
remote sensing  

Article

Ready-to-Use Methods for the Detection of Clouds,
Cirrus, Snow, Shadow, Water and Clear Sky Pixels
in Sentinel-2 MSI Images

André Hollstein *, Karl Segl, Luis Guanter, Maximilian Brell and Marta Enesco

Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam,
Germany; karl.segl@gfz-potsdam.de (K.S.); luis.guanter@gfz-potsdam.de (L.G.);
maximilian.brell@gfz-potsdam.de (M.B.); marta.enesco3@gfz-potsdam.de (M.E.)
* Correspondence: andre.hollstein@gfz-potsdam.de; Tel.: +49-331-288-28969

Academic Editors: Clement Atzberger and Prasad S. Thenkabail
Received: 27 April 2016; Accepted: 1 August 2016; Published: 18 August 2016

Abstract: Classification of clouds, cirrus, snow, shadows and clear sky areas is a crucial step in
the pre-processing of optical remote sensing images and is a valuable input for their atmospheric
correction. The Multi-Spectral Imager on board the Sentinel-2’s of the Copernicus program offers
optimized bands for this task and delivers unprecedented amounts of data regarding spatial sampling,
global coverage, spectral coverage, and repetition rate. Efficient algorithms are needed to process, or
possibly reprocess, those big amounts of data. Techniques based on top-of-atmosphere reflectance
spectra for single-pixels without exploitation of external data or spatial context offer the largest
potential for parallel data processing and highly optimized processing throughput. Such algorithms
can be seen as a baseline for possible trade-offs in processing performance when the application of
more sophisticated methods is discussed. We present several ready-to-use classification algorithms
which are all based on a publicly available database of manually classified Sentinel-2A images.
These algorithms are based on commonly used and newly developed machine learning techniques
which drastically reduce the amount of time needed to update the algorithms when new images are
added to the database. Several ready-to-use decision trees are presented which allow to correctly label
about 91% of the spectra within a validation dataset. While decision trees are simple to implement
and easy to understand, they offer only limited classification skill. It improves to 98% when the
presented algorithm based on the classical Bayesian method is applied. This method has only
recently been used for this task and shows excellent performance concerning classification skill and
processing performance. A comparison of the presented algorithms with other commonly used
techniques such as random forests, stochastic gradient descent, or support vector machines is also
given. Especially random forests and support vector machines show similar classification skill as the
classical Bayesian method.

Keywords: Sentinel-2 MSI; cloud detection; snow detection; cirrus detection; shadow detection;
Bayesian classification; machine learning; decision trees

1. Introduction

The detection of clouds, cirrus, and shadows is among the first processing steps after processing
raw instrument measurements to at-sensor radiance or reflectance values. A robust discrimination
of cloudy, cirrus-contaminated, and clear sky pixels is crucial for many applications, including the
retrieval of surface reflectance within atmospheric correction (e.g., see [1,2]) or the co-registration with
other images (e.g., see [3,4]). The retrieval of surface reflection becomes impossible for optically thick
clouds and pixels affected by cirrus and shadows must be treated as individual cases for a physically

Remote Sens. 2016, 8, 666; doi:10.3390/rs8080666 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 666 2 of 18

correct retrieval. Many applications benefit if a detection of snow and water is additionally performed
(e.g., see [5,6]). In that respect, such a classification is an essential pre-processing step before higher-level
algorithms can be applied (e.g., see [7,8]). Examples are the application of agriculture-related products
which might require clear sky pixels as input (e.g., see [9,10]).

Here we describe ready-to-use classification methods which are applicable for the series of
Sentinel-2 MSI (Multi-Spectral Imager) [11–13] instruments. Ready-to-use methods are in a state
where their application by a user requires no further research and only a little work for initial setup.
The first Sentinel-2 in a series of at least four was launched in 2015, became operational in early 2016,
and the Copernicus program aims at having two operational instruments in orbit at a time until 2020.
The MSI offers optimized bands for Earth-observation applications as well as for the detection of
visible and sub-visible cirrus clouds for which the so-called cirrus channel B10 at 1.38 µm is essential.
Such a band is also present it the Operational Land Imager (OLI) [14–16] instrument, which is the most
recent installment of the NASA Landsat series. OLI and MSI share similar bands such as the SWIR
bands at 1.61 µm and 2.19 µm, but differ in that OLI includes thermal bands while the MSI includes
a higher spectral sampling within the red edge. A substantial difference between the two missions
is the amount of transmitted data which is caused by higher number of platforms (two vs. one),
higher swath (290 km vs. 185 km), higher spectral sampling (13 vs. 11 bands) and higher spatial
sampling (4 × 10 m), 6 × 60 m, and 3 × 60 m vs. 1 × 15 m, 8 × 30 m, and 2 × 100 m). These technical
improvements represent a new leap in the total amount of freely available earth observation data and
hence calls for fast, and easy to parallelize algorithms to allow the efficient processing and exploitation
of the incoming data.

In the past, many detection schemes have been developed to detect clouds, cirrus, shadows,
snow/ice, and clear sky observations or a subset or superset of these classes. Such schemes are in
general distinct for a particular instrument, although basic physical principles for similar spectral
bands hold among instruments. Some examples from the relevant literature can be found in a variety
of references [1,17–28]. Cloud detection is the main focus for most of these references, while the aim of
this study is the separation of all introduced classes.

A comprehensive overview of the existing literature is beyond the scope of this paper, but existing
schemes could be characterized by being local or aware of spatial context, self-contained or dependent
on external data, or by being probabilistic or decision-based. Local schemes neglect spatial contexts
such as texture (e.g., see [25–27]) or objects where for example a cloud shadow could be estimated
from the position of a nearby detected cloud, its height, and the given viewing geometry (e.g., see [22]).
Self-contained schemes would only depend on the measured data and already available metadata,
where other schemes might be based on a time series for this area (e.g., see [1]) or on data from
numeric weather prediction models (e.g., see [23]). Probabilistic schemes try to estimate the probability
that a given observation belongs to a given class (e.g., see [23,24]). Thus for a given set of classes,
the user needs to convert the resulting set of class probabilities into a final decision. It depends on
the application if this degree of freedom is welcome or just additional burden. In contrast to this,
decision-based schemes select a single class for a given measurement (e.g., see [28]) as the final result.
Any probabilistic classification technique can be extended to a decision-based scheme by adding
a method which selects a single class from the list of class probabilities as the final result.

Any particular scheme might be a mixture of the discussed approaches or even include strategies
not mentioned here. The taken approach will determine not only the classification skill of the
algorithm but also the needed effort for implementing and maintaining it as well as the reached
processing performance. Although difficult to prove in theory, we assume that local and self-contained
approaches are the best choices regarding processing performance and least effort for implementation
and maintenance. Such schemes omit the added complexity of processing external dependencies,
the computation of spatial metrics and any object recognition and operate only a per-spectrum or
per-pixel level. It is of course not guaranteed that such algorithms are inherently fast; e.g., if an online
radiative transfer is used for classification. However, this class of algorithms is very well suited for
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the application of machine learning techniques, which allow rapid development and improvements
of algorithms as well as excellent processing speeds. The detection performance of such algorithms
can be used to establish a baseline for competing and potentially more sophisticated algorithms to
quantitatively assess their potential additional computational costs.

To establish such as baseline, we decided to build up a database of labeled MSI spectra and to
apply machine learning techniques to derive ready-to-use classification algorithms. It can serve not
only as a valuable tool for algorithm development but also for validation of algorithms. The included
spectra should cover much of the natural variability which is seen by MSI while the choice of labels
was limited to cloud, cirrus, snow/ice, shadow, water, and clear sky. To our best knowledge, manual
classification of images is the most suitable way of setting up such a database for Sentinel-2. To avoid
the step of visually inspecting images by a human expert, one could exploit measurements from
active instruments such as a LIDAR (e.g., ground-based from EARLINET [29,30] or spaceborne from
CALIOP [31]) or cloud radar (e.g., spaceborne from CloudSat [32]). Such measurements should
cover large fractions of MSI’s swath and potential time delays between data acquisitions should
be not greater than several minutes. Currently, suitable space-borne options are not available for
Sentinel-2A. Ground-based instruments could be used in principle, but their measurements would
cover only a small fraction of the occurring viewing geometries as well as natural variability of surface,
atmospheric, and meteorological conditions. The database is discussed in Section 2 and the application
of machine learning algorithms is discussed in Section 3.

We understand that the term scheme or technique describes the general method, while a particular,
ready-to-use instance of a method with given parameters is an algorithm. The term decision tree refers
to the method, while a given tree with branches and parameters is a particular algorithm. We discuss
decision trees with features computed from simple band math formulas (see Section 3.2) which are
one of the most simple and straightforward to understand techniques. These algorithms are simple
to implement for any processing chain, can be represented by simple charts, but offer only limited
classification skill. This ease of use and simplicity qualifies decision trees as baseline algorithms to judge
the performance of other, possibly more complex and computationally more demanding, algorithms.

To improve the classification skill, we present a detection scheme based on classical Bayesian
probability estimation which delivers superior results and is made available to the community as open
source software (see Section 3.3). It is a technique that has only recently been used for the detection
of clouds [24] and represents a straightforward and fast technique which is very well suited for the
processing of large amounts of data. The database, the presented decision trees, as well as the classical
Bayesian detection scheme are available at [33].

We included a broad range of available standard methods for our study, but focus the discussion on
decision trees and the classical Bayesian approach. In Section 3.4 we discuss these results with regards
to other commonly used techniques such as random forests, support vector machines, stochastic
gradient descent, and adaptive boosting.

2. Database of Manually Classified Sentinel-2 MSI Data

Sentinel-2 images are selected such that the derived database covers the relevant natural variability
of MSI observations. Each included spectrum carries either one of the following labels: cloud, cirrus,
snow/ice, shadow, water, and clear sky and is accompanied by the relevant metadata from the Level-1C
product. The selection of labels was driven with atmospheric correction of MSI observations in mind,
where clear sky, cirrus, and shadow pixels are treated with slightly different approaches. The water
class is included for these pixels since remote-sensing-reflectance is a more suitable quantity rather
than surface reflectance. Both quantities are products of atmospheric correction algorithms and require
different processing steps since for remote-sensing-reflectance the reflection and transmission of the
water surface must be corrected. Currently, no external information such as atmospheric fields from
numerical weather models like from ERA-interim reanalysis [34] or products from global networks
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such as aerosol optical depth from Aeronet [35] is included in the database. Since time and location for
each included spectra are known, it poses no particular difficulty to extend the database.

The broad global distribution of included images ensures that a wide range of inter-class variability
is captured within the database. This variability is highlighted in Figure 1, which depicts histograms of
at-sensor reflectances for each MSI channel per class. The figure shows clearly that each of the classes
exhibits distinct spectral properties, but also that a classification algorithm has to cope with significant
inter- and intra-class variability.
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Figure 1. Spectral histograms of the database per class and Sentinel-2 MSI channel. Each panel shows
histograms for a single classification class and the data is presented as a Violin plot, where each histogram
is normalized to its maximum and is vertically shown on both sides of the baseline line for each channel.

The surface reflectance spectrum and actual atmospheric properties determine spectral shapes of
the at-sensor reflectance. This effect can be nicely seen for the so-called cirrus channel B10 at 1380 nm,
which shows only small to zero values for most classes other than the cirrus class. The atmosphere
is mostly opaque at this wavelength due to the high absorption of water vapor which is mostly
concentrated at the first few kilometers above the surface within the planetary boundary layer.
Since cirrus clouds typically form well above that height, their scattering properties allow some
reflected light to reach the sensor. A different distinct atmospheric band is B9, which is centered at
a weaker water vapor absorption band and is used for atmospheric correction. The variability here
is caused by surface reflectance and variations in water vapor concentration, which a classification
algorithm needs to separate. The reflectance of the snow class decreases substantially for the shortwave
infrared channels 11 and 12, while this is not so much the case for the cloud class which shows a mostly
flat reflectance spectra in the visible. Also, the increase of surface reflectance at the so-called red edge
can be nicely seen in the clear sky class which contains green vegetation.

The database is based on images acquired over the full globe, and their global distribution is
illustrated in Figure 2. All spectral bands of the Level-1C products were spatially resampled to 20 m
to allow multispectral analysis. The selected scenes are distributed such that a wide range of surface
types and observational geometries are included. Multiple false-color RGB views of a scene and it’s
spatial context is used to label areas with manually drawn polygons. We want to emphasize, that the
spatial context of a scene is crucial for its correct manual classification. This is especially the case for
shadows cast by clouds or barely visible cirrus. One should also note, that shadows can be cast by
objects outside the current image. Not all classes can be found in each image, but we took care to
distribute classes evenly.

Figure 3 is a showcase for this manual classification approach for three selected scenes. Their actual
positions and used channel combinations are shown in Table 1. It is evident that there is a large degree
of freedom on how polygons are placed and which objects are marked. Also, the extent of objects
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with diffuse boundaries poses a particular burden on the consistency of the manual classification.
This merely indicates that a certain degree of subjectivity is inherent in this approach. However, this
holds for any other approach when soft objects, such as clouds or shadows, are to be defined by
hard boundaries. The effect of the human error is minimized by a two-step approach, where images
are initially labeled and revisited some time later to re-evaluate past decisions. Human errors, if
present, should lead to unexpected results when comparing labels of the database with classification
results from detection algorithms. One example would be prominent misclassification errors between
simple-to-distinct classes such as shadow and snow. Next to the spectra itself, the database contains
metadata such as the scene-ID, observation time and geographic position, which could be used
to establish location-aware algorithms, or to analyze comparison results concerning their location.
Currently, metrics for spatial context are not included but could be added with little extra work if needed.
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Figure 2. Global distribution of selected Sentinel-2 scenes which are included in the database.
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Figure 3. False-color RGB images which have been used to classify Sentinel-2 MSI images manually.
The red, green, and blue color channel were composed of appropriate channels (see Table 1) to identify
and distinguish classes. The top row of image panels (a–c) show the complete image, while the bottom
row (d–f) shows manually drawn polygons which identify the various classes. Each polygon border
is marked with a white border to simplify their identification within the image. The color of each
polygon indicates the class (same colors as in Figure 1 are used: red = cirrus, green = clear sky, dark
blue = water, purple = shadow, light blue = cloud) and is consistently used throughout the paper.
Additional technical details about the images are given in Table 1.
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Table 1. Additional technical information for the images shown in Figure 3. The prefix
S2A_OPER_PRD_MSIL1C_PDMC was omitted in each given Sentinel-2 product name.

Label R,G,B Center Lon Center Lat S2 File Name

a,d 8,3,1 44.455◦E 16.595◦S 20151005T124909_R063_V20151005T072718_20151005T072718
b,e 2,8,10 82.770◦E 35.625◦N 20151002T122508_R019_V20151002T052652_20151002T052652
c,f 10,7,1 55.545◦W 1.925◦S 20150928T183132_R110_V20150928T141829_20150928T141829

3. Classification Based on Machine Learning

Labeling Sentinel-2 MSI spectra can be understood as a supervised classification problem in machine
learning, for which a rich body of literature and many implemented methods exist. This section
introduces shortly some aspects of machine learning which are relevant for this paper and the following
subsections provide details about the applied methodology and results. Many methods and available
implementations have free parameters which have a substantial impact on the classification result, and
optimal parameter settings need to be found for each problem at hand. A common optimization
strategy for these parameters is applied here which is described in Section 3.1. This paper is focused
on decision trees and classical Bayesian classification, which are discussed in Sections 3.2 and 3.3.
Reasons for limiting the study to the two methods is that decision trees are among the most commonly
used methods and therefore can establish a baseline and that it is straightforward for both methods to
provide algorithms results in a portable way. Portability means that the implementations can run on
various hardware and software environments. The classification performance of these two methods is
compared with other commonly used methods such as support vector classifiers, random forest, and
stochastic gradient descent and results are discussed in Section 3.4.

Supervised classification describes the mapping of input data, which is called feature space,
to a fixed and finite set of labels. Here, the feature space is constructed from single MSI spectra
using simple band math functions like a single band, band-differences, band-ratios, or generalized
indices which are given in Table 2. Only the given functions were considered in this paper, and
it is assumed that these functions cover large fractions of the regularly used band relationships.
Many suitable techniques have free parameters and it is often necessary to optimize their settings to
improve classification results.

Table 2. Band math formulas used for the construction of feature spaces. Names and abbreviations are
used throughout this paper.

Name Short Name Formula
band B f (a) = a

difference S f (a, b) = a − b
ratio R f (a, b) = a/b

depth D f (a, b, c) = a+b
c

index I f (a, b) = a−b
a+b

indexF
− I+ f (a, b, c, d) = a−b

c−d
indexF

+ I− f (a, b, c, d) = a+b
c+d

After setup, a classification algorithm can be used as a black box and purely judged by its
performance concerning various metrics such as classification skill or needed computational effort.
Such an analysis is depicted in Figure 4 for three selected algorithms and two selected features.
The features were optimized such that all three algorithms reach similar classification performance.
The first column of the figure illustrates results for decision trees which are in principle limited
to a rectangular tiling of the feature space. Ready-to-use examples of decision trees are given in
Section 3.2. The next column shows results for the same set of transformations, but for a support
vector classifier (SVC), which has much more freedom for tiling the feature space. The last column
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depicts results for the classical Bayesian approach for which a ready-to-use algorithm is discussed in
Section 3.3. The separation of the feature space for this algorithm is defined by histograms with respect
to a chosen binning scheme and determines the tiling of the feature space. A brief discussion on other
possible methods is given in Section 3.4. For visualization purposes, the feature space was limited to
two dimensions and only simple transformations based on band math were allowed.

Those examples were chosen to illustrate the difference between selecting a particular machine
learning method and selecting appropriate transformations of the input data. These aspects are well
known and comprise almost textbook knowledge, but we included this material to highlight the
fact that different transformations on the input data lead to different separation of the discussed
classes in the feature space. Then, different algorithms can result in various compartmentations of
the feature space for the classes, and both choices affect the final classification skill. These problems
might have many multiple solutions, of which many can be approximately equivalent for various
metrics. Choosing a particular algorithm from such a set of mostly similar algorithms can be random or
subjective, without meaningful impact on the final classification result. Discussing individual aspects
of a particular algorithm, e.g., a single threshold for a feature on a branch within a decision tree, could
be meaningless.
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Figure 4. Overview about the behavior of three classification algorithms. Figures in a row ((a–c) and
(d–f)) are based on the same data transformation (e.g., for the top row, the feature space is build from
the 443 nm (B1) channel and an index of the 1610 nm (B11) and 490 nm (B2) channel, where the index
function denotes (i − j)/(i + j) with i and j are the given channels). Each column (e.g., (a,d) or (c,f))
illustrate algorithms based on the same technique which is provided in the title of each plot. The points
in each figure show a random sample from the training database and the color indicates the manually
defined class. The background color indicates the decision of the algorithm for the full feature space.
Indicated in the title of each plot is the ratio of correctly classified samples for the training dataset.

3.1. Optimization and Validation Strategy

All presented classification algorithms are based on a common optimization strategy. We treat
the construction of feature spaces and optimization of classification parameters independently and
drive the search using random selection techniques. Each step consists then of a randomly selected set
of features, a randomly selected set of parameters, and the constructed algorithm. We want to note
that many algorithms can reduce the initially given feature space to a smaller, possibly parameterized,
number. Feature spaces are constructed using simple band math formulas which are listed in Table 2.
The included relations depend on one to four bands, such that a space with n features could depend
on up to 4 × n bands.
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To separate the training and validation, we randomly split the database into mutually exclusive
sets for training and validation. This random split is performed on the total level of the database and
includes all datasets as shown in Figure 2. No spectrum which is used for training is therefore used for
validation of the algorithm. The classification skill of each algorithm can be evaluated by the ratio of
correctly classified cases which naturally varies between zero and one. This score is computed for the
training and the validation data set, but only the value of the validation dataset is used for ranking
different algorithms. A particular algorithm is excluded if the difference between the two scores
becomes too high, which is a simple indication for overfitting.

This understanding of validation is somewhat differently used than in other parts of remote
sensing, where validation is usually performed as a comparison of two products (e.g., total column
water vapor derived from optical remote sensing measurements and GPS based methods) where
one of them is considered as the truth or the product with smaller uncertainty. Here, it is used as
confirmation that the machine learning algorithm shows similar results for two separate datasets and
that the algorithm doesn’t just remember the training dataset.

All presented classification scores are therefore results for the database and the transfer to
Sentinel-2 images is based on the assumption that the database is representative of all images. A high
value for the classification skill is only a necessary condition for good classification results. If extensive
experience with the results of a particular algorithm shows consistency problematic results for specific
circumstances, the database should be updated to make it more representative, and the algorithm
should be retrained.

3.2. Ready-to-Use Decision Trees

Decision trees can be best understood as a hierarchy of thresholds on single features. All possible
decision paths form a tree with each path being a branch. We use the Python library scikit-learn [36]
which provides the needed functionality with the CART method [37], which is an optimized version
of the C4.5 method [38,39]. It returns optimized decision tree algorithms with prescribed depth for
a given training data set which was projected to a selected feature space. The method aims to find
a global optimum concerning classification skill and is free of additional parameters.

Decision trees could be constructed manually, but this work can be tedious and doesn’t guarantee
to deliver better results than automated methods. Both, automated and manual construction aims for
a global optimum for given training data and feature space. However, the space of possible decision
trees might contain a large number of algorithms with almost equal classification skill near the global
optimum. This indicates that the choice of a particular algorithm is certainly not unique and might
leave room for discussion. Here, we decided to discuss pragmatically the best trees which we found
regarding classification skill for the validation data set. Since the search for optimum feature space is
random, we can not guarantee that the global optimum was found, but a long search time was allowed.
The search was stopped when after 5000 attempts no better algorithm was found than already known.

Figure 5 depicts a decision tree schematically with depth three and with a ratio of correctly
classified spectra of 0.87. The figure also illustrates the success rate of complete separation at the end
of each branch. As an example, the final water class contains still a small fraction of shadows, but
negligible remainders of other class members. The feature space of this tree is completely composed of
bands, and the units are at-sensor reflectance. The ratio of correctly classified spectra increases slightly
to 0.89 if band math is allowed within feature space construction. Figure 6 shows the resulting tree in
the same style as the previous figure. Both results illustrate that increasing the space of feature spaces
can improve the classification performance, but that the effect is not dramatic when decision trees are
concerned. This increase in classification skill requires the additional computation of features from
bands which should reduce the computational performance of the algorithm.
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Figure 5. Decision tree of depth three. The tree must be read from left to right, and the actual decision
is printed on the horizontal branch. The up direction indicates a yes while the down direction indicates
a no decision. The final class name is shown at the end of each branch. A histogram at the end of each
branch indicates the class distribution of samples at the end of the branch and thus indicates the ability
of that branch to separate the classes from each other. The ratio of correctly classified spectra of this
tree is 0.87.
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Cloud
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Figure 6. Similar as Figure 5 but this time band math was allowed when the feature space was
constructed. Band math functions are defined in Table 2. The ratio of correctly classified spectra of this
tree is 0.89.

These result nicely show, that even with a simple technique, a reasonable separation of the classes
can be accomplished. The complexity and to some extent the expected classification skill increases
with increasing depth of the trees. One can expect, that the increase in classification skill becomes
negligible from a particular depth on and that an increase in depth adds only to the complexity and
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the risk of overfitting. When increasing the allowed depth to four, the ratio of correctly classified
spectra increases to 0.91 and a further increase to five only results in a value of 0.92. This indicates that
a reasonable regime for classification trees is reached at a depth of four.

Similar as for the case of depth three, results at a depth of four with a feature space composed of
bands only is shown in Figure 7, while the result for the constructed feature space is shown in Figure 8.
Both algorithms show a similar rate of correctly classified spectra, but the algorithm with the derived
feature space shows slightly better results with 0.91 vs. 0.89. It is noteworthy that both decision trees
have branches which terminate before the maximum allowed depth is reached. The best solution
includes only band math functions for selecting a single band (B), the difference between two bands
(S), and the ratio of two bands (R). It is beyond the scope of this work to discuss the physical reasons
on how these particular algorithms function. Our focus is to present them in a way which makes them
ready-to-use for many applications requiring a pixel mask as input. However, these algorithms are
somewhat limited in their classification skill, such that more sophisticated methods might be desirable
for certain applications. In the next section, we describe a classification system which reaches a much
higher ratio of correctly classified spectra.
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Figure 7. Similar to Figure 5, but for a maximum depth of four. The feature space consists of single
bands. For clarity, we omitted the capital B in front of band named when they occur in band math
functions. The ratio of correctly classified spectra of this tree is 0.89.
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Figure 8. Same as Figure 7, but the feature space is derived from band math functions which are
defined in Table 2. The ratio of correctly classified spectra of this tree is 0.91.

3.3. Ready-to-Use Classical Bayesian

Classical Bayesian classification is based on Bayes law for inverting joint probabilities. It can be
expressed as:

P(C, F) = P(C)× P(F, C)/P(F) (1)

where P(C, F) expresses the joint occurrence probability of class C under the condition of the feature F,
with P(C) and P(F) being the global occurrence probabilities of the class C and the feature F. P(F, C) is
the joint occurrence probability of the feature F for the class C. The term classical distinguishes this
approach from the much more commonly used approach of naive Bayesian classification, where one
assumes that features are uncorrelated which allows to expresses the joint probability P(F, C) as the
product of single occurrence probabilities for each feature. Applications to cloud detection can be
found in [23,40,41] while an in-depth discussion of the classical Bayesian approach can be found
in [24]. In summary, the joint probability P(F, C) is derived from a histogram of the database with the
dimensionality of the number of used features. Free parameters are the number of histogram bins and
a smoothing value. The success of this method is based on the selection of the most suitable feature
space which follows the previously discussed random approach. The classification is performed by
computing the occurrence probability for each class and selecting the one with the highest probability.

Since this method computes occurrence probabilities for each class, it is straightforward to
include a confidence measure for each classification. Such a measure can be of great importance in
post processing steps, where one might want to process only clear sky pixels for which the classification
algorithm was very certain. The construction of such a measure is certainly not unique. We chose to
proceed with a simple form, where the sum of all probabilities is normalized to one and the confidence
measure is the relative value of the probability of the selected class and the sum of all other probabilities.
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Similar as for the case of decision trees, not a single algorithm was found which represents
the global optimum, but rather a whole suite of algorithms with similar classification scores.
The est found option reaches a ratio of correctly classified spectra of 0.98 for the feature space:
B03 × S(B9, B1)× I(B10, B2)× B12 × I(B2, B8A). Figure 9 shows the confusion matrix for this
algorithm, where off-diagonal elements above 0.5% are shown. The confusion matrix was derived from
the validation dataset. All classes show excellent values. The largest misclassifications happen between
clear sky and shadow and water and shadow classes. This is to be expected for any algorithm since the
boundary of the shadow class is diffuse by nature. Also, some smaller confusion between water and
shadow should be acceptable since both classes have members who are very dark in all MSI channels.

This figure shows similar information about the classical Bayesian algorithm as the histograms
shown for each branch of the discussed decision trees (see Figures 5–8). In contrast to the decision
trees, the classification rates are shown for the total classification result and are not broken down for
its inner structure. Such an approach is much less straightforward for classical Bayesian algorithms
than for decision trees since the exploited features are used at once and are not ordered within an
internal hierarchy.
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Figure 9. Overview about the rate of classification for each class concerning all other classes. Apart from
round-off errors, data adds up to 100% column-wise for each class, but only values above 0.5% are
shown to increase the clarity of the figure. The data sample is based on manually classified data which
were not used for setting up the algorithm.

Figure 10 shows RGB images of Sentinel-2 scenes together with the derived mask and the
classification confidence. The figure captures diverse areas and includes mountainous regions, green
vegetation, snow and ice, as well as clouds and shadows. Especially the mountainous regions show
that a separation of ice and shadows is achieved. Many pixels are marked as affected by shadows,
which can be useful when atmospheric correction is performed. Only a few spatial patterns from the
images are present in the confidence masks which indicates that this measure is mostly independent of
the scene. Some larger water bodies and snow-covered areas can be found in the confidence maps as
areas of reduced noise, but this only illustrates the homogeneity of the scene itself. The used color scale
does not exaggerate small variations of the confidence since these might be hard to interpret. However,
depending on the actual application, it can be straightforward to use the confidence value and together
with appropriately selected thresholds to filter data for further processing. The dark water bodies in
panel b of the figure include some areas which are wrongly classified as shadow. This can be expected
from the analysis of the confusion matrix (see Figure 9). The confidence value for these areas is only
slightly reduced.
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(c) Product name: S2A_OPER_MSI_L1C_TL_SGS__20160205T174515_A003251_T31TGK

Figure 10. (a–c) Overview of classification results based on the classical Bayesian algorithm. The name
of the used Level-1C product is given in the caption below each panel. Within a figure, the left panel
shows an RGB (B11,B8,B3) view of the scene, the middle panel shows the classification mask, and the
right panel shows the classification confidence.

3.4. Comparison with Commonly Used Techniques

This work focuses on decision trees and classical Bayesian algorithms, but the results from other
techniques help to put them into perspective. Commonly used techniques from the domain of machine
learning are random forests (RF) [42–44], support vector classifiers (SVC) [45], and stochastic gradient
descent (SGD) [46,47]. Methods which also compute class probabilities can be combined using adaptive
boosting [48,49]. We used the implementations of these techniques in scikit-learn to derive additional
classification algorithms using the same random search approach as outlined above.

Before presenting the results, we want to emphasize that they represent merely lower boundaries
for classification skill and processing speed. The used techniques have free parameters which were
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sampled by a random search, but experts for particular techniques might be able to use better
implementations or find better sets of parameters and hence produce better or faster results than
the ones presented here. However, the results might be representative for a typical user who uses
an implementation, but is not aware of all possible details. An overview about the numeric experiments
is given in Figure 11. The analysis was separated by the types of allowed feature spaces. The left
panel shows results for original bands only, while for the right panel feature spaces based on band
math based on Table 2 were allowed. All presented decision trees from Figure 5 to Figure 8 are
included as well as the classical Bayesian algorithm which was discussed in Section 3.3. The classical
Bayesian for the single band feature space is based on B1 × B4 × B8 × B10 × B11. The parameters of
the other techniques are not listed here since they depend on a specific implementation and might not
be portable among different implementations.
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(a) Feature space based on single bands only.
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(b) Feature based on band math functions as defined in Table 2

Figure 11. Overview about global and per-class classification skill (blue bars, right scale) and algorithm
performance in Mega Pixel per second (Mpx/s, red bars, left scale) for different machine learning
techniques. Panel (a) shows results for feature spaces based on single bands while panel (b) shows
results for feature spaces based on band math functions. The classification scale of both panels
is the same for better comparison. Tables below the two panels report numbers for classification
performance as well as the classification score for the full validation dataset and separated by individual
classes. The labels are: RF = Random Forest (RFB includes adaptive boosting), cB = classical Bayesian,
SVC = support vector classifiers, SGD = stochastic gradient descent, DTn = decision tree of depth n.
The algorithms are sorted by their classification skill.

The processing performance in Mega Pixel per second (Mpx/s) is also reported. All computations
were performed on an Intel i5-3570 CPU @ 3.40 GHz. These figures depend on the implementation
of a particular technique and should only be used to judge a particular implementation and not the
technique as such. The classical Bayesian is implemented in the Python language and uses parts of
NumPy and SciPy [50]. It seems obvious that algorithms which use a feature space based purely on
bands should have an advantage since the calculation of features can be skipped. This can be nicely
seen for the classical Bayesian algorithms, but breaks for the decision trees as well as the stochastic
gradient descent, which only shows that even for a single implementation of a technique the real
run-times can vary drastically. Possible reasons for this effect might be a change of the used numeric
type between the two approaches.

When the classification skill is concerned, random forests, support vector classifiers, and the
classical Bayesian show quite similar results and other factors should be discussed when a particular
algorithm needs to be selected. Although not impossible, portability of scikit-learn algorithms is
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currently problematic and only safely possible when the algorithm is retrained on each new computer
system. Classical Bayesian algorithms are safely portable among setups which provide a recent python
distribution. Also, it shows good processing performance even when implemented in a language
which is sometimes referred to as slow.

For the scikit-learn techniques, adaptive boosting was only applied to the random forests since
other methods did not provide class probabilities. Only minor improvements are found, which can
be expected since random forest already is an ensemble method. The classical Bayesian provides
probabilities, and adaptive boosting can be applied. It is not discussed here since it was planned to
share the algorithm and a combination with scikit-learn introduces problems with portability.

The classification scores on a per-class level show expected results with the smallest results for
shadow and clear sky pixels. This is caused by the diffuse nature of both classes and should not come
as a surprise. All in all, the classes show all good scores and the discussion of confusion matrices is not needed.

The classical Bayesian gains little classification skill for feature spaces based on band math.
In general, this method is limited to smaller numbers of features and was limited to five for this study.
The number of selected features defines the dimensionality of the underlying histograms, and the
number of bins sets requirements for needed computer memory as well as the amount of required
training data. This indicates that this limit is more practical than theoretical. The stability of the
classification skill for both approaches shows that all relevant information for this task can be included
within five features.

4. Conclusions

A database of manually labeled spectral from Sentinel-2 MSI was set-up and presented. It contains
spectra as well as metadata such as observational geometry and geographic position. The data is
labeled with the classes: shadow, snow, cirrus, cloud, water, and clear sky and can be used to create
and to validate classification algorithms. The considered classes are crucial for atmospheric correction
as well as other methods which rely on pixel masks for the filtering of input data.

The series of Sentinel-2 platforms will deliver unprecedented amounts of Earth observation data
which calls for fast and efficient algorithms for data processing. Such algorithms can establish a baseline
to quantitatively evaluate the added value of algorithms with a higher demand on computational
resources. Machine learning techniques offer straightforward routes for the development of fast
algorithms and were applied to derive ready-to-use classification algorithms. Decision trees were
discussed since they are simple-to-understand and easy-to-implement and are therefore suitable
candidates for baseline algorithms. It was found that trees of depth four show a classification
performance as good as trees with higher depth. The ratio of correctly classified spectra reached
0.91, while trees of depth three can reach values of 0.87. Several ready-to-use decision trees were
presented in schematic form. Feature spaces based on the bands alone as well as based on band math
were tested. For algorithms with the same number of features, those based on the full range of band
math formulas gave only slightly better results than those using single bands only. An algorithm based
on the classical Bayesian approach was discussed to increase the classification performance to a value
of 0.98. A limiting factor in a further increase of the detection skill is the inherent diffuse separation
of clear sky and shadow pixels. Smaller effects are caused by a misclassification of dark water and
shadow pixels. The discussed database, the presented decision trees, as well as the classical Bayesian
approach are available at [33].

A comparison with other widely used machine learning techniques shows, that similar results
can be achieved with random forests and support vector classifiers. Since portability and processing
performance can be an issue, the classical Bayesian algorithm is a good candidate for general use and
distribution of algorithms.

The presented classification is an essential pre-processing step, which in most workflows will be
followed by additional processing or further classification. The derived classification can then be used
as input data filter for these steps.
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Selecting an actual algorithm should be based on user requirements which diminish the value
of general suggestions. If users need full control over the algorithm and are willing to invest labor,
the database and one of the suggested machine learning methods can be applied. This approach is of
particular value if the detection of a subset of the presented class is required with higher accuracy than
others. If only a minimum of extra work can be spent on this task, potential users should choose either
the presented implementation based on the classical Bayesian or one of the presented decision trees.
Selection of the decision trees depends mainly on the required processing speeds and classification
performance. For highest processing speeds, the decision tree of depth three based on single bands
should be used (see Figure 5). If this requirement can be relaxed, the decision tree of depth four
based on band math (see Figure 8) delivers better classification performance with possibly decreased
processing speeds. Much better classification performance can be expected from the classical Bayesian
implementation which is ready-to-use.
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