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Abstract: Satellite-based PM2.5 concentration estimation is growing as a popular solution to map the
PM2.5 spatial distribution due to the insufficiency of ground-based monitoring stations. However,
those applications usually suffer from the simple hypothesis that the influencing factors are linearly
correlated with PM2.5 concentrations, though non-linear mechanisms indeed exist in their interactions.
Taking the Beijing-Tianjin-Hebei (BTH) region in China as a case, this study developed a generalized
additive modeling (GAM) method for satellite-based PM2.5 concentration mapping. In this process,
the linear and non-linear relationships between PM2.5 variation and associated contributing factors,
such as the aerosol optical depth (AOD), industrial sources, land use type, road network, and
meteorological variables, were comprehensively considered. The reliability of the GAM models
was validated by comparison with typical linear land use regression (LUR) models. Results show
that GAM modeling outperforms LUR modeling at both the annual and seasonal scale, with
obvious higher model fitting-based adjusted R2 and lower RMSEs. This is confirmed by the
cross-validation-based adjusted R2 with values of GAM-based spring, summer, autumn, winter,
and annual models, which are 0.92, 0.78, 0.87, 0.85, and 0.90, respectively, while those of LUR
models are 0.87, 0.71, 0.84, 0.84, and 0.85, respectively. Different to the LUR-based hypothesis of the
“straight line” relations, the “smoothed curves” from GAM-based apportionment analysis reveals
that factors contributing to PM2.5 variation are unstable with the alternate linear and non-linear
relations. The GAM model-based PM2.5 concentration surfaces clearly demonstrate their superiority
in disclosing the heterogeneous PM2.5 concentrations to the discrete observations. It can be concluded
that satellite-based PM2.5 concentration mapping could be greatly improved by GAM modeling given
its simultaneous considerations of the linear and non-linear influencing mechanisms of PM2.5.
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1. Introduction

As a primary air pollutant in most cities in China, fine particulate matter with an aerodynamic
diameter less than 2.5 µm (PM2.5) have been associated with significant adverse impacts on ecological
environment and public health (e.g., respiratory problems, cardiovascular and lung diseases) [1–4].
According to the Global Burden of Disease 2010 Study [5], over 1.2 million people lost lives in
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China due to exposure to outdoor PM2.5, accounting for 38% of the total number caused by ambient
particulate matter pollution worldwide. Thus, accurately understanding the space–time distributions
and associated dynamic variations of PM2.5 concentrations is urgently needed to provide a scientific
basis for the effective prevention and control of PM2.5-related health risk.

Remote sensing was initially employed to estimate the ground-level PM2.5 concentrations based
on satellite-retrieved aerosol optical depth (AOD) almost three decades ago [6–8]. Attributed to the
superiority in large spatial coverage and relatively lower cost, satellite-based mapping of ground PM2.5

concentration has, therefore, become an increasingly prominent solution, recently, to complement
the ground measurements of sparse regular stationary monitoring sites [9]. In this process, some
typical statistical models have been developed, such as land use regression (LUR) models and
geographically-weighted regression (GWR) models based on LUR. While these models can integrate
the AOD, auxiliary meteorological and geographical parameters (e.g., land use data) to estimate PM2.5

concentration with an acceptable accuracy [10–12], most of them depend on the presumed linear
relationships between the measured PM2.5 concentrations and certain influencing factors. As a result,
the inherent complex chemical and physical influencing mechanisms between PM2.5 and impacting
factors are totally ignored in modeling. These are usually considered by the chemical transport
model [13]. However, the chemical transport model approach is very demanding in computing time
and memory, which seriously limits its use in large problems. Therefore, a simplified empirical
statistical model is recommended for PM2.5 estimation with high resolution, which can relax the
linearity constraint between variables and, meanwhile, consider the effect of both emission sources
and dispersion conditions without intensive computations.

As a popular nonlinear modeling method, generalized additive modeling (GAM) is able to
capture the highly non-linear and non-monotonic relationships between variables. Compared with
model-driven methods, GAM is more like a data-driven method. The relationships between variables
in GAM models are determined by the data themselves, instead of being pre-assumed. Due to its
successful applications in spatial pattern simulation and driving factors identification in ecological
modeling [14,15], the GAM approach has been gradually applied in air quality modeling studies.
The results indicate that the flexible nonlinear structure offered by GAM might better represent the
potential relationships between wide-range PM2.5 concentrations and predictors, though dispersion
and chemical reaction are not only nonlinear in space [11,16–18].

However, as these reported studies were almost conducted in specific sites or cities with limited
geographical extent, the possibility of the GAM approach in reflecting the spatial heterogeneity
characteristics of PM2.5 concentrations from a global or holistic perspective is still unclear. Meanwhile,
the predictor variables’ contributions to PM2.5 concentrations also lack detailed recognition.
Additionally, these studies were mostly based on a single time scale, hence the temporal fluctuations
of GAM models’ performance in estimating PM2.5 concentrations are not fully taken into account.
In other words, explanatory covariates and their associations with PM2.5 concentrations may vary with
changing time scales, and this implies the necessity of evaluating the stability and sensitivity of GAM
modeling in estimating PM2.5 concentrations over the time scale.

In this study, we therefore attempted to develop a GAM method for satellite based PM2.5

concentration mapping by simultaneously considering the linear and non-linear relationships between
PM2.5 variation and associated contributing factors by taking the Beijing-Tianjin-Hebei (BTH) region
as a case. The overall objective of this research was, to explore the applicability of the nonparametric
GAM modeling in dealing with the nonlinearity of predictor variables; to evaluate the temporal
sensitivity of GAM models at multiple time scales; as well as to identify the driving mechanism of
prominent contributing factors to PM2.5 concentrations. The results will be significantly instructive to
deeply understand the formation and variation process of ground PM2.5 concentrations and would be
strongly supportive to the satellite based spatial distribution mapping of PM2.5 concentrations.



Remote Sens. 2017, 9, 1 3 of 16

2. Data and Methods

2.1. Study Area

The Beijing-Tianjin-Hebei (BTH) region is an urban agglomeration located in the Northern China,
covering the entire Beijing municipality, Tianjin municipality and Hebei province (latitude range
(36◦05′N–42◦37′N), longitude range (113◦11′E–119◦45′E)) (Figure 1). With the long history of industrial
development and urban expansion, the BTH region has become one of the most polluted regions in
China [19,20]. Frequent foggy and hazy weather with extremely high PM2.5 concentrations over this
region has attracted increasing worldwide attention [21]. It has been reported that the major sources of
PM2.5 in the BTH region are industrial emissions, coal combustion, vehicle exhausts, dust, biomass
burning, and secondary sources [22,23]. Studies have shown that unfavorable topographical and
meteorological factors (e.g., temperature, wind speed, humidity, and precipitation), as well as human
activities (e.g., industrial production, traffic emissions, and other pollutant emission related activities
in daily life) greatly contribute to the formation and variation of PM2.5 pollution in this region [24,25].
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2.2. Data Collection and Preprocessing

According to previous remote sensing-based research findings [9,26,27], the data that could be used
as potential covariates to predict PM2.5 concentrations in this study are AOD, PM2.5 emissions-related
data, such as pollution sources, road networks, land use/cover, population, as well as dispersion
condition data, including meteorological parameters and terrain data.

2.2.1. In Situ PM2.5 Data

Hourly PM2.5 concentrations (µg/m3) in one year (1 June 2013–30 May 2014) observed at
78 monitoring sites in the BTH region were collected from the official website of China Environmental
Monitoring Center (CEMC) (http://106.37.208.233:20035/). The ground-measured hourly PM2.5

concentrations were monitored using the tapered element oscillating microbalance method (TEOM).
To assure the validity of data, a strict validation procedure was conducted using a quality control
criterion according to the Chinese National Ambient Air Quality Standards (CNAAQS). All missing or

http://106.37.208.233:20035/


Remote Sens. 2017, 9, 1 4 of 16

invalid data due to instrument malfunctions were removed from the original data, for example, the
same measurement repeatedly reported for several successive hours, significantly larger measurements,
or measurements with less than 20 records a day. After this, approximately 95% of the original
658,045 records were kept. The seasonal average and annual average PM2.5 concentrations were
then calculated for each station based on these quality-controlled hourly data and prepared as the
dependent variable for the modeling followed.

2.2.2. Satellite-Retrieved AOD Data

As the most validated, accessible, and accurate dataset today [28,29], the daily level 2 (L2)
AOD products (Collection 5.1) with a 10 km spatial resolution from Terra and Aqua MODIS
(Moderate Resolution Imaging Spectroradiometer) were downloaded from the Atmospheric Archive
and Distribution System (LAADS Web; http://ladsweb.nascom.nasa.gov/) over the time period
of 1 June 2013–30 May 2014. These AOD data at 550 nm wavelength in the Collection 5.1 was
retrieved by algorithms of dark target (DT) or dark blue (DB) overland [30]. The C005 MODIS-derived
aerosol products were compared to global sunphotometer (AERONET) data with 85,463 valid
MODIS/AERONET collocations (at 0.55 µm), and >66% (one standard deviation) fell within an
expected error (EE) envelope of ±(0.05 + 15%) over land [31]. In this process, only the AOD data with
the best quality assurance confidence flag (flag = 3) was employed and averaged as the daily AODs
to minimize the influence of the AOD inaccuracy. The overall mean value of AODs (unitless) during
the one-year study period was 0.36 with values ranging from 0.08 to 0.74. To reduce the negative
influence of cloud on the quality of MODIS images and AODs in the study domain, we fitted a linear
regression to define the relationship between the Terra MODIS AOD (MOD04) and the Aqua MODIS
AOD (MYD04). We used this regression to predict the missing AOD value (i.e., predict MOD04 with
the available MYD04, and vice versa), then MOD04 and MYD04 were averaged as the daily AOD if
both of them were available [27,32]. Finally, all the remediated AODs were transformed to seasonal
and annual average to improve spatial coverage.

2.2.3. PM2.5 Emissions Related Data

To accurately simulate PM2.5 concentrations without data in regional emission inventory, the
pollution sources, road network, land use/cover, and population data, are employed to indirectly
characterize the PM2.5 emissions in this study, which possibly depict the industrial production or
surface dust, vehicle exhaust, and other daily life-related emission sources.

In the national geographic conditions monitoring of the BTH region in 2013, pollution sources data
associated with the rise of PM2.5 concentrations, including fine-scale ground dust surfaces and locations
of industrial plants, were captured. Ground dust surfaces were classified into the open pit field, stacked
substance, construction site, natural bare surface, crush stampede yard, and others. Industrial plants
were classified into the iron and steel smelting and rolling processing plants, thermal power plants, heat
production and supply plants, cement building materials plants, petrochemical plants, non-ferrous
metal smelting and processing plants, coal mining plants, paper and paper products plants, and
pharmaceutical manufacturing plants. Road network data of 2013 referring to the traffic emissions
were clipped from the national road network of China (http://ngcc.sbsm.gov.cn). Roads included
in this study are expressway, national, provincial, county, and urban roads. Land use/cover data at
a 30-m resolution in 2013 from the Chinese Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/ServiceCase/Detail/10502) were reclassified into the built-up, forest, grasslands,
waterbody, and others. The 1 km grid-based population data in 2013 was collected from the Center for
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn).

2.2.4. Dispersion Conditions Data

Variation of ambient PM2.5 concentration is not only influenced by PM2.5 emission sources
referenced in Section 2.2.3, but can be more affected by dispersion conditions such as meteorological

http://ladsweb.nascom.nasa.gov/
http://ngcc.sbsm.gov.cn
http://www.dsac.cn/ServiceCase/Detail/10502
http://www.resdc.cn
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and topography conditions, which have been proved by several previous studies [33,34]. Thus,
meteorological data and topography conditions data are included into the model structure in this study.

The daily surface meteorological parameters were downloaded from the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn/), including temperature, wind speed, relative
humidity, atmospheric pressure, and precipitation, from 26 Global Telecommunication System (GTS)
stations distributed across the BTH region in the study period. Corresponding to the time scales of
preprocessed PM2.5 data, the mean values of temperature, wind speed, relative humidity, pressure, and
the sum values of precipitation was preprocessed at the annual and seasonal scale for each monitoring
sites. In this process, a strict data quality check procedure was conducted using a quality control
method according to the Chinese National Meteorological Information Center (CNMC). Additionally,
the DEM covering the BTH region with a resolution of 90 m produced by NASA was downloaded
from USGS (http://www2.jpl.nasa.gov/srtm/dataprod.htm).

2.2.5. Data Integration

For data integration, the characteristic values of all these potential predictors were collected
or preprocessed at the seasonal and annual scale from the measurements. They were extracted at
each PM2.5 stationary monitoring site and prepared as the modeling inputs of ArcGIS 10.3 software.
In this process, the meteorological parameters with ground-based measurements were spatially
interpolated to the fine grid of 10 km, which corresponds to the grid resolution of AOD datasets.
For predictors with spatial scaling effects (e.g., land use/cover), the characteristic values were extracted
at a 500–5000 m buffering radius based on previous findings [35,36]. Finally, PM2.5, fused AOD,
meteorological parameters, pollution sources, road network, land use/cover, terrain, and population
for all PM2.5 monitoring sites were matched by PM2.5 monitoring site IDs for model development.
Detailed information of the potential predictor variables can be found in Table 1.

Table 1. Potential predictor variables for GAM and LUR modeling.

GIS Dataset Predictor Variables Unit Buffer Size (m)

AOD AOD unitless NA

Meteorological
parameters

Temperature K NA
Wind speed m/s NA
Relative humidity % NA
Atmospheric pressure hPa NA
Precipitation mm NA

Pollution sources

Percentage of
ground dust area
in a buffer

Open pit field % 500, 1000, 2000, 3000
Stacked substance % 500, 1000, 2000, 3000
Construction site % 500, 1000, 2000, 3000
Natural bare surface % 500, 1000, 2000, 3000
Crush stampede yard % 500, 1000, 2000, 3000
Else % 500, 1000, 2000, 3000

Number of
industrial plants
in a buffer

Iron and steel smelting and rolling processing plants count 400, 600, 800, 1000, 2000, 30,000
Thermal power plants count 400, 600, 800, 1000, 2000, 30,000
Heat production and supply plants count 400, 600, 800, 1000, 2000, 30,000
Cement building materials plants count 400, 600, 800, 1000, 2000, 30,000
Petrochemical plants count 400, 600, 800, 1000, 2000, 30,000
Non-ferrous metal smelting and processing plants count 400, 600, 800, 1000, 2000, 30,000
Coal mining plants count 400, 600, 800, 1000, 2000, 30,000
Paper and paper products plants count 400, 600, 800, 1000, 2000, 30,000
Pharmaceutical manufacturing plants count 400, 600, 800, 1000, 2000, 30,000

Distance to the
nearest industrial
plants

Iron and steel smelting and rolling processing plants m NA
Thermal power plants m NA
Heat production and supply plants m NA
Cement building materials plants m NA
Petrochemical plants m NA
Non-ferrous metal smelting and processing plants m NA
Coal mining plants m NA
Paper and paper products plants m NA
Pharmaceutical manufacturing plants m NA

Road network Length of all roads in a buffer m
50, 60, 70, 80, 90, 100, 150, 250, 300,
350, 400, 450, 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, 5000

http://cdc.cma.gov.cn/
http://www2.jpl.nasa.gov/srtm/dataprod.htm
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Table 1. Cont.

GIS Dataset Predictor Variables Unit Buffer Size (m)

Land use/cover

Percentage of built-up area in a buffer % 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000

Percentage of forests area in a buffer % 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000

Percentage of grasslands area in a buffer % 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000

Percentage of water area in a buffer % 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 4500, 5000

Terrain DEM elevation m NA
Population Population density count NA

NA = not available.

2.3. GAM Modeling

2.3.1. GAM Structure

GAM is a semi-parametric extension of the generalized linear model (GLM) with assumed
additive functions and smooth components [37]. Generally, a generalized additive model in the context
of using an identity link function with a Gaussian error distribution to estimate PM2.5 concentration
can be expressed as follows:

PM2.5,s = β0,s + g(AODs) + g(Meteorological parameterss) + g(Pollution sourcess)

+g(Road networks) + g(Land use/covers) + g(Terrains) + g(Populations)

where, s is the unique identify number of PM2.5 monitoring sites, PM2.5,s is the estimation of seasonal
or annual average PM2.5 concentration serving as the dependent variables of a site s, and AODs,
Meteorological parameterss, Pollution sourcess, Road networks, Land use/covers, Terrains, and Populations are
independent variables at the corresponding site. β0,s is the model intercept; g( ) is the smooth function
to be estimated for predictor variables.

2.3.2. Thin Plate Regression Splines

Thin plate splines provide a general solution to the problem of estimating the smooth function
“g( )” of multiple predictor variables [38]. The thin plate regression spline approach has turned out to
be the optimal approximations to the thin plate splines with the considerable practical advantage of
greatly enhanced computational efficiency and stability [39]. It can be used to efficiently incorporating
multidimensional smoothers into GAMs in a manner that allows statistically well-founded model
selection for such models. In this study the non-linear relationships were fitted with thin plate
regression splines using automatically optimized smoothing parameters by the method of generalized
cross-validation (GCV) as implemented by Wood’s R package “mgcv” [40].

2.3.3. Model Development and Validation

We chose an automatic forward-backward stepwise variable selection procedure (step-wise GAM
procedure) to select the best fitting GAM models. This step algorithm uses the Akaike information
criterion (AIC) statistic, taking into account both the information explained by the model and its
complexity to evaluate models [41]. The final GAMs presented in this article are determined based on
the criteria of the lowest AIC value and the highest adjusted R2. A significance test was also conducted
using the 0.05 level to check whether each term remaining in the finalized model was statistically
significant. Furthermore, fitted relationships between PM2.5 concentrations and particular linear
or non-linear predictor variables were visualized using partial response plots and marginal effects.
The overall fit of a GAM model was measured using a summary of adjusted fitting R2 and root mean
square error (RMSE) between the estimated PM2.5 concentrations and observed ones. Considering the
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varying meteorological conditions and anthropogenic emissions, GAM models for seasonal and annual
datasets were separately developed in this study.

Furthermore, we used a 10-fold cross-validation (10-CV) [42] to test the potential overfitting of
the established GAM models. To be more detailed, the dataset was randomly divided into 10 folds,
among which one fold was selected as the validation set and the remaining folds were the training
sets. Predictions of the validation set were generated using those GAM models obtained through
fitting the training set and the auxiliary data. This process was repeated 10 times until all samples
were tested, and then the overall fit R2 values and RMSEs between the estimated PM2.5 concentrations
and remaining observed ones are employed as the validation statistics. Meanwhile, these overall fit R2

values and RMSEs were further compared with those from traditional LUR models developed based
on the simple linear regression using the same datasets. We also compared the seasonal and annual
averages of in situ PM2.5 concentrations from 78 monitoring sites with the annual and seasonal mean
predicted PM2.5 concentrations based on the GAMs in both model fitting and validating. Additionally,
in order to visually illustrate the fine variations of PM2.5 concentrations within the BTH region, grid
point-based predictions of annual and seasonal mean PM2.5 concentrations at a spatial resolution of
10 km (including 2022 points) were estimated using the final robust GAM models and, consequently,
employed to produce the continuous raster surfaces of PM2.5 concentrations in ArcGIS 10.3.

3. Results

3.1. Model Fitting and Validation

As showed in Table 2, seasonal and annual mean PM2.5 and matched predictors were fitted at
78 monitoring sites (N = 78) using the GAM model and the traditional LUR model, respectively. All of
the predictors listed in this table are clear with very small p-values (<0.05), indicating the statistically
significant relationship between predictors and corresponding PM2.5 concentrations. Based on the
GAM models’ fitting results, spatial auto-correlation and significance tests (α = 0.05) are also conducted
for model residual terms using Moran’s I in the ArcGIS software. The test results shows no significant
spatial auto-correlation. We also ran diagnostics of the GAM models with the function “gam.check” in
R software [40]. Results show that variances are homogeneous and residuals are distributed normally.

However, these relationships would vary across time. For example, the GAM model in spring had
four smoothed terms—AOD, wind speed, temperature, and relative humidity—but these smoothed
terms change to the percentage of construction site areas within 2000 m, temperature, and AOD
in winter. Moreover, a comparison of the predictors from GAM models and LUR models clearly
demonstrates that the predictors for these two types of models are the same in spring and winter,
but they are inconsistent in summer, autumn, and the entire study period. Meanwhile, the optimal
buffering sizes among predictors are also different. For example, the optimal buffering size for the
ground dust area is 3000 m, while that for the built-up area is 5000 m.

A comparison of the performance between the GAM models and LUR models is presented in
Table 3. As the table shows, the predictive performances of GAM models during the whole study
period are stable with a mean adjusted R2 of 0.93 and the fitting adjusted R2 are found to be highest in
spring and annual (R2 = 0.96) and lowest in summer (R2 = 0.88). Correspondingly, the mean, highest
and lowest adjusted R2 of LUR models are 0.82, 0.87, and 0.72. Meanwhile, the superiority of GAM
models to LUR models in estimating PM2.5 concentrations is also confirmed by those RMSEs and
associated biases in this table. This is also true in the model cross-validation step while the GAM
models have obviously higher adjusted R2 and lower RMSEs than the LUR models.

Figure 2 shows the scatterplots for the GAM model fitting and cross-validation results. For the
model fittings, the adjusted R2 values are 0.96, 0.88, 0.94, 0.90, and 0.96 for spring, summer, autumn,
winter, and annual models, respectively. However, the CV R2 values are 0.92, 0.78, 0.87, 0.85, and 0.90
correspondingly for the GAM models, lower than the model fitting, suggesting that our models might
be slightly overfitted. However, the CV R2 of the GAM models are significantly higher than those of
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the LUR models, and the RMSEs are much lower. Our findings suggest that despite a slight overfitting
in the GAM models, the overall prediction accuracy is significantly improved when consider the linear
and non-linear relationships between PM2.5 concentration variations and contributing factors.

Figure 2. Scatterplots of GAM model fitting and validating results. The dashed line is the 1:1 line
as a reference. (a–e) are GAM model fitting results of spring, summer, autumn, winter, and annual,
respectively; (f–j) are 10-fold validating results for GAM model of spring, summer, autumn, winter,
and annual, respectively.

Table 2. Predictor variables for GAM and LUR models.

GAM Models Established LUR Models Established

Spring
(N = 78) PM2.5 ≈ s(AOD) + s(WS) + s(TEMP) + s(RH) PM2.5 ≈ AOD + WS + TEMP + RH

Summer
(N = 78) PM2.5 ≈ AOD + s(FOR(5000 m)) + s(BUI(5000 m)) + s(TEMP) PM2.5 ≈ AOD + TEMP + PRE

Autumn
(N = 78) PM2.5 ≈ s(AOD) + s(WS) + s(ELEV) + s(GD(3000 m)) PM2.5 ≈ AOD + PREC + WS + GD(3000 m)

Winter
(N = 78) PM2.5 ≈ s(AOD) + s(CS(2000 m)) + s(TEMP) + WS PM2.5 ≈ AOD + TEMP + WS + CS(2000 m)

Annual
(N = 78)

PM2.5 ≈ s(AOD) + s(TEMP) + s(GRA(5000 m))
+ s(SS(2000 m)) + WS + PRE PM2.5 ≈ AOD + WS + GD(3000 m) + PM(600 m)

Significant with p < 0.05; N is the total amount of the records in compared pairs; AOD = Aerosol Optical Depth;
WS = wind speed; TEMP = temperature; RH = relative humidity; PRE = atmospheric pressure; GD = percentage
of all ground dust area; CS = percentage of construction site area; SS = percentage of stacked substance area;
BUI = percentage of built-up area; FOR = percentage of forests area; GRA = percentage of grasslands area;
ELEV = elevation; PM = number of papermaking plant.
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Table 3. Comparison of model fitting and cross-validation results for the GAM and LUR models.

Season

Model Fitting Cross-Validation

Adj R2 RMSE (µg/m3) Adj R2 RMSE (µg/m3)

GAM LUR GAM LUR Bias (%) * GAM LUR GAM LUR Bias (%) *

Spring (N = 78) 0.96 0.87 4.43 7.96 44.4 0.92 0.87 6.23 8.31 25.1
Summer (N = 78) 0.88 0.72 6.52 9.68 32.6 0.78 0.71 8.91 9.85 9.5
Autumn (N = 78) 0.94 0.83 6.88 11.60 40.7 0.87 0.84 10.49 12.68 17.3
Winter (N = 78) 0.90 0.84 11.33 12.20 7.1 0.85 0.84 14.05 15.13 7.1
Annual (N = 78) 0.96 0.83 4.82 9.32 48.3 0.90 0.85 7.52 9.78 23.1

* Bias (%) = (LUR RMSE − GAM RMSE)/LUR RMSE × 100%; N is the total amount of the records in
compared pairs.

3.2. Contributing Factors of GAM Models

Figure 3 shows the individual smoothed curves for each predictor variable in GAM models.
Note that a straight fitted line, corresponding to nearly one degree of freedom in Figure 3, suggests
the predictor variable is fitted with a parametric linear term rather than a smoothed term. For all
others, the shape of smoothed curves describes the non-linear nature of the relationships. Clearly,
there are intertwined relationships between PM2.5 concentrations and associated influencing factors.
These relationships vary among predictors, as the different response curves illustrate.

Moreover, comparison of the response curves for a certain predictor across seasons and those
across the entire study period further demonstrates that the contribution of a factor to PM2.5

concentrations is not stable. This is especially clear for predictors such as AOD and wind speed.
In summer and winter, AOD’s increase linearly contributes the increasing PM2.5 concentrations, but
this relationship changed to undulating non-linear ones in other periods. Among the meteorological
parameters, effects of wind speed on PM2.5 concentrations seem to vary with seasons. The PM2.5

concentrations decreases linearly with the increase of wind speed in winter and the entire study period,
and clear non-linear relationships can be observed in spring and autumn, especially the obvious wave
changes in autumn.

3.3. PM2.5 Concentration Surfacesacross Time Scales

Figure 4 shows the seasonal mean and annual mean spatial patterns of the estimated PM2.5

concentrations at a resolution of 10 km during the study period in the BTH region. To examine the
spatial and seasonal prediction accuracy of the GAM model, the ground PM2.5 measurements are also
shown in Figure 4.

Clearly, the temporal and spatial patterns of AOD-derived PM2.5 concentrations are very similar
to ground measurements. Overall, the spatial patterns of the annual and seasonal mean predicted
PM2.5 concentrations are similar, with a significant north-to-south increasing gradient, and these
continuous PM2.5 concentration surfaces clearly reveal more detailed information than the stationary
monitoring sites.

Spatially, higher concentrations of simulated PM2.5 (>75 µg/m3) normally occurred in the eastern
plain areas beside the Taihang Mountains, especially the internal cities of Baoding, Shijiazhuang,
Xingtai, and Handan. However, the west and north parts of the Taihang Mountains have lower
PM2.5 concentrations in comparison with the plain area. Strong seasonality of PM2.5 concentrations
can also be found from the PM2.5 concentration surfaces. Winter is the most polluted season with
a mean predicted concentration of 73.8 µg/m3, while summer is the cleanest season with a mean
predicted concentration of 57.5 µg/m3. The mean predicted PM2.5 concentration is 64.2 µg/m3 in
spring and 60.7 µg/m3 in autumn. The annual mean PM2.5 estimates during the one-year study period
is 69.4 µg/m3 with values varying from 13.3 µg/m3 to 133.7 µg/m3 among stations, which is almost
two times higher than the level 2 value of CNAAQS and the World Health Organization Air Quality
Interim Target-1 (WHO IT-1) standard of 35 µg/m3 [43].
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Figure 3. Partial response plots of PM2.5 predictors. The individual smoothed curve for each predictor
variable is shown as solid lines, with 95% confidence limits shown as shaded areas. The x-axis
represents the frequency of data; the y-axis represents the marginal effects. Estimated degrees of
freedom for each smooth term are given as the number in y-axis caption. (a–e) are partial response plots
for GAM model of spring, summer, autumn, winter, and annual, respectively. AOD = aerosol optical
depth; WS = wind speed; TEMP = temperature; RH = relative humidity; PRE = atmospheric pressure;
GD = percentage of all ground dust area; CS = percentage of construction site area; SS = percentage
of stacked substance area; BUI = percentage of built-up area; FOR = percentage of forests area;
GRA = percentage of grasslands area; ELEV = elevation; and PM = number of papermaking plants.
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annual, respectively; (f–j) are ground-measured PM2.5 concentrations of spring, summer, autumn,
winter, and annual, respectively.

4. Discussion

Due to the sparse distribution of stationary monitoring sites, satellite data with wide spatial
coverage is growing as one of the most important supplementary tools to estimate PM2.5 concentrations
in a greater geographical space. In this process, related factors, such as meteorological parameters and
pollution sources, are almost linearly integrated into the typical LUR modeling, despite the fact that the
linear influencing mechanism on PM2.5 concentration is not always suitable for all contributing factors.
For this, this study develops a GAM method for satellite-based PM2.5 concentration mapping and
evaluates its temporal sensitivity by simultaneously considering the linear and non-linear relationships
between PM2.5 variation and the contributing factors.

As expected, GAM models clearly show better performance in estimating PM2.5 concentrations
with satellite based AOD compared with the benchmark LUR models in the BTH region. The CV R2 (i.e.,
0.90) and RMSE (i.e., 7.52 µg/m3) at the annual scale are even better than any previously reported ones
(i.e., CV R2 = 0.87 and RMSE = 19.2 µg/m3) in LUR modeling [44]. This result definitely confirms the
necessity of GAM modeling in simultaneously involving the linear and non-linear hypothesis between
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PM2.5 variation and associated factors in the accurate estimation of PM2.5 concentrations. Moreover,
the difference of the finally determined predictor variables of GAM models and LUR models suggests
that satellite-based PM2.5 estimation can be achieved using a nonlinear statistical technique with highly
attributable factors rather than those simply identified with linearly empirical-statistical modeling.

Meanwhile, results in Table 2 also reveal that predictor variables in the final GAM models of this
study differ markedly by season except for the AOD. Overall, the relationship between AOD and
PM2.5 is always positive and consistent for all of the GAM models across seasonal and annual scales,
sometimes even with nonlinear undulations. Nevertheless, this relationship varies significantly with
regions over time because the aerosol chemical components and the optical properties are spatially
and temporally inhomogeneous. This finding actually confirms, again, the feasibility and fair stability
of GAM modeling in satellite-based estimation of PM2.5 concentration. However, the contribution of
auxiliary factors varies much in this process due to the influence of the complex interactions between
meteorological conditions and pollution sources. For example, PM2.5 concentrations tended to decrease
in spring, autumn, and winter with the higher wind speeds in terms of the acceleration of atmospheric
dilution and diffusion in this study, but the wind speed is not a factor that significantly influences the
PM2.5 variations in summer. Therefore, it is necessary to detect the real attributable factors impacting
PM2.5 variations at different periods of time when initiating policies to reduce PM2.5 pollution.

Overall, most associations between the selected predictors and PM2.5 concentrations illustrated
in Figure 3 are within our expectation. For meteorological parameters, higher wind speeds tend
to decrease PM2.5 concentrations, on account of the atmospheric dilution and diffusion process.
Higher temperatures are associated with higher PM2.5 concentrations, which accelerate the production
of secondary aerosols, and also evaporate ammonium nitrate and organic aerosols to some extent.
Relative humidity is positively correlated with PM2.5 concentration, possibly because water drops
absorb PM2.5 at high humidity, which may aggravates the accumulation of particulate matter at the
same time. Higher pressure is usually associated with greater concentrations. This can be explained
by the fact that it is associated with stable air conditions, which decrease the pollutant dispersion to
some extent. To our knowledge, lower wind speed, together with higher temperatures and humidity,
is usually accompanied with temperature inversion or foggy weather in spring and winter, which
is beneficial to an atmospheric surface layer to maintain a stable state and, therefore, hindered the
diffusion of PM2.5 in both vertical and horizontal directions, as well as facilitates the formation of
secondary particles. Land use predictors, such as grasslands, would decrease PM2.5 concentration
probably owning to the adsorption and retardation capacity of vegetation, which also protects the
surface soil and prevent the surface dust. However, built-up area and forests area follow nonlinear
undulating patterns in relation to PM2.5 concentration and we have found no obvious reason for this.
As a result, differential dynamic effects of the impacting factors of PM2.5 at different periods should be
taken into consideration when initiating policies to reduce PM2.5 pollution in China. This study also
verifies that investigating the effects of impacting factors of PM2.5 concentration using nonparametric
additive regression models is reasonable and applicable.

Compared with previous studies with limited data accessibility, this study might be the first one
with refined industrial polluting sources and ground dust surfaces for PM2.5 concentration estimation.
With these refined data input, we clearly find that industrial plants and ground dust are the two most
important contributing sources to the variations of PM2.5 concentrations in the BTH region through
GAM modeling. The number of industrial plants may better reflect the industrial land use and industry
intensity. The contribution of ground dust to PM2.5 is also significant, which is identified as one of the
major sources of PM2.5 in this region. These results indicate that specific pollution sources are helpful
for improving the satellite-based empirical-statistical modeling of PM2.5 concentrations. They actually
also suggest that satellite-based GAM modeling could potentially depict the real pollution sources,
which cause the variation of PM2.5 concentration, by considering the influencing mechanism through
the non-linear hypothesis of the relationship between PM2.5 concentrations and influencing factors.
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With the robust GAM models developed in this study, the seasonal and annual spatial distribution
of PM2.5 concentrations in the BTH region is successfully plotted. While the monitoring site-based
accuracy of these figures are theoretically higher than those previously reported [9]. The spatial
heterogeneity of PM2.5 concentrations illustrated in Figure 4 actually implies the defect of GAM
modeling. Similar to LUR modeling, the coefficient of each predictor variable in a GAM model is
spatially consistent, but this does violate the fact that the impact of an attributable factor on the PM2.5

concentration variation is generally spatially dependent. This might be the reason of the too smoothed
effects of PM2.5 concentrations in Figure 4, such as the area of Shijiazhuang city. In this way, further
work can focus on the improvement of the GAM modeling in depicting the spatial distributions of
PM2.5 concentrations with a fine spatial resolution. It is possible to implement this work by introducing
the satellite-based AODs at 3 km or 1 km scales. Additionally, considering the specific advantages of
the non-linear hypothesis in simulating the instant variation of PM2.5 concentration, GAM models in
the future could be developed on a short-term scale, such as daily or even hourly scales. In this process,
a full space–time model would be needed to better demonstrate the spatial-temporal variation of PM2.5

concentrations as GAMs are unable to differentiate spatial heterogeneity of factors contributing to
changing PM2.5 over time, which might lead to the residual spatial autocorrelation.

5. Conclusions

Aiming to modify the unreasonable linear hypothesis of current satellite-based methods for PM2.5

concentration estimation, GAM models considering the linear and non-linear relationships between
PM2.5 variation and associated contributing factors were proposed in this study. In the case of the
BTH region, China, GAM models at both the seasonal and annual scales clearly outperformed typical
LUR models in simulating PM2.5 concentrations, with the CV R2 values of 0.92, 0.78, 0.87, 0.85, and
0.90, respectively, and RMSEs at 6.23, 8.91, 10.49, 14.05, and 7.52 µg/m3, respectively. The spatial
variations and seasonal variations of PM2.5 concentrations in the BTH region can also be depicted by
GAM models. Results of this study highlight that GAM modeling is a robust method for satellite-based
estimation of PM2.5 concentrations using the adaptively integrated linear and non-linear statistical
modeling techniques. With the capacity of fusing spatial heterogeneity of attributable factors, GAM
modeling could be a promising way for fine spatial-temporal scale mapping of PM2.5 concentrations
in the coming future and consequently promotes the widespread applications of remote sensing in air
pollution mapping.
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LUR land Use Regression
AOD Aerosol Optical Depth
CTM Chemical Transport Model
GIS Geographic Information Systems
NCP North China Plain
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CEMC China Environmental Monitoring Center
TEOM Tapered Element Oscillating Microbalance
CNAAQS Chinese National Ambient Air Quality Standards
GTS Global Telecommunication System
CNMC Chinese National Meteorological Information Center
RESDC Data Center for Resources and Environmental Sciences
NASA National Aeronautics and Space Administration
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GLM Generalized Linear Model
AIC Akaike Information Criterion
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