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Abstract: Due to the lack of ground control points (GCPs) and parameters of satellite orbits, as well
as the interior and exterior orientation parameters of cameras in historical declassified intelligence
satellite photography (DISP) imagery, a second order polynomial equation-based block adjustment
model is proposed for orthorectification of DISP imagery. With the proposed model, 355 DISP images
from four missions and five orbits are orthorectified, with an approximate accuracy of 2.0–3.0 m.
The 355 orthorectified images are assembled into a seamless, full-coverage mosaic image map of the
karst area of Guangxi, China. The accuracy of the mosaicked image map is within 2.0–4.0 m when
compared to 78 checkpoints measured by Real–Time Kinematic (RTK) GPS surveys. The assembled
image map will be delivered to the Guangxi Geological Library and released to the public domain
and the research community.

Keywords: declassified intelligence satellite photography (DISP); rectification; imagery distortion;
second polynomial equation

1. Introduction

Rocky karstification in karst areas (also called karst rocky desertification (KRD)) is considered one
of the major factors that contribute to the global carbon balance as a global CO2 sink [1–3]. With the
increasing interest in global carbon emissions, studies and analyses have compared historical data
with current data to discover how rocky karstification contributes to long-term environmental changes
over decadal spans.

Guangxi is located in the southwestern karst area in China, and the KRD area is approximately
23,790.80 km2, accounting for 19.8% of the total KRD area in China in 2005. It shrunk to 19,260.00 km2

in 2011, accounting for 16.0% of the total KRD area in China. Although many researchers have
investigated the Guangxi KRD area associated with its environmental evolution in recent decades,
there have been no investigations or analyses of the KRD area that focused on the early 1960s.
Fortunately, declassified intelligence satellite photography (DISP) released to the public domain in
February 1995 has provided researchers with a unique opportunity to investigate the KRD in Guangxi
in the 1960s. The DISP was collected by the first generation of United States photoreconnaissance
satellites between 1960 and 1972 through the systems named CORONA, ARGON, and LANYARD.
More than 860,000 images of the Earth’s surface were declassified with the issuance of this executive
order and were contracted to the USGS for sale.
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However, further processing and application of DISP has resulted in various problems:

(1) The USGS does not provide Chinese users with the parameters required to further process
DISP. These parameters include satellite orbit parameters (e.g., inclination, flight height, descent
time, etc.) and the camera’s interior orientation parameters (IOP) (e.g., focal length, principal point
coordinates, fiducial marks, etc.). This implies that traditional bundle block adjustment based on the
photogrammetric collinearity equation is not applicable [4,5].
(2) It is very difficult to obtain sufficient ground control points (GCPs) in the historical DISP imagery
due to the time intervals of several decades and cloudy coverage in Southern China. Thus, it is almost
impossible to rectify each DISP image on a frame-by-frame base.

For the two reasons above, this paper presents a second order polynomial equation-based
rectification model for orthorectification of DISP images. The previous relevant studies on this
topic are as follows: Kim et al. utilized a collinearity equation to rectify ARGON imagery from
1963 to study the seasonal variations of glaciers on the Queen Maud Land coast of Antarctica [6].
Zhou and Jezek proposed a collinearity equation-based self-calibration block bundle adjustment
method that integrates the bundle adjustment method and satellite orbital parameters, solving interior
orientation (including lens distortion) and exterior orientation parameters (EOPs) simultaneously
to rectify ARGON images from 1962 and 1963 [4]. The rectified ARGON imagery was employed
to mosaic Greenland ice sheets from the 1960s, which were then quantitatively compared to the ice
sheet extent over a 30-year interval [5]. Kim and Jezek applied a state-of-the-art digital imaging
technology based on an extended block adjustment to rectify ARGON imagery from 1963 that covered
Antarctica [7]. They assembled all images into a quality mosaic of coastal Antarctica to study glaciers.
In addition, due to the imaging model limitations of high-resolution satellites, such as IKONOS, rational
polynomial-based block adjustment, also called rational polynomial coefficient (RPC), was proposed
by multiple authors. For example, Tao et al. analyzed the accuracy of orthorectification of a Systeme
Probatoire d’Observation de la Terre (SPOT) image and an aerial image using the RPC model [8,9].
Yang suggested that the RPC model can replace the rigorous sensor model orthorectification of SPOT
images [10]. Liu developed a stereotaxic method of IKONOS images based on the RPC model [11].
Huang proposed a rational polynomial-based block adjustment for orthorectification of Synthetic
Aperture Radar (SAR) images [12]. Grodecki and Gene Dial rectified IKONOS satellite imagery using
the RPC method. The RPC model incorporates a priori constraints into the images described by RPC,
and multiple independent images can be added in accordance with the needs of users [13]. However,
the RPC model requires a number of GCPs, and the computation is very time consuming. Therefore,
the RPC method is not applicable to DISP images that the USGS provides because the imaging model
of DISP was not provided by the USGS. Additionally, few GCPs are available in the study area. Thus,
this paper presents an effective and simple mathematical model for geometric rectification of DISP
images, considerably improving the computational effectiveness.

2. The Second Order Polynomial Equation-Based Rectification Model Method

2.1. Polynomial Equation-Based Block Adjustment Model

The objective of polynomial equation-based block adjustment is to tie overlapping images together
without the absolute need for ground control points in each image and obtain coordinates of tie points
and conversion parameters for rectification. Since the study area is a karst landform with a large
wavy terrain and large elevation differences, the relief displacement is large. For correction of relief
displacement, relief displacement is introduced into the block adjustment model shown below.

Figure 1 shows the imaging geometry of DISP from the CORONA mission. S−WVU(W ′V′U′) is
a camera coordinate system, o− xy is an image plane system, and O− XYZ is a geographic coordinate
system. There is relief displacement (∆h) in the imaging process; therefore, the relief displacement
must be corrected in the rectification process. First, distortion caused by elevation differences should
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be corrected. Then, other distortions should be corrected by utilizing a polynomial model, and the
reverse is true in the resampling process.
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Figure 1. The imaging geometry of declassified intelligence satellite photography (DISP) from the
CORONA mission.

Since the relief displacement only occurs in the direction of scanning, CORONA images are
panoramic camera images, and the panoramic projection scan direction is the x-direction. Therefore,
as shown in the imaging equation above, there is no relief displacement in the y-direction. The relief
displacement correction functions are as follows:

∆h = Z · h/M (1){
∆x = x · Z/M
∆y = y · Z/M = 0

(2)

where x and y are image coordinates; ∆x and ∆y are image distortions in the x- and y-directions,
respectively, caused by elevation differences; Z is the elevation; h is the distance from the image point
to the nadir point; and M is the satellite flight altitude. Since the relief displacement occurs in the
direction of scanning and the KH-4A/B’s images are panoramic camera images, the images can be
rectified using the second-order polynomial equation-based model.

2.1.1. Traditional Second-Order Polynomial Equation

The traditional second order polynomial model has been widely applied for image rectification.
This paper extends the traditional equation into a block situation by adding tie points, which tie
overlapping images together. With the extended model, the 2D coordinates of tie points and the
coefficients of second order polynomial equations are solved. Furthermore, these parameters are used
for orthorectification of DISP imagery without the absolute requirement of at least six GCPs in each
DISP image.

The traditional second order polynomial equations are expressed as follows [14]:{
x + ∆x = a0 + a1X + a2Y + a3XY + a4X2 + a5Y2

y + ∆y = b0 + b1X + b2Y + b3XY + b4X2 + b5Y2 (3)

where α = (a0, a1, a2, a3, a4, a5)
T and β = (b0, b1, b2, b3, b4, b5)

T are coefficients; x and y are image
coordinates; ∆x and ∆y are image distortions in the x- and y-directions, respectively; and X and Y are
2D coordinates in a given map coordinate system.
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For a given GCP, Equation (3) can be linearized using a Taylor series and is expressed as follows:{
vx = ∆a0 + X∆a1 + Y∆a2 + XY∆a3 + X2∆a4 + Y2∆a5 − lx

vy = ∆b0 + X∆b1 + Y∆b2 + XY∆b3 + X2∆b4 + Y2∆b5 − ly
(4)

where ∆ai(i = 0, 1, · · · , 5) and ∆bi(i = 0, 1, · · · , 5) are correction terms of coefficients; vx, vy are
residuals; X and Y are 2D coordinates of GCPs; and lx and ly are constants expressed by Equation (5).{

lx = x− (a0 + a1X + a2Y + a3XY + a4X2 + a5Y2)

ly = y− (b0 + b1X + b2Y + b3XY + b4X2 + b5Y2)
(5)

As shown in Equation (4), one GCP only establishes two observations, but Equation (4) has
12 unknown parameters. Therefore, six GCPs, which establish 12 observation equations, are needed to
solve the 12 coefficients that are used for to rectify a single image. Generally, more than six GCPs are
observed in each image to establish more than 12 observation equations. The least-squares estimation
is employed to calculate the 12 coefficients. Mathematically, the solution can be described as follows.

Assuming that N GCPs (N ≥ 6) are observed, the observation equations are expressed in matrix
form as follows:

V = A · α− L (6)

where:
V =

[
Vx1 Vy1 ... ... VxN VyN

]T
,

A =



1 X1 Y1 X1Y1 X2
1 Y2

1 0 0 0 0 0 0
0 0 0 0 0 0 1 X1 Y1 X1Y1 X2

1 Y2
1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 XN YN XNYN X2
N Y2

N 0 0 0 0 0 0
0 0 0 0 0 0 1 XN YN XNYN X2

N Y2
N


,

α =
(

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5

)T

and:
L =

[
lx1 ly1 ... ... lxN lyN

]T
.

The least-squares estimation, i.e., VT PV = min, gives the solutions of the coefficients of the
second order polynomial equation below:

α = (AT A)
−1

AT L (7)

We can further obtain the following expressions from Equation (7):

ai = a0
i +

Nite

∑
j=1

∆aj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (8)

bi = b0
i +

Nite

∑
j=1

∆bj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (9)

where a0
i , b0

i are initial values; ∆aj
i , ∆bj

i are increases during each iteration; and Nite is the number
of iterations.
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2.1.2. The Second-Order Polynomial Equation-Based Rectification Model

As mentioned above, due to the shortage of GCPs in each of the DISP images, the tie points
(TPs) must be identified to tie images with the same overlapping areas. Under this condition, the TPs
whose XY-coordinates are unknown are introduced into the traditional second order polynomial
equation. This extended model is called the second-order polynomial equation-based rectification
model (2OPE-RM) in this paper (see Figure 1). Equation (3) is extended with considering TPs as
unknown parameters and linearized into the following form:

vx = ∆a0 + X∆a1 + Y∆a2 + XY∆a3 + X2∆a4 + Y2∆a5

+(a1 + a3Y + 2a4X)∆X + (a2 + a3X + 2a5Y)∆Y− lx

vy = ∆b0 + X∆b1 + Y∆b2 + XY∆b3 + X2∆b4 + Y2∆b5

+(b1 + b3Y + 2b4X)∆X + (b2 + b3X + 2b5Y)∆Y− ly

(10)

Then, Equation (10) can be rewritten as follows:{
vx = ∆a0 + X∆a1 + Y∆a2 + XY∆a3 + X2∆a4 + Y2∆a5 + f1∆X + f2∆Y− lx

vy = ∆b0 + X∆b1 + Y∆b2 + XY∆b3 + X2∆b4 + Y2∆b5 + g1∆X + g2∆Y− ly
(11)

where:
f1 = a1 + a3Y + 2a4X,

f2 = a2 + a3X + 2a5Y,

g1 = b1 + b3Y + 2b4X, and

g2 = b2 + b3X + 2b5Y.

The symbols above are the same as those in Equation (10).
Additionally, assuming that there are N GCPs (N ≥ 6), M TPs in t images are collected at the

GCPs. Similarly, Equation (10) can be expressed in matrix form as follows:

V = A · α + B · β− L (12)

where:

V =
[

vGCP
x1

vGCP
y1

... ... vGCP
xn vGCP

xn | vTP
x1

vTP
y1

... ... vTP
xM

vTP
xM

]T
,

α = (∆α1
0, ∆α1

1, ∆α1
2, ∆α1

3, ∆α1
4, ∆α1

5, · · · , ∆αt
0, ∆αt

1, ∆αt
2, ∆αt

3, ∆αt
4, ∆αt

5),

β = (∆X1
1 , ∆Y1

1 , · · · , · · · , ∆Xt
M, ∆Yt

M),

A =



1 X1
1 Y1

1 X1
1Y1

1 X1
1

2 Y1
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 Xi

N1
Yi

N1
Xi

N1
Yi

N1
X1

N1

2 Y1
N1

2

The 1st image with N1 GCPs

1 Xi
1 Yi

1 Xi
1Yi

1 Xi
1

2 Yi
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1 Xi
Ni

Yi
Ni

Xi
Ni

Yi
Ni

Xi
Ni

2 Yi
Ni

2

The ith image with Ni GCPs

1 XN
1 YN

1 XN
1 YN

1 XN
1

2 YN
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 XN

Nn YN
Nn

XN
Nn

YN
Nn

XN
Nn

2 YN
Nn

2

The Nth image with Nn GCPs
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and:

B =



f 1
1 f 1

2
...

...
f M1
2 f M1

2

The 1st image with M1 TPs

f i
1 f i

2
...

...
f Mi
1 f Mi

2

The ith image with Mi TPs

f M
1 f M

2
...

...
f Mn
1 f Mn

2

The Mth image with Mn TPs


Equation (12) is the 2OPE-RM model derived in this paper. Relative to the traditional model in

Equation (6), this model introduces TPs as unknown parameters.
Equation (12) is usually solved using least-squares estimation, which is expressed as follows:

Φ = VTV = min (13)

With least-squares estimation, the normal equation matrix can be written as follows:(
AT A AT B
BT A BT B

)(
δα

δβ

)
=

(
AT L
BT A

)
(14)

Thus, the solution of the unknown parameters is given by Equation (15):{
∆a = −

(
Qαα AT L + QαβBT L

)
∆b = −

(
Qβα AT L + QββBT L

) (15)

where Qij(i, j = 1, 2) gives the components of the covariance matrix, which is the inverse of the normal
matrix, as shown in Equation (16):

Qij =

(
AT A AT B
BT A BT B

)−1

=

(
Qαα Qαβ

Qβα Qββ

)
(i, j = 1, 2) (16)

The coefficients of the 2OPE-RM in each image and the 2D coordinates (XY) of each TP are
as follows:

ai = a0
i +

Nite

∑
j=1

∆aj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (17)

bi = b0
i +

Nite

∑
j=1

∆bj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (18)

Xti
i = X0

i +
Nite

∑
j=1

∆X j
i (i = 1, · · · , 5; j = 1, · · · , Nite; ti = 1, · · · , t) (19)

Yti
i = Y0

i +
Nite

∑
j=1

∆Y j
i (i = 1, · · · , 5; j = 1, · · · , Nite; ti = 1, · · · , t) (20)

where Xi, Yi are coordinates of the i-th TP in image ti; ∆Xi, ∆Yi are increases in Xi and Yi; a0
i and b0

i
are initial values; and ∆ai and ∆bi are increases in the coefficients in each iteration.

As shown in Equation (12), each image has 12 unknown parameters (ai, bi; i = 0, 1, · · · , 5),
and each TP has two unknown parameters (XY-coordinates). Two equations can be established
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for each GCP or TP. Moreover, the TPs and/or GCPs should be well distributed in each image.
For example, there are four images, 12 GCPs, and nine TPs in Figure 2. The four images imply that
there are 48 unknown parameters. The 12 GCPs can be used to establish 42 observation equations
(i.e., seven GCPs in Image #1 can be used to establish 14 observations, three GCPs in Image #2 can
be used to establish six observations, six GCPs in Image #3 can be used to establish 12 observations,
and five GCPs in Image #4 can be used to establish 10 observations). The nine TPs can be used to
establish 34 observation equations (i.e., three TPs in Image #1 can be used to establish six observations,
three TPs in Image #2 can be used to establish six observations, six TPs in Image #3 can be used to
establish 12 observations, and 5 GCPs in Image #4 can be used to establish 10 observations). With this
model, we have 76 (76 = 42 + 34) observations and 66 (66 = 48 + 18) unknown parameters. Thus,
2OPE-RM does not require each DISP image to have more than six GCPs.

The accuracy of the adjustment computation is evaluated using Equation (21):

δo =

√
VTV

r
(21)

where δo is the standard deviation of the unit weight, V is the matrix of residuals, and r is the number
of redundant observations. Thus, the standard deviations of individual unknown parameters can be
calculated as follows:

δXi = δo

√
QXi (22)

To evaluate the accuracies of TPs, assuming that there are n TPs, the average of δXi is as follows:

µX =
1
n∑ δXi (23)

where n is the number of TPs.
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2.2. Orthorectification of DISP Images

With the established model and the coefficients determined in Section 2.1, each original DISP
image can be orthorectified. The steps are as follows:

1. Step 1: Determination of the Rectified Image Size

To properly establish the storage space of the orthorectified image, the size of the resulting image
(upper left, lower left, upper right, and lower right) must be determined in advance. This procedure is
proposed as follows.
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• Determination of the four corner coordinates: The four corner coordinates of the original image are
projected into the UTM coordinate system. Then, eight coordinates are obtained:

(Xul , Yul) , (Xll , Yll) , (Xur, Yur) , (Xlr, Ylr) .

The maximum and minimum values of X and Y (Xmin, Xmax, Ymin, and Ymax) are calculated from
the eight coordinates above to constitute four coordinate pairs. These pairs are the map coordinates of
the four boundaries of the resulting image’s scope.

Xmin = min(Xul , Xll , Xur, Xlr) , Xmax = min(Xul , Xll , Xur, Xlr)

Ymin = min(Yul , Yll , Yur, Ylr) , Ymax = min(Yul , Yll , Yur, Ylr)
(24)

• Determination of the resulting image’s size: The size of the resulting image can be determined by M
and N as follows:

M =
Ymax

YGSD
+ 1 , N =

Xmin

XGSD
+ 1 (25)

where M = row, N = col, and YGSD, XGSD are the ground-sampled distances (GSD) in the
resulting image.

2. Step 2: Coordinate Transformation

Because the orthorectification model only expresses the relationship between the original
coordinates (xori, yori) and ground coordinates

(
Xgro, Ygro

)
, the ground coordinates should be

transformed into the coordinates of the resulting image (xre, yre) as follows:

xre =
Ymax −Ygro

YGSD
+ 1 ; yre =

Xgro − Xmin

XGSD
+ 1 (26)

where Ygro , Xgro are the ground coordinates of the pixel after rectification.

3. Step 3: Orthorectification

The calculation of the geographic coordinates of individual pixels, resampling of the original
image, and registration of the chosen map coordinates system are carried out as follows:

• The process can be applied to any point P(I, J) in the resulting image with image coordinates
(I, J).

• In accordance with image coordinates (I, J) and GSD, calculate the geographic coordinates (X, Y).
• Compute the image coordinates (i, j) of point P in the original image using Equation (5).
• Calculate the gray value gori via bilinear resampling interpolation.
• Assign the gray value gori to point P as gres in the resulting (rectified) image/pixel.

The above procedure is then repeated for each pixel that must be rectified until the entire image is
completely rectified.

2.3. Data Set

• Study area

The study area is located in Guangxi, China, spanning from 20.54◦N to 26.24◦N latitudes and
104.26◦E to 112.04◦E longitudes (Figure 3) and encompassing 23,790.8 km2. The study area is in the
south central subtropics of China.
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• Dataset

DISP imagery: In total, 444 DISP images from five orbits of different missions, including the
CORONA 1035-1 Mission (24 images) on 25 September 1966, the CORONA 1102-2 Mission (48 images)
on 18 December 1967, and the 1106-1/2 Mission (39 images) on 7 February 1969, were purchased from
the USGS (Figure 4).

Aerial photos: Five aerial photos with film formats of 18× 18 cm2 from 1961 were acquired at
a photographic scale of 1:14,000. Each photo covers approximately 6.35 km2. Five aerial photos were
purchased from the Guangxi Bureau of Geospatial Information, China.

Coordinate data of GCPs: The coordinate data associated with GCPs in the KRD area were collected
from Google Earth.
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3. Results and Accuracy Analysis

3.1. Image Preprocessing

The DISP film was scanned into digital images, producing film-grain noise and resulting in image
quality degradation. Many noise filters have been used in the public domain. However, most of these
approaches are either time consuming, because of complex modelling, or they erroneously remove
geophysical features because of noise in the overall image. The filter algorithm developed by Zhou et al.
was used to remove noise in this study [5]. One of the advantages of the algorithm is that it avoids
the problems noted above because this approach performs statistical calculations within variable-size
and variable-shape sub-windows (see Figure 5) that are determined individually for every pixel in
the image, rather than modelling the noise in the overall image. The algorithm is briefly described
as follows:

(1) Select a window of 5× 5 pixels.
(2) Calculate the mean ni(i = 1, 2...9) and variance αi(i = 1, 2...9) of nine masks.
(3) Select one mask with the lowest variance αk and mean ni, and calculate the weights of every pixel

within the kth mask using the following equation:

ωi = e|∆i |, ∆i = grayi − nk (27)

(4) Calculate the output using Equation (28):

grayoutput =

(
M

∑
i=1

Wi · grayi

)/(
M

∑
i=1

ωi

)
(28)

where M is the number of pixels in the kth mask and grayi(i = 1, 2...9) is the intensity.

With the filter algorithm above, the results of removing the DISP image noise are depicted in
Figure 6, which demonstrates the effectiveness of the proposed approach.
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3.2. DISP Image Orthorectification and Accuracy Analysis

3.2.1. DISP Image Orthorectification

Since sufficient numbers of GCPs are not observed in each DISP image, TPs are identified to tie
overlapping images together and solve for the coefficients of the 2OPE-RM. The study area consists
of 355 DISP images (there are 444 DISP images in total, but we only employed 355 high-quality
images). Thus, it is impractical to construct a block in the entire study area and then solve for the
orthorectification parameters of all DISP images simultaneously because such a large block will
produce a significantly large number of observation equations, resulting in a huge computational
burden during matrix inversion. Therefore, this paper divides the study area into 24 blocks consisting
of various DISP images (see Figure 7a). Each block was rectified independently. For example, Block 1
consists of nine images in Figure 7b, in which 20 GCPs and 29 tie points were identified and measured.
The 20 GCPs are employed 36 times to establish 72 observation equations. The 29 TPs are employed
60 times to establish 120 observation equations. Thus, 192 observation equations (72 + 120 = 192)
are established in Block 1. There are 166 unknown parameters (9 × 12 + 29 × 2 = 166). There are
26 redundant observations (i.e., 192 − 166 = 26), meeting the requirements of least squares adjustment.

With the 192 observation equations established using Equation (12); the parameters used to rectify
the nine DISP images are solved simultaneously using Equation (15). The 2D coordinates of TPs
are obtained using Equations (19) and (20). With the solved coefficients and TP coordinates in each
image, orthorectification is performed for each DISP image at a GSD of 2.0 m. Figure 8a is part of one
orthorectified DISP image.

The computational accuracies of TPs using the 2OPE-RM are evaluated by Equation (23).
The standard deviations of TPs (µX and µY) are averagely 0.34 m and 0.23 m, respectively. In addition,
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the “absolute” accuracy of the orthorectified aerial photo created in 1961 is calculated using the
following equations:

∆XRMSE =

√
∑n

k=1 (Xk − xk)
2

n− 1
(29)

∆YRMSE =

√
∑n

k=1 (Yk − yk)
2

n− 1
(30)

where Xk and Yk are XY-coordinates of TPs in the orthorectified DISP image, xk and yk are
XY-coordinates in the orthorectified aerial photo created in 1961, and n is the total number of TPs.
Using Equations (29) and (30), ∆XRMSE and ∆YRMSE are 2.0 m and 1.6 m, respectively. These values
are equivalent to approximately 2.0 pixels in the orthorectified DISP imagery.
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3.2.2. Accuracy Comparison Analysis

Accuracy comparison between the DISP images orthorectified using the traditional second-order
polynomial model and the 2OPE-RM was conducted. Two test fields, which are located in mountainous
and flat areas, were selected for the accuracy comparison.

(1) The Bameng Field is a mountainous area located in Bameng County to the west of the city of
Baise, Guangxi, China, at 23.671◦N to 24.135◦N and 106.941◦W to 107.698◦W. This test area covers
the entire DS1106-2119DF107a image. The maximum and minimum elevations are 1128 m and
790 m, respectively, above mean sea level (MSL). Therefore, the relief displacement is significant.
There are 12 GCPs and seven TPs scattered throughout the test field. The 12 GCPs are used for
second order polynomial equations to solve for the 12 rectification coefficients, and the 12 GCPs
and seven TPs are used in the 2OPE-RM to calculate the coefficients. Twenty-three checkpoints
were chosen to evaluate the achievable accuracy. The orthorectified aerial photo provided by the
Bureau of Guangxi Geomatics and Geographic Information is considered to represent the “true”
values for validation. The results are listed in Table 1.

(2) The Longzhou field is a flat area located in Longzhou County to the west of the city of Chongzuo,
Guangxi, China, at 22.105◦N to 22.469◦N and 106.593◦W to 106.878◦W. This test field completely
covers the entire DS1106-2119DF110a image. In this test field, 11 GCPs and seven TPs are
scattered throughout the DISP image. The same GCPs are employed in the traditional second
order polynomial model and the 2OPE-RM. Twenty-three checkpoints were chosen to evaluate
the accuracy. The planimetric accuracies of the two models relative to the orthorectified aerial
image are shown in Table 1.

Table 1. Accuracy comparison of mountainous and flat areas.

Models

Test Area Bameng Field
(Located in A Mountainous Area)

Longzhou Field
(Located in A Flat Area)

∆XRMSE (m) ∆YRMSE (m) ∆XRMSE (m) ∆YRMSE (m)

Second order polynomial model 1.96 1.84 1.85 1.57

Our model 1.85 1.69 1.67 1.49

3.3. Image Mosaicking

Based on the individual image orthorectification above, the next work is to mosaic the individual
orthorectified DISP images into an image map. First, the characteristics of the study area and DISP
images must be understood:

1. The study area covers 23,790.8 km2 (between latitudes 20.54◦N and 26.24◦N and longitudes
104.26◦E and 112.04◦E), which consists of 355 DISP images that total 100 GB. A good mosaicking
scheme may save computational time and computer storage;

2. The study area is located in a karst landscape, where mountainous and hilly terrain areas account
for two-thirds of the total area;

3. The overlap between neighboring images must be less than 30%; and
4. The study area is covered by five strips of DISP images from four missions (Figure 9).

To minimize the influence of error propagation and avoid repeatedly sampling images, based on
the characteristics above, the mosaicking is designed as follows (see Figure 9):

1. The 16 DISP images from Mission 1106 were first mosaicked, covering the western portion of the
study area. The mosaicked map is depicted in Figure 10a. Twenty DISP images from Mission
1102-2 were mosaicked, and the mosaicked map is depicted in Figure 10b. Twenty-eight DISP
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images from Mission 1106 were mosaicked, and the mosaicked map is depicted in Figure 10c.
Twenty-three DISP images from Mission 1106 were mosaicked, as the mosaicked map is depicted
in Figure 10d. Finally, 18 DISP images from Mission 1106 were mosaicked, and the mosaicked
map is depicted in Figure 10d, covering the eastern portion of the area; and

2. With the five mosaicked maps above, a map image of the entire study area was assembled by
merging the five mosaicked images. The order of mosaicking is from the east and west to the
middle of the study area (see Figure 10).
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3.4. Radiance Balance

Due to the differences in the imaging date/time and different imaging conditions during different
missions, brightness differences between neighboring strips are unavoidable. In addition, patchwork
lines are also unavoidable. To produce a seamless mosaic of the entire study area, this paper used
a histogram equalization method to adjust the brightnesses of two neighboring strips. The boundary
line was chosen along the center image, and overlapping areas were feathered. Figure 11 shows the
result of the radiance balance.
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3.5. Mocsaicking Result and Accuracy Evaluation

The entire study area has been mosaicked by 355 orthorectified DISP images (Figure 12a).
A mountainous area located in Du’an County (Figure 12b) and a flat area located in Xingbin County
(Figure 12c) are select as the samples for accurate validation. Seventy-eight GCPs, which were
measured by RTK GPS measurements, are uniformly distributed in other countries throughout the
entire study area. These include 25 check points (CPs) scattered throughout the two test fields. ∆XRMSE
and ∆YRMSE in Equations (26) and (27) are used to measure the accuracy. The results are listed in
Table 2. As shown in Table 2, the accuracy in flat areas is better than that in mountainous areas, and the
overall accuracies of the entire study area are 2.11 m and 1.74 m.

Table 2. Final accuracies of the assembled DISP image map in the study area.

Area ∆XRMSE (m) ∆YRMSE (m)

Mountainous area 2.07 1.60
Flat area 1.86 1.79

The entire study area 2.11 1.74
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4. Discussions

The results of the accuracy comparison for the DISP images orthorectified by the 2OPE-RM and
by traditional second order polynomial model [14] are listed in Table 1. As observed from Table 1, it is
demonstrated that the RMSEs of XY-coordinates in the DISP images orthorectified by the 2OPE-RM are
smaller than those orthorectified by traditional second order polynomial model in both mountainous
and flat areas. With the experimental result, it can be concluded that:

(1) The proposed 2OPE-RM method can successfully solve the problems below when orthorectifying
the DISP images that:

(a) Each of the original DISP image has insufficient GCPs;
(b) The camera’s imaging model is unknown; and
(c) The camera’s interior orientation parameters (IOPs) including camera’s principal point

coordinates, focal length, and lens distortion parameters are unknown.

(2) The proposed 2OPE-RM is capable of obtaining a higher accuracy than the traditional second
order polynomial method does when orthorectifying the images under the above conditions (see
Table 2).
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(3) Although the proposed 2OPE-RM method is experimented and validated on the DISP images
with a satisfied accuracy, it should be suitable for the high-resolution of satellite images whose
imaging model and whose camera IOPs are not released.

The major limitations of the proposed 2OPE-RM method include:

(a) The proposed method needs a lot of tie points, which tie all images together. As observed in
Table 1, the accuracy of images rectified by the proposed method can be increased with increasing
the number of TPs. For example, if only the 12 GCPs are used in Bameng Field, the RMSEs of
the XY-coordinates are 1.96 m and 1.84 m, respectively. If seven TPs are added in addition to
12 GCPs, the RMSEs of XY- coordinates reach 1.85 m and 1.69 m, respectively. The accuracy of
the rectification result has been improved. Thus, the more the tie points, the higher the accuracy
of orthorectification.

(b) The proposed method is time-consuming and labor-intensive, because a lot of tie points,
which are usually feature points in images, are manually selected and measured. Although
a semi-automation of measurement and selection of TPs are used in this paper, a zoom-in window
operation for high-accuracy of location of the TPs is usually employed.

5. Conclusions

This paper presents a highly effective, simple, practical mathematical model for the
orthorectification of CORONA DISP images from the 1960s, whose interior and exterior parameters
are unknown and in which GCPs are lacking. The model is called the second order polynomial
equation-based block rectification model (2OPE-RM). With the proposed model, all images can be
orthorectified at an accuracy level of 2.0 pixels, corresponding to approximately 2.0–4.0 m with respect
to the WGS 84 datum. All of the images covering the entire karst area of Guangxi, China, are assembled
into a high-quality image map. The sampled distance of the assembled mosaicking map is 2.0 m.
The proposed model can solve the problems associated with the traditional second order polynomial
model, such as lack of GCPs, yielding acceptable and improved accuracy. The assembled image map
of the entire rock desertification area in Guangxi, China, will be delivered to the Guangxi Geological
Library for use by the research community.
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Abbreviations

The following abbreviations are used in this manuscript:

GCP Ground Control Point
DISP Declassified Intelligence Satellite Photography
KRD Karst Rocky Desertification
IOP Interior Orientation Parameter
EOP Exterior Orientation Parameter
RPC Rational Polynomial Coefficient
2OPE-RM Second Order Polynomial Equation-Based Rectification Model
GSD Ground Sampled Distance
TP Tie Point
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CP Check Point
RTK Real–Time Kinematic
SPOT Systeme Probatoire d’Observation de la Terre
SAR Synthetic Aperture Radar
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