere effect can be defined as the amount of
elephant debarking, ringing, and knocking down trees increasing with decreasing distance to a water
source [21]. At the scale at which we observe degradation, this study displays the characteristics of the
piosphere effect. This is felt especially in this area because the Chobe River is their main source of water,
particularly during the dry season when they utilize this area the most. We also see a conversion from
woodland to shrubland, shrubland to woodland, and grassland to woodlands happening along roads
back from the river. This change can be explained by the utilization of elephants and Park managers
clearing along these tracts inside the Park as narrow roads and firebreaks. There is a dense amount
of woodland to shrubland vegetation conversion occurring along the west side of the Park directly
along the river. Due to the rocky terrain of this area, there are few tourists and therefore degradation is
thought to be primarily from usage by animals.Remote Sens. 2016, 8, 623 13 of 16 
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There are certain biological implications of vegetation conversion. For example, in this region
in the 1980s, encroachment of low-quality pioneer shrubland species was later made possible by
impalas colonizing these areas, which is enhanced once elephants have opened up the woodlands [24].
The impala prevented higher-quality tree species regeneration [48] through seedling predation [49].
This also impacts the species that could graze in this area. More specialized browsers, such as bushbuck
could not survive in this area because the vegetation was converting towards being a monospecies.
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In turn, less specialized browsers were able to thrive in these areas and continue to drive the vegetation
degradation. These non-specialized browsers, such as elephant and giraffe, continue to dominate this
area today. It is possible that this shift has reduced the specialized grazers along the riverfront, such as
zebra, roan, and waterbuck, having a potential impact on tourism [22].

There are also implications for using the AVHRR data, mainly the coarse spatial resolution. This
resolution limits the utility in using AVHRR data for classification and land use/land cover change.
Instead, we speak to ecosystem trends measuring events such as degradation and bush encroachment,
which have occurred across the savanna landscapes of southern Africa, including Chobe National
Park. This park is a vital resource for livelihoods of those residing in the villages surrounding the park.
Communities such a Chobe enclave have embraced tourism as a source of livelihood, moving away
from traditional sources of development, namely agriculture. By utilizing both AVHRR and Landsat
data we can monitor the resilience, drivers, and importantly land cover of this vital national park.

A concern about the class system utilized is that the difference in definition between shrubland
and woodland is defined by height, a common practice in savanna where a tree versus a shrubland of
the same species, is simply a function of plant height. Therefore, these can be difficult to differentiate
using spectral data. This may be why we are seeing an increase from shrubland to woodland in some
small areas, and explain why there was the most confusion within the shrubland class. Between
these two image dates, the class that is a conversion from shrubland to woodland may be a growth in
height of these species, as well as a replacement of naturally occurring woodlands to lower-quality
shrubland/tree species, such as Croton megalobotrys [22].

5. Conclusions

The research presented here addresses issues of key concern in dryland ecosystems—that of
monitoring change across landscapes where definitions of land cover classes merely rely on a count or
height of trees versus shrubs. Traditionally, remote sensing has failed to classify such landscapes well
and this work presented some new techniques to incorporate these discrete land cover changes—using
Random Forest classification approaches—within a more continuous view of the landscapes—as
impacted by temporal variability due to precipitation and other drivers. Using the continuous NDVI
analysis helps position our study in a broader context and also addresses climate variability as a
potential driver of change (most savanna landscapes are very sensitive to precipitation). This analysis
incorporates the larger trends of the landscape and accounts for such changes in climate, and only then
addresses the discrete classification approach, used more traditionally outside of dryland savanna
systems. Our findings as presented highlight the success of the approach and the importance of
looking at both temporal trends and spatial patterns when studying such systems, and especially when
management must address such processes of vegetation change and conversion, degradation and often
wildlife management, within the temporal and spatial matrix that makes up their park landscape.

The findings of this study could have significant implications for management and impact tourism
in the park, given the main areas of degradation are along the main tourist routes and the riverfront.
The changing vegetation could lead to a change in elephant usage of the landscape, and therefore the
areas and frequency in which tourists can view the wildlife. In the future, habitat classification could
be improved by monitoring more image dates, using finer spatial resolution imagery, and conducting
more fieldwork for validation—linking changes directly to vegetation plot work and species.
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