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Abstract: Remote sensing (RS) images play a significant role in disaster emergency response.
Web2.0 changes the way data are created, making it possible for the public to participate in
scientific issues. In this paper, an experiment is designed to evaluate the reliability of crowdsourcing
buildings collapse assessment in the early time after an earthquake based on aerial remote sensing
image. The procedure of RS data pre-processing and crowdsourcing data collection is presented.
A probabilistic model including maximum likelihood estimation (MLE), Bayes’ theorem and
expectation-maximization (EM) algorithm are applied to quantitatively estimate the individual
error-rate and “ground truth” according to multiple participants’ assessment results. An experimental
area of Yushu earthquake is provided to present the results contributed by participants. Following the
results, some discussion is provided regarding accuracy and variation among participants.
The features of buildings labeled as the same damage type are found highly consistent. This suggests
that the building damage assessment contributed by crowdsourcing can be treated as reliable samples.
This study shows potential for a rapid building collapse assessment through crowdsourcing and
quantitatively inferring “ground truth” according to crowdsourcing data in the early time after the
earthquake based on aerial remote sensing image.

Keywords: crowdsourcing; building collapse assessment; earthquake; aerial image; EM algorithm

1. Introduction

Building collapse is one of the most serious types of earthquake damage. Most casualties
from earthquakes are associated with collapsing buildings [1]. The extent of buildings damage
reflects seismic intensity, which is important information to assess the losses of life and property
in an earthquake-hit area [2]. Rapid assessment of collapsed buildings early after the earthquake
can be instrumental in search and rescue during an emergency. It is hard to obtain the whole in-situ
information of building damage in a short time after the earthquake, because the earthquake-damaged
zones are not accessible in most cases. However, the aerial or satellite remote sensing can provide
the image of the whole disaster area, making it possible to estimate the building damage of large
disaster-affected regions in the early time. Many methods to visually interpret or automatically extract
the building damage after the earthquake were proposed based on high-resolution aerial or satellite
remote sensing image over the past ten years, which made a great contribution in estimating damage
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extent of buildings caused by earthquake using remote sensing data. Chiroiu uses post-earthquake
Ikonos imagery to assess the collapsed buildings by visual interpretation [3]. Saito et al. demonstrated
that more collapsed buildings were recognized using pre- and post-earthquake QuickBird imagery,
because the pre-earthquake imagery is a good reference of the building outlines [4]. Vu et al.
uses the region-independent edge detection algorithm to detect the collapsed buildings based on
Ikonos imagery. The results of “very heavy damage” and “destroyed” are consistent with visual
interpretation and site survey [5]. Huyck et al. uses texture change detection algorithm based on
pre- and post-earthquake imagery of mono-sensor and multi-sensor, respectively, finding that the
results are quite different and only “hardest hit area” is recognized consistently [6]. Hutchinson et al.
firstly extracts building boundary based on pre- and post-earthquake satellite imagery, then calculated
the boundary compactness index defined as the ratio of the number of boundary pixels in the post- and
pre-earthquake house, finally identifies the damage buildings through a threshold [7]. Chen and
Hutchinson proposed a probabilistic classification framework by means of a multiclass classifier
based on bitemporal satellite images to address the major limitation in past attempts which is the
use of deterministic approaches to classify damage levels [8]. Geiß et al. quantitatively evaluates the
suitability of multi-sensor remote sensing to assess the seismic vulnerability of buildings showing
potential for a rapid screening assessment of large areas [1].

Due to the complex image characteristics of post-disaster ground objects and the limitation of
resources, automated damage detection techniques with remote sensing are still in the preliminary
stage [9]. The last decade has seen a proliferation of sophisticated sensors and technology capable of
capturing, transferring and storing immense amounts of data, like remote sensing image, increasing the
importance and demand for fast and reliable methods of analysis [9]. Web2.0 technology has
resulted in changes in the way that data are created. Individuals, who have the characteristics
of large quantity, flexible time and uncertain location, now provide vast amounts of information to
websites and online databases, much of which is spatially referenced [10]. This phenomenon called
“crowdsourcing” is the product of the network society, which is an online and distributed pattern of
problem-solving and producing. Therefore, remote sensing combined with crowdsourcing was used
to quickly and accurately analyze large data sets by creating and leveraging a distributed network of
human analysts. Crowdsourcing geographic information for disaster response has become a research
frontier [11]. The Virtual Disaster Viewer, which was a pilot project following the May 2008 Wenchuan,
China earthquake, provided damage assessments through crowdsourcing by having experts interpret
pre- and post-event satellite imagery [9]. After the 2010 earthquake in Haiti, the GEO-CAN initiative
utilized crowdsourcing through the recruitment of experts to make critical damage assessments
based on high-resolution post-event satellite and aerial imagery [12]. Building upon the GEO-CAN
effort in Haiti, damage assessment after the Christchurch 2011 was improved by asking participants,
including non-experts, to delineate damaged buildings use a polygonal tool, in order to making
crowdsourcing damage assessments of disaster areas faster and more accurate [13]. The above
studies have clearly demonstrated the power of crowdsourcing for damage assessment to improve
disaster response. As such, it offers substantial advantages, but suffers from a general lack of quality
assurance [14]. The participants with different professional background and knowledge level have
different understanding of remote sensing image. The interpretation results of the same image may be
different. It is necessary to quantitatively evaluate the quality of crowdsourcing data to ensure the
accuracy of damage assessment.

In this paper, Yushu earthquake is chosen as a case study. A web-based platform is built to
collect the post-earthquake building damage assessment results contributed by public participants.
High-resolution aerial remote sensing images are used due to the advantage of being captured and
processed faster and higher spatial resolution than satellite imagery [15]. The problem we focus
on is damage “extent” identification for buildings which is relatively straightforward and fast by
means of RS images, instead of damage “level” assessment which is based on ground evaluations
requiring a considerable amount of time and effort [16]. The next section describes the details of
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study area. The data used for this research and overview of processing are introduced in the third
section. The probabilistic model is applied to estimate individuals’ error-rates and infer ground truth.
The experiment results are presented in the fourth section. Following the results, some discussion is
provided regarding the accuracy of EM algorithm compared to the “majority” method and the variation
distribution of assessment results among participants on each building. In addition, the features of
each crowdsourcing-derived damage type are analyzed, which can be regarded as reliable samples to
train machine learning to recognize objects of interest. Our main conclusions are presented in the final
section and future work is proposed.

2. Materials and Methods

2.1. Study Area and Data

On 14 April 2010, a 7.1 magnitude earthquake occurred near Yushu, China, at 7:49 a.m. local time.
The epicenter was located at 33.1 degrees north latitude, 96.6 degrees east longitude and focal depth
was 14 km. The terrain is mainly mountainous, with an average elevation of 4493 m. The earthquake
caused a large number of casualties and collapsed houses. The site survey data of Chinese scholars
after the earthquake demonstrate that houses in the central area of Jiegu Town are mainly with brick
and concrete structure, while other houses are mainly with brick and civil structure. Some of the brick
and concrete structures in the town center area suffered serious damage, and almost all the brick and
civil structures in the western and southern regions of the town were totally damaged [17]. Figure 1
below shows the location of Jiegu Town, where the earthquake happened.
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Figure 1. Maps about administrative areas and terrains: (a) the geographical location of Qinghai
Province, China; (b) the geographical location of Yushu County in Qinghai Province; (c) the geographical
location of Jiegu Town in Yushu County; and (d) the topographic map of Jiegu Town made by Landsat 8
OLI image (true color).

The data used for this application are a 0.4 m resolution multispectral aerial image of the damaged
zones of Jiegu Town captured on 14 April 2010, provided by Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences (Figure 2).
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Figure 2. The aerial image of Jiegu Town captured on 14 April 2010, which was the area severely
damaged by the earthquake.

2.2. Methods

2.2.1. Architecture of Processing

The architecture consists of four parts, which are, in order, basic imagery preparation,
damage assessment collection, data quality evaluation and damage map export (Figure 3).

(1) Basic imagery preparation

In this part, we take the post-event high resolution aerial image (Section 2.1 mentioned) as basic
imagery, which crowdsourcing participants use to visually interpret collapsed buildings. We obtain
two images that cover the different part of the study area, respectively, but having the overlapping
zone. To generate the entire region image, image registration, mosaic and clipping are applied to the
two images we obtain.

(2) Damage assessment collection

We publish the pre-processed image online that is accessible to participants. Each visible building
in the image is assigned one of the damage types according to the observed damage.

(3) Data quality evaluation

Because of the different professional background of participants, the quality of the data provided
by the individual is uneven. The term crowdsourcing has three distinct meanings proposed by
Goodchild [14]. The first meaning refers to the solution of a problem by referring it to a number of
people, without respect to their qualifications. The second meaning refers to the ability of a group
to validate and correct the errors that an individual might make. The third interpretation refers to
the ability of the crowd to converge on the truth. We could not get the field data in a short time after
the earthquake. However, we could infer ground truth from subjective labeling of the post-event
high-resolution aerial image by participants. In the next section, we introduce the details of how we
use maximum likelihood estimation, Bayes’ theorem and EM algorithm to estimate the ground truth
and individual error rate.

(4) Damage map export

In the last part, the results integrated by the previous part are visualized, generating a damage
map that shows the spatial distribution of damage types. The damage distribution map is generated
with individual buildings rendered with colors representing the type of damage.
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The process above enables assessing the damage of buildings rapidly and flexibly through
crowdsourcing without considering the constraint conditions when using algorithm to process image.
Each participant is regarded as a “classifier”, which classifies post-disaster buildings into three
categories according to human’s understanding of the image, and then we evaluate the accuracy
of each person and integrate the multiple people’s results into a final reliable result.

2.2.2. Probabilistic Model

Note that there are W participants to assess I buildings, which may be damaged using K damage
types. It is assumed that all responses given by a single participant are independent and all the
participants interpret independently. In addition, a participant may interpret the same building more
than once. Note that α

(w)
kl (k = 1, . . . , K; l = 1, . . . , K; w = 1, . . . , W) are the probability that a participant

w will label l given k is the true type, which are called the individual error rate. n(w)
il (i = 1, . . . , I; l = 1,

. . . , K; w = 1, . . . , W) are the number of times participant w label building i as l, and pk (k = 1, . . . , K)
are the probability that the true damage type of building is k. Let Gik (k = 1, . . . , K) be a binary variable
of building i. If t is the true damage type of building i, then Git = 1 and Gik = 0 (k 6= t), namely,
p(Gik = 1) = pk. We follow a general model for subjective labeling originally proposed by Dawid and
Skene [18] and apply it to the building damage labeling problem. The data from all participants are
assumed to be independent and all the true damage types of buildings are assumed to be available.
Generally, the likelihood function for the full data is

∏I
i=1 ∏K

k=1 {pk ∏W
w=1 ∏K

l=1 (α
(w)
kl )

n(w)
il }

Gik

. (1)

Using maximum likelihood estimation, and we obtain estimators

α̂
(w)
kl =

∑i Gikn(w)
il

∑l ∑i Gikn(w)
il

. (2)
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When pk (k = 1, . . . , K) are unknown, these can be estimated:

p̂k =
∑i Gik

I
. (3)

At this point, the true damage types of buildings are unknown. We using Bayesian theory to
estimate the binary variable Gik (k = 1, . . . , K),

p (Gik = 1|data) =
p (data |Gik = 1 )p (Gik = 1)

p (data)
=

p (data |Gik = 1 )p (Gik = 1)

∑K
t=1 p (data |Git = 1 )p (Git = 1)

. (4)

Therefore,

p (Gik = 1|data) =
∏W

w=1 ∏K
l=1 (α

(w)
kl )

n(w)
il pk

∑K
t=1 ∏W

w=1 ∏K
l=1 (α

(w)
tl )

n(w)
il pt

. (5)

Then, we use EM algorithm for finding maximum likelihood estimates of parameters in the model
above, due to the dependency of the hidden variables Gik. EM algorithm is short for Expectation
Maximization algorithm, which was described by Dempster et al. in 1977 [19]. It is an iterative
optimization method for maximum likelihood estimation of parameters, which can estimate the
parameters from incomplete data set.

In this problem, we treat Gik as missing data then the conditions of the EM algorithm are satisfied.
The iterative procedure is as follows:

1. Give initial estimates of the Gs.
2. Use Equations (2) and (3) to obtain estimates of the ps and αs.
3. Use Equation (5) and the estimates of the ps and αs to calculate new estimates of the Gs.
4. Repeat Steps 2 and 3 until the results converge.

In Step 1, we use the equation below to calculate initial estimates of Gs,

Ĝik =
∑w n(w)

ik

∑w ∑l n(w)
il

3. Experiment Results

Our project asked the participants to classify the post-earthquake damage buildings into one
of three damage types: (1) basically intact; (2) partially collapsed; and (3) completely collapsed.
These type numbers are used in subsequent tables. Here, the Yushu earthquake case study was
selected to illustrate the results. The experiment area was a sub-region of Jiegu Town, which had
visible various types of damage extent, shown in Figure 4, and contained 3456 data points labeled
by 27 volunteers, describing the damage buildings at 127 locations. As can be seen in Figure 4,
“basically intact”, “partially collapsed” and “completely collapsed” are represented by green,
yellow and red points, respectively.

The system consists of a database for damage assessment accessed through a browser-based
interface built using the ArcGIS API. Data from the participants are collected in the browser and
transferred into the database through AJAX and PHP. One selects a damage type and then draws
a point on the corresponding building. When a participant assesses a building’s damage, the record is
stored along with the longitude and latitude of the point he draw, the damage type he select and his id.
The data we collected were used later to estimate the error-rate of each participant in identifying the
damage extent of each building and infer the ground truth.

Figure 5 gives the variation tendency of marginal probabilities of the three damage types with
the iteration of EM algorithm. As shown in Figure 5, the results converge when the iteration is
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12 times. Table A1 (see Appendix A) gives the estimates of the individual error-rates (α) of the
27 participants. The diagonal elements of each matrix are the estimate of the probability of a correct
allocation by a participant. Table A2 (see Appendix A) gives the estimated probabilities for the Gs
for each building. For most buildings, the posterior probability is 1 for one damage type, and the
consensus appears obvious.
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4. Discussion

Of the 3456 damage assessments received for the experiment region, we find that “basically intact”
annotations made up 52.14%, “partially collapsed” made up 34.64% and “completely collapsed” made
up 13.22%. There is no clear bias towards one or two damage types. However, if using the EMS-98
scale, the distribution of annotations reveals an overall bias to assess a building as “No Damage” or
“Destroyed” [13]. In order to demonstrate the advantage of EM algorithm in terms of inferring ground
true, we make a comparison with “majority” method. Figure 6a,b shows the assessment results of EM
algorithm and “majority” method, respectively.
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Figure 6. Comparison of the results between the two different methods: (a) the result of EM
algorithm; and (b) the result of “majority” method, which are generated with individual buildings
rendered with colors representing the type of damage. The rectangles represent the buildings,
and green, yellow and red indicate “basically intact”, “partially collapsed” and “completely collapsed”,
respectively. The rectangles with the id number on them have the different results between the
two methods.

As shown in Figure 6, there are 11 buildings that have different results between the two methods:
21, 24, 29, 33, 61, 66, 67, 75, 78, 105 and 107. The first nine buildings are completely collapsed in
EM results while are partially collapsed in “majority” method. The No. 105 building is basically
intact in EM results while is partially collapsed in “majority” method. The situation of No. 107
building is opposite to No. 105. The “majority” method does not take into account the accuracy
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of the participants, and EM may not choose the majority damage types as the final result of one
building due to the low accuracy of participants who make the assessment. For example, the No. 33
building received the assessment results of 26 participants. Among them, there are 19 participants
who gave the “partially collapsed” result and six participants who assessed the No. 33 building
as “completely collapsed”. Consequently, the “majority” method regards the No. 33 building as
“partially collapsed”. According to Table A1, we calculate the average accuracy of 19 participants
who label as “partially collapsed” when the true is partially collapsed and the average accuracy
of six participants who label as “completely collapsed” when the true is completely collapsed.
The calculation results are shown in Table 1. We also calculated the corresponding incidence defined
as the product of individual accuracy and marginal probability of damage type, as seen in Table 2.
Obviously, the average accuracy of the latter is larger than the former and so is the average incidence,
indicating that the participants who label the No. 33 building as “completely collapsed” have
more “weight”.

Table 1. The accuracy of 19 participants who label No. 33 building as “partially collapsed” and
6 participants who label No. 33 building as “completely collapsed”. The averages are calculated in the
last line of the table.

Participant ID Accuracy of 2 Accuracy of 3

1 0.5021
2 0.2699
3 0.3825
4 0.6200
5 0.6806
6 0.7419
8 0.5761
9 0.8492

10 0.6132
11 0.8465
12 0.7924
13 0.6200
14 0.5246
15 0.6887
16 0.5912
17 0.6015
18 0.5011
20 0.7608
21 0.7306
22 0.7602
23 0.1905
24 0.3056
25 0.9523
26 0.2712
27 0.5359

Average 0.5570 0.7211

To demonstrate the variation distribution of assessment results that participants give on each
building, the percentage of each damage type on each building is presented in Figure 7, in which the
building ids are sorted by the percentage of “basically intact” from small to large. Besides, the standard
deviation of participants’ assessment results on each building is shown in Figure 8. No clear
agreement between participants on each building apart from the No. 99 that all participants label as
“basically intact”. This is because participants with different professional background have different
cognition, or due to the limitation of image inherent characteristics such as spatial resolution and
angle of view. Whatever limitations the professional faces naturally also apply to volunteers [20].
However, no obvious bias towards extreme value indicates that a majority of participants worked
without malice.
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Table 2. The incidence of 19 participants who label No. 33 building as “partially collapsed” and
6 participants who label No. 33 building as “completely collapsed”. The averages are calculated in the
last line of the table.

Participant ID Incidence of 2 Incidence of 3

1 0.1030
2 0.0553
3 0.0784
4 0.1024
5 0.1395
6 0.1521
8 0.1181
9 0.1402

10 0.1257
11 0.1736
12 0.1625
13 0.1024
14 0.0866
15 0.1412
16 0.1212
17 0.1233
18 0.1027
20 0.1560
21 0.1498
22 0.1255
23 0.0391
24 0.0627
25 0.1572
26 0.0556
27 0.1099

Average 0.1142 0.1190

In remote sensing applications, “ground truth” data are often used as the basis for training pattern
recognition algorithms to detect objects of interest [21]. Many semiautomatic techniques have been
designed to exploit Earth Observation (EO) data for earthquake damage assessment to the maximum
possible extent, yet visual inspection still remains the best way to achieve meaningful results [16].
Combined with multiple participants, probability model-derived final results are used as the reliable
samples to analyze the features of each damage type.
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We select some samples of each damage type from the results of EM algorithm, as shown in Table 3.
The number 1, 2 and 3 represent the damage type of basically intact, partially collapsed and completely
collapsed, respectively. The common features of damage type 1 have a clear outline and regular shape,
and an intact shadow. Damage type 2 has fuzzy boundaries, irregular shape, offset orientation, and loss
of shadow effects. Damage type 3 has no visible characteristics of man-made objects.

Some limitations of our experiment are discussed below.

Table 3. The crowdsourcing-derived samples of each damage types.

Damage Types Sample 1 Sample 2 Sample 3 Sample 4
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The study area in this paper is one part of the whole damage area, which we used as an experimental
area to apply our methods on it and present the results clearly. In addition, the approach is also
applicable in the wide area, which is the most important purpose of the crowdsourcing damage
assessment. Because the model is proposed for the general circumstance without the limits of area,
we will extend the application to wide interpretation in future work. The raw data we collected
show that most participants interpret only once, although the method allows participants to interpret
multiple times. We could not determine the minimum number of the participants, because the
web-based interface is open to the public and any case could appear. We could calculate a result based
on a span from the start to the time we choose, for example a week. The method would give a result
based on any data collection phase.

Although “actual” ground truths of building damage are necessary in order to truly discuss the
applicability of the proposed method, we could not find ground photographs or broadcasted videos on
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TV of the damaged buildings in the target area, only text information or papers are available. We focus
on using the wisdom of the public to find more damaged buildings in the early stage of the earthquake.
The assessment results of the target area in this paper are highly consistent with results of the existing
study published by Dou et al. [17] in the corresponding area.

5. Conclusions and Future Work

Building damage assessment in the early time after an earthquake is a very crucial problem.
Knowing where the collapsed buildings are and to what extent buildings have been damaged are
closely related to life-saving for emergency response. However, it is hard to survey the whole
in-situ information in a short time after an earthquake. Satellite or aerial remote sensing technology
has the capability of earth observation, and becomes a useful tool for damage estimation without
being physically present in disaster area. Aerial remote sensing images, which are captured and
processed faster and have higher spatial resolution, make it possible to rapidly assess collapsed
buildings early after the earthquake. A web-based interface was built. Anyone who accessed
our website was required to assign one of the three damage types for each buildings based on
the aerial image. The 3456 data points from 27 participants on the experimental area, which is
a sub-region of Yushu, were collected. MLE, Bayes’ theorem and EM algorithm were applied to
estimate the individual error-rates and infer “ground truth” according to the 3456 data points of
27 participants. The results suggest that EM algorithm is better than “majority” method and there is
no clear bias towards extreme value among damage types contributed by participants. This study
shows that the variation of image understanding among participants exists, due to their different
professional background. We demonstrated how to collect and store the data created by individuals
online, how to make them contribute their results flexibly and easily, drawing a point instead of
a polygon, and how to quantitatively estimate individuals’ accuracy and the “ground truth” of each
building, using a probabilistic model. By means of a sequential procedure of RS image pre-processing,
publishing RS image online, collecting crowdsourcing building damage assessment data, evaluating
the quality of data contributed by crowdsourcing and damage mapping, the building collapse can be
rapidly assessed with viable accuracies in the early time after the earthquake. We conclude that RS data
combined with crowdsourcing have a high capability to support large-area assessments of building
collapse, meeting the need of disaster emergency response. A new processing framework is proposed
to establish the connection between remote sensing image and crowdsourcing, demonstrating potential
for crowdsourcing rapid assessment of building collapse early after the earthquake based on aerial
remote sensing image. Future efforts will focus on providing multi-source and multi-temporal remote
sensing image. Multi-source RS data, such as oblique images, can provide more views of buildings on
the ground. Multi-temporal RS data, such as pre-earthquake images, are considered to be very useful
as a reference in identifying the damage in the post-event image [4]. Although these adjustments will
refine the final results towards rapid damage assessment, a problem should be considered: how to
balance the operational complexity of system and the improvement of results, because ordinary people
are more inclined to use easy-to-operate systems without spending too much time. In summary,
the aim is that the rapid assessment results through crowdsourcing could meet the needs of deploying
rescue forces in the early time after the earthquake. More details about the damage level of buildings
surveyed on the spot afterwards are beyond the scope of this paper.
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Appendix A

Table A1. The estimates of the individual error-rates.

Participant 1 Participant 15

Observed Observed
True 1 2 3 True 1 2 3

1 0.64 0.35 0.01 1 0.52 0.48 0
2 0.38 0.5 0.11 2 0.15 0.69 0.16
3 0 0.35 0.65 3 0.1 0.29 0.62

Participant 2 Participant 16

Observed Observed
True 1 2 3 True 1 2 3

1 0.83 0.12 0.05 1 0.7 0.3 0
2 0.5 0.27 0.23 2 0.07 0.59 0.34
3 0 0.36 0.64 3 0.06 0.11 0.83

Participant 3 Participant 17

Observed Observed
True 1 2 3 True 1 2 3

1 0.9 0.08 0.03 1 0.99 0.01 0
2 0.62 0.38 0 2 0.4 0.6 0
3 0.24 0.53 0.24 3 0.1 0.8 0.1

Participant 4 Participant 18

Observed Observed
True 1 2 3 True 1 2 3

1 0.66 0.3 0.04 1 0.76 0.24 0
2 0.23 0.73 0.04 2 0.25 0.5 0.25
3 0.09 0.29 0.62 3 0 0.37 0.63

Participant 5 Participant 19

Observed Observed
True 1 2 3 True 1 2 3

1 0.94 0.06 0 1 0.91 0.09 0
2 0.32 0.68 0 2 0.39 0.61 0
3 0.05 0.8 0.15 3 0.11 0.37 0.53

Participant 6 Participant 20

Observed Observed
True 1 2 3 True 1 2 3

1 0.46 0.5 0.04 1 0.46 0.29 0.24
2 0.12 0.74 0.14 2 0 0.76 0.24
3 0 0.32 0.68 3 0 0.11 0.89

Participant 7 Participant 21

Observed Observed
True 1 2 3 True 1 2 3

1 0.47 0.47 0.06 1 0.83 0.15 0.02
2 0.46 0.54 0 2 0.27 0.73 0
3 0.25 0.35 0.4 3 0.05 0.67 0.29

Participant 8 Participant 22

Observed Observed
True 1 2 3 True 1 2 3

1 0.9 0.09 0.01 1 0.54 0.45 0.01
2 0.42 0.58 0 2 0 0.46 0.54
3 0.08 0.61 0.3 3 0 0.24 0.76
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Table A1. Cont.

Participant 9 Participant 23

Observed Observed
True 1 2 3 True 1 2 3

1 0.26 0.56 0.17 1 1 0 0
2 0.04 0.4 0.56 2 0.81 0.19 0
3 0 0.15 0.85 3 0.43 0.43 0.14

Participant 10 Participant 24

Observed Observed
True 1 2 3 True 1 2 3

1 0.73 0.27 0 1 0.94 0.06 0
2 0.08 0.61 0.31 2 0.69 0.31 0
3 0 0.3 0.7 3 0.26 0.48 0.26

Participant 11 Participant 25

Observed Observed
True 1 2 3 True 1 2 3

1 0.91 0.09 0 1 0.48 0.49 0.02
2 0.15 0.85 0 2 0 0.77 0.23
3 0 0.73 0.27 3 0 0.05 0.95

Participant 12 Participant 26

Observed Observed
True 1 2 3 True 1 2 3

1 0.36 0.64 0 1 0.98 0.03 0
2 0 0.79 0.21 2 0.69 0.27 0.04
3 0.05 0.68 0.26 3 0.2 0.35 0.45

Participant 13 Participant 27

Observed Observed
True 1 2 3 True 1 2 3

1 0.77 0.18 0.05 1 0.76 0.19 0.05
2 0.23 0.5 0.27 2 0.35 0.54 0.12
3 0 0.38 0.62 3 0.05 0.38 0.57

Participant 14

Observed
True 1 2 3

1 0.67 0.33 0
2 0.09 0.91 0
3 0.05 0.43 0.52

Table A2. The estimated probabilities for the Gs.

Building ID
Damage Types

Building ID
Damage Types

1 2 3 1 2 3

1 0 0 1 65 1 0 0
2 0.002 0.998 0 66 0.024 0.976 0
3 0 0 1 67 0 0 1
4 1 0 0 68 0 0.003 0.997
5 1 0 0 69 1 0 0
6 0.006 0.994 0 70 1 0 0
7 1 0 0 71 1 0 0
8 0.996 0.004 0 72 0.956 0.044 0
9 0 0 1 73 0.999 0.001 0

10 1 0 0 74 0 1 0
11 1 0 0 75 0 1 0
12 1 0 0 76 0 0 1
13 0.01 0.99 0 77 0 0 1
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Table A2. Cont.

Building ID
Damage Types

Building ID
Damage Types

1 2 3 1 2 3

14 0 1 0 78 1 0 0
15 1 0 0 79 0 0 1
16 0 1 0 80 0 0 1
17 1 0 0 81 1 0 0
18 1 0 0 82 1 0 0
19 0 1 0 83 1 0 0
20 0 1 0 84 1 0 0
21 0 0 1 85 1 0 0
22 0 0 1 86 1 0 0
23 0 1 0 87 1 0 0
24 1 0 0 88 0 0.97 0.03
25 0 0.072 0.928 89 1 0 0
26 1 0 0 90 1 0 0
27 1 0 0 91 0 1 0
28 1 0 0 92 0.001 0.999 0
29 0 1 0 93 1 0 0
30 0 0 1 94 0 1 0
31 0 1 0 95 0 1 0
32 0 1 0 96 0 1 0
33 1 0 0 97 0 0.99 0.01
34 0 0 1 98 1 0 0
35 0 0 1 99 1 0 0
36 1 0 0 100 1 0 0
37 0 0.998 0.002 101 1 0 0
38 1 0 0 102 0 1 0
39 1 0 0 103 1 0 0
40 1 0 0 104 1 0 0
41 1 0 0 105 0.999 0.001 0
42 0 0 1 106 1 0 0
43 0 0 1 107 1 0 0
44 1 0 0 108 0 1 0
45 1 0 0 109 1 0 0
46 1 0 0 110 1 0 0
47 1 0 0 111 1 0 0
48 0 1 0 112 1 0 0
49 1 0 0 113 1 0 0
50 1 0 0 114 1 0 0
51 1 0 0 115 1 0 0
52 1 0 0 116 1 0 0
53 1 0 0 117 1 0 0
54 0 1 0 118 1 0 0
55 1 0 0 119 1 0 0
56 1 0 0 120 1 0 0
57 1 0 0 121 1 0 0
58 1 0 0 122 0 0 1
59 1 0 0 123 1 0 0
60 1 0 0 124 1 0 0
61 1 0 0 125 1 0 0
62 0 0 1 126 0 0 1
63 0 0 1 127 1 0 0
64 1 0 0
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