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Abstract: Accurate estimate of the seasonal leaf area index (LAI) in croplands is required for
understanding not only intra- and inter-annual crop development, but also crop management.
Lack of consideration in different growth phases in the relationship between LAI and vegetation
indices (VI) often results in unsatisfactory estimation in the seasonal course of LAI. In this study,
we partitioned the growing season into two phases separated by maximum VI (VImax) and applied
the general regression model to the data gained from two phases. As an alternative method to capture
the influence of seasonal phenological development on the LAI-VI relationship, we developed
a consistent development curve method and compared its performance with the general regression
approaches. We used the Normalized Difference VI (NDVI) and the Enhanced VI (EVI) from the rice
paddy sites in Asia (South Korea and Japan) and Europe (Spain) to examine its applicability across
different climate conditions and management cycles. When the general regression method was used,
separating the season into two phases resulted in no better estimation than the estimation obtained
with the entire season observation due to an abrupt change in seasonal LAI occurring during the
transition between the before and after VImax. The consistent development curve method reproduced
the seasonal patterns of LAI from both NDVI and EVI across all sites better than the general regression
method. Despite less than satisfactory estimation of a local LAImax, the consistent development curve
method demonstrates improvement in estimating the seasonal course of LAI. The method can aid in
providing accurate seasonal LAI as an input into ecological process-based models.

Keywords: leaf area index; rice paddy; NDVI; EVI; consistent development curve

1. Introduction

Leaf area index (LAI) is one of the key parameters in estimating ecosystem productivity of various
process-based models and is strongly related to plant phenology and vegetation dynamics [1–3].
LAI influences many biological and physical processes driving the exchange of matter and energy
flow [4]. LAI serves as a useful indicator to characterize the condition of vegetation owing to its rapid
response to different stress factors and changes in climatic conditions [5]. Therefore, estimation
of LAI is an essential step in most of the process-based models for carbon and water fluxes in
vegetative ecosystems [6–8]. Use of inaccurately estimated LAI as an input variable for process-based
models will propagate errors in estimating CO2 and H2O exchange in vegetative ecosystems.
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Kucharik et al. (1997) [9] found that 45% underestimation of LAI led to 39% underestimation of
CO2 assimilation. Coarse LAI led to a skewed pattern of CO2 exchange and crop growth in a crop
growth model [10]. A regional eco-hydrology model, which uses LAI as a key canopy parameter,
resulted in underestimation of evapotranspiration due to the use of inaccurately estimated LAI [11].

A remote sensing-based vegetation index (VI) has been used to monitor phenological and seasonal
changes in vegetation development [5,12]. The normalized difference vegetation index (NDVI) is most
widely used in estimating LAI over different spatiotemporal coverage [5,13–15]. This depends on the
amount of chlorophyll and other pigments exposed to the view of the satellite [12]. The enhanced
vegetation index (EVI) is often used for the crop mapping and crop phenology detection [16,17].
EVI has improved sensitivity to vegetation canopy structure and exhibits high correlation with the
vegetation cover in areas with dense vegetation such as forested area [16,18].

Studies indicate that LAI and VI have either a linear or exponential correlation in forests,
shrublands, and grasslands [19–23]. Higher correlation of the general regression between LAI and VI
is observed when the vegetation is not extremely dense. Fan et al. (2008) [24] reported good general
linear and exponential relationships (R2 > 0.79) between LAI and NDVI over grasslands. Xiao et al.
(2002) [25] reported a linear relationship (R2 = 0.78) at the rice paddy. During the leaf production
period, LAI and NDVI had a linear relationship (R2 = 0.80) over a deciduous forest [26].

This correlation, however, is constrained by nonlinearity between LAI and VI as LAI increases,
and this nonlinearity considerably varies among vegetation types [5,15,27]. Wang, et al. [15] showed
an unconvinced linear relationship between LAI and NDVI during the middle of the growing season
in a deciduous forest due to the saturation of NDVI at high LAI. In an alpine meadow, Lu, et al. [3]
reported a difficulty in estimating LAI using an exponential relationship. Saturation of NDVI at high
LAI results in a weak relationship of crops between LAI and NDVI [28]. Gupa, et al. [29] attempted to
establish a general relationship between LAI and NDVI for wheat and onion crops using polynomial
regression, but a complex crop growth cycle produced difficulty in generalizing the relationship.
Brando, et al. [30] demonstrated an insensitive relationship between LAI and EVI, but showed the
meaningful relationship with leaf phenology. Due to the strong dependence of VI on biophysical
factors (e.g., vegetation canopy structure and growth states; [31]) that change at different growth stages,
the general regression approach, using the entire growing season, produces less satisfactory estimates
in seasonal dynamics of LAI [12,25,32].

Cultivated cropland covers 12% (1.5 billion hectare) of the Earth’s land area [33], and is important
in its role as a strong modifier of regional carbon balance [34–36]. Growth stages of crops are primarily
divided into vegetative/growth and reproductive phases. Each phase has different reflectance features,
leading to different relationships between LAI and VI in each phase. Capturing the influence of
seasonal phenological development on the relationship between LAI and VI is critical to improve
applicability of the seasonal LAI of crops. However, few studies have considered the effect of different
growth phases on this relationship [37]. In addition, most of the relationship has been derived from
single or more localized sites. Estimating the seasonal LAI of crops across different climate conditions
remains a challenge due to different timings of growth stages under varying management practices
and local crop-planting schedules [38].

Here, we examine the relationships between LAI and NDVI and between LAI and EVI of rice,
which is one of the major crops global and is cultivated in a wide range of locations with diverse
climatic conditions [39]. Our objectives were (1) to estimate the seasonal course of LAI based on the
traditional approach by partitioning the entire growing season into two growth phases; and (2) to
develop an alternative method using a consistent development curve to estimate seasonal LAI by
identifying the time at which the maximum NDVI (NDVImax) and EVI (EVImax) occur. To examine the
applicability of this method across different climatic conditions and management cycles, we considered
rice paddy sites in Asia (South Korea and Japan) and Europe (Spain).
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2. Materials and Methods

2.1. Study Sites

The analysis was conducted using available rice paddy data from South Korea (Haean Catchment)
and Japan (Mase) in Asia, and Spain (El Saler-Sueca) in Europe. Data used in the analysis cover the
year of 2010 for Haean (HK), 2002–2005 for Mase (MSE), and 2007–2008 for El Saler-Sueca (ESES2).
In order to further validate the alternative method, we applied it to an independent dataset (2006 for
MSE, 2000 for Shizukuishi, and 2003 for Aso in Japan), which were not used to draw the consistent
development curve. All of the Asian sites were under the influence of a monsoon climate, with >50% of
annual precipitation occurring during the summer monsoon period. Meteorological conditions and
site characteristics are summarized in Table 1.

Table 1. Site information and meteorological conditions at Haean (HK, S. Korea), Mase (MSE, Japan),
Shizukuishi (Japan), Aso (Japan), and El Saler-Sueca (ESES2, Spain). Rg is the total global radiation, Ta is
the mean air temperature, and P is the sum of rainfall over the crop growth period (from transplanting
date to harvest date). LAImax indicates maximum LAI.

Site Year Rg Ta P Transplanting Date Harvest Date LAImax(MJ/m2) (◦C) (mm) (DOY) (DOY)

Haean 2010 1713 20.4 1165 144 290 5.8

Mase

2002 2356 22.0 593 122 262 5.5
2003 2049 20.3 545 122 262 5.1
2004 2384 22.7 547 123 254 4.9
2005 2237 21.8 647 122 256 4.4
2006 1989 21.5 632 122 141 6.0

El Saler 2007 3224 22.8 437 134 270 5.7
2008 3263 22.1 121 132 278 6.1

Shizukuishi 2000 2057 21.4 615 143 263 4.5

Aso 2003 2176 21.4 1491 138 268 3.5

2.1.1. Haean, South Korea (HK)

Haean Catchment is a typical erosion mountain basin in South Korea located northeast of
Chuncheon, Gwangwon Province in Yanggu County (38◦17′N, 128◦8′E, 450–1200 m above sea
level (a.s.l.)). The total area of the catchment is 64 km2, consisting of 58% forested mountain
area, 30% agricultural area, and 12% as residential, riparian, field margins, and farm road area
according to land surveys [40]. The agricultural area is characterized as a mosaic patchwork of fields,
with a dominance of dry-land fields (22% of the total area) and rice paddy fields (8%) as the remaining.
Rice paddies (Oryza sativa L., cv. Odae) are cultivated at less than 500 m a.s.l. in the catchment [41].
LAI was measured by plot harvests and a leaf area meter (LI-3000A, LI-COR Inc., Lincoln, NE, USA)
throughout the measurement period (from April to October 2010) at the rice paddy field.

2.1.2. Mase, Japan (MSE)

The Mase site is located in the rural area (36◦3′14′′N, 140◦1′38′′E, 15 m a.s.l.) of Tsukuba City
in Central Japan. The rice paddy (Oryza sativa L.) was ca. 2 km2 and was managed as a single rice
cropping field following practices common in the area [42]. LAI was measured from 2002 to 2005
with an optical area meter (AAM-7, Hayashi Denkoh, Tokyo, Japan). Further information of LAI
measurements are described in Saito et al. (2005) [42].
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2.1.3. Shizukuish, Japan

The Shizukuish site is located near Morioka, Iwate Prefecture in northern Japan (39◦38′N,
140◦57′E) where grows a large portion of Japan’s rice crop [43]. Seedlings of rice (Oryza sativa L.)
were hand-transplanted into the field in late May, and the field was flooded throughout the growing
season except several days of summer drainage and prior to harvest. LAI was measured through
destructive samplings of biomass and further information of LAI measurement can be found in
Kim et al. (2003) [43].

2.1.4. Aso, Japan

The Aso site is a commercial rice paddy in Aso Basin in Kyushu, Japan (32◦56.9′N, 131◦3.3′E).
The rice paddy (Oryza sativa L., cv. Koshihikari) was cultivated following the common management
practices. LAI was measured at 15–20 day intervals during the growing season using a leaf area
meter (LI-3050A, LI-COR Inc., Lincoln, NE, USA). Further details about the site and measurement are
described in Maruyama et al. (2007, 2008, and 2010) [44–46].

2.1.5. El Saler-Sueca, Spain (ESES2)

The El Saler Sueca site is located in the protected wetland area of La Albufera Natural Park
in the Valencia region of Spain (39◦16′32′′N, 0◦18′55′′E, 10 m a.s.l.). El Saler, which is in a sub-arid
Mediterranean climate, experiences hot summers with almost no rain and cold winters with substantial
rainfall. The rice paddy was ca. 15 km2, and had been managed in same way for 200 years [47,48].
LAI was measured by plant samples from plot harvests. Further details about the site, agricultural
management, and measurements are described in [47,48].

2.2. Vegetation Index from Remote Sensing

NDVI and EVI from 2002–2013 were obtained from daily gridded L3G (level-3) composite data at
250 m resolution, which is embedded in the MODIS Terra surface reflectance products (MOD13Q1)
from the Warehouse Inventory Search Tool [49]. MOD13Q1 provides 16-day composite vegetation
condition derived from blue (459–479 nm), red (620–670 nm), and near-infra-red (NIR, 841–876 nm)
surface reflectance in the sinusoidal projection. NDVI and EVI are calculated as follows:

NDVI = ((ρNIR − ρred))/((ρNIR + ρred)) (1)

EVI = G(ρNIR − ρred)/(ρNIR + C1/rhored − C2ρblue + L) (2)

where G = 2.5, C1 = 6, C2 = 7.5, and L = 1 (Huete et al. [18]). Raw values of VI include noise
components due to clouds, water, snow, shadow, bidirectional effects, high solar or scan angles and
transmission errors. Since about 80% of the rice was grown in the field that was flooded for long time
period [50], background effect on VI was minimal in this study. The TIMESAT program, developed
by Jonsson and Eklundh [51], was applied to smooth VI and minimize the influence of the associated
errors. VI was smoothed by the adaptive Savitzky-Golay filtering method in the TIMESAT program to
produce final VI (Figure 1). The adaptive Savitzky-Golay filtering is able to follow complex fluctuations
that occur with rapid increase and decreases in the reflectance data [51,52] and uses local least-squares
polynomial approximation. This character of the filtering fit best for agricultural crops changing their
phenological and physiological conditions over short time intervals.
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Figure 1. Seasonal variation of MODIS NDVI and EVI at the study sites. Closed circles indicate original
NDVI and EVI, open circles indicate smoothed NDVI and EVI by the TIMESAT method, and solid lines
indicate estimated daily NDVI and EVI from spline interpolation.

2.3. Leaf Area Index Estimates

Estimates of LAI are tightly correlated with spectral reflectance, which changes with different
growth stages [24,25,53,54]. For instance, regulation of protein and pigment synthesis is most
likely altered as the growth of rice grains compete for plant resources [55,56], leading to changes
in the reflectance of rice. To account for these differences in the reflectance along the development
stagesLAImax, we divided the entire growing season into two growth phases: the vegetative phase
with increasing LAI (the beginning to the maximum leaf expansion; indicated as Before in figures) and
the reproductive phase with decreasing LAI (the maximum leaf expansion to the harvest; indicated as
After in figures).

In this study, the relationship between LAI and NDVI was derived from the general regression
method, i.e., linear and exponential regression method and the consistent development curve method.
The regression method was applied to the data from the entire growing season and the two growth
phases. According to the results from the two regression approaches, the relationship extracted
from an exponential regression illustrated higher correlation than from a linear regression. Due to
better explicability of time-dependent change in LAI of the exponential model than of the linear
model (e.g., [3,24,53,57]), we only presented the results from the exponential model.

The consistent development curve method is based on the general additive models (GAMs; [58])
and explains the variation of LAI in relation to EVImax and EVImax respectively. The observed LAI was
normalized as a ratio of the observed LAI at each site to the average observed maximum LAI (LAImax,
5.3 from all sites). Each site had one value of VImax per a growing season except MSE in 2003 with
the double peaks (DOY 183 and 215) in VIs. We choose the value of VI on DOY 215 as VImax, which
occurred in vicinity of the observed LAImax. At each site, the number of departed days from the day of
each VImax was counted at each point of the normalized LAI. Then, the GAMs were applied to this
relationship in order to draw a consistent development curve of rice. Negative values indicate the
observation occurred before each VImax, whereas positive values indicate the observation occurred
after each VImax.

GAMs are non-parametric models that examine the data before a particular response
function (e.g., linear and quadratic functions) is selected, and finds the response function through
a smoothing process. They has been used to understand non-linear ecological responses to a wide
range of environmental variables [58–60]. GAMs can be more general and flexible to allow a wide range
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of response curves to the non-linear relationships and provide an alternative approach for limitation of
linear functions that fails to detect complex dependency between the predictor and response variables.
When X is an independent variable, a linear function of GLMs (∑

p
j=1 β jXj in Equation (3)) is replaced

to a sum of smooth function (∑
p
j=1 f j(Xj) in Equation (4); [59–61]).

g(µ) = β0 +
p

∑
j=1

β jXj (3)

g(µ) = f0 +
p

∑
j=1

f j(Xj) (4)

where g(µ) is the link function, β0 and βj are the intercept and slope of a linear regression, and f 0 is
the intercept of a non-parametric function. After aligning the day of each VImax from the consistent
development curve with the day of each VImax at specific sites, the normalized LAI was converted into
normal LAI by multiplying daily values of the curve by the average observed LAImax.

3. Results

3.1. Exponential Model for Estimating LAI

LAI was positively correlated with NDVI and EVI when the regressions were applied to the
entire growing season (Figure 2). The regression analysis showed good correlation between LAI
and NDVI (0.63 < R2 < 0.83 and 0.82 < RMSE < 1.56) and between LAI and EVI (0.62 < R2 < 0.72
and 1.06 < RMSE < 4.41; Table 2). At MSE and ESES2, where multiple years of data were included,
greater scatter was found in the relationship with both cases than when individual years were analyzed
(cf. HK for 2010). The greater scatter at MSE and ESES2 may result from the seasonality of phenological
development of rice varying from year to year.

Figure 2. The relationships between LAI and NDVI (black closed circles with solid line) and between
LAI and EVI (gray closed circles with solid line) using the data from the entire growing season.
HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2 = El Saler-Sueca (Spain).
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Table 2. Summary of regression analyses between LAI and NDVI and between LAI and EVI. The analysis was conducted using the data from different growth
phases: “Entire” indicates the data from the entire growing season. “Before” indicates the data collected before the maximum VI, whereas “After” indicates the data
collected after the maximum VI. R2 is the adjusted coefficient of determination, and RMSE is the root mean square error. HK = Haean (S. Korea), MSE = Mase (Japan),
and ESES2 = El Saler-Sueca (Spain).

Site Year Growth Phase
NDVI EVI

Regression Equation R2 RMSE p Regression Equation R2 RMSE p

HK 2010 Entire y = e(16.53x−12.24) 0.83 0.82 0.003 y = e(18.28x−9.93) 0.72 1.06 0.01

MSE 2002–2005 Entire y = e(9.54x−6.41) 0.63 1.56 <0.001 y = e(8.01x−3.49) 0.62 4.41 <0.005

ESES2 2007–2008 Entire y = e(6.39x−3.87) 0.67 1.27 <0.001 y = e(6.72x−2.7) 0.72 1.98 <0.005

HK 2010 Before y = e(16.52x−12.51) 0.90 1.21 0.009 y = e(17.81x−10.31) 0.96 0.32 0.01
After - - - - y = e(10.72x−4.93) 0.97 0.3 0.08

MSE 2002–2005 Before y = e(11.28x−8.04) 0.82 0.94 <0.005 y = e(9.73x−4.37) 0.72 6.63 <0.005
After y = e(1.98x−0.2) 0.42 0.78 0.007 y = e(0.74x+0.83) 0.01 1.13 0.4

ESES2 2007–2008 Before y = e(7.30x−4.82) 0.84 0.84 <0.005 y = e(7.68x−3.42) 0.88 1.22 <0.005
After y = e(1.81x+0.08) 0.93 0.24 <0.005 y = e(1.70x+0.5) 0.73 0.53 0.009

Asia 2002–2010 Before Y = e(11.57x−8.38) 0.80 0.97 <0.005 y = e(9.13x−4.4) 0.61 3.43 <0.005
After y = e(2.12x−0.38) 0.27 0.93 0.02 y = e(1.23x+0.51) 0.05 1.3 0.2

Asia & Europe 2002–2010 Before y = e(10.11x−7.21) 0.76 1.03 <0.005 y = e(8.81x−4.18) 0.66 2.88 <0.005
After y = e(2.11x−0.31) 0.36 0.85 0.001 y = e(1.41x+0.49) 0.14 1.2 0.05
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The regressions were applied to the data from the two phases separately. The increasing phase
was associated with the increase in LAI (from 0 to 6), NDVI (from 0.3 to 0.9), and EVI (from 0.1 to 0.8),
whereas the decreasing phase was associated with the decrease in LAI (from 6 to 2), NDVI (from 0.9 to
0.6), and EVI (from 0.8 to 0.2). The regressions at each phase were quite different from each other at
all sites. The relationship exhibited higher R2 (0.84–0.96) in the increasing phase (Before in Figure 3
and Table 2) than the decreasing phase (R2 = −0.01–0.97; After in Figure 3 and Table 2) for NDVI and
EVI. An increasing rate of LAI along the change in NDVI and EVI was greater in the increasing phase
than in the decreasing phase. Due to a large scatter in the data, the relationship between LAI and
EVI was weaker than that between LAI and NDVI particularly at MSE. Compared to the correlations
between LAI and VIs from the entire growing season, they were mostly higher from the increasing
and decreasing phases, demonstrating the importance of appropriate consideration of phenological
development at different phases in estimating seasonal LAI.

Figure 3. The relationship between LAI and NDVI and between LAI and EVI using the data separated
into two growth phases. HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2 = El Saler-Sueca (Spain).

In order to establish relationships between LAI and VIs that can be generally applicable
and “universal” rather than site-specific, we pooled the data for Asian sites (HK and MSE) and
all sites (HK, MSE, and ESES2), respectively. During the summer monsoon in the Asian region,
the remotely-sensed vegetation indices were influenced by frequent cloud cover and high water vapor
density in the air. For this reason, Asian rice paddy sites were treated separately. Using the data
obtained over the entire growing season, the LAI-VI relationship for Asian sites and all sites was
examined in Figure 4. The LAI-NDVI relationship was similar with the LAI-EVI relationship (R2 of
0.60) for the Asian sites and all sites. As for the two phases, the LAI-VI relationship showed much
better agreement in the increasing phase (Before, 0.61 < R2 < 0.80 and 0.97 < RMSE < 3.43) than in the
decreasing phase (After, 0.05 < R2 < 0.36 and 0.85 < RMSE < 1.3; Figure 5 and Table 2). As indicated
in the analysis for individual sites (Figure 3), separation of the seasonal phases provided a better
explanation of LAI changes with VIs in the pooled data. The correlation between LAI and NDVI was
better than that between LAI and EVI for the two growth phases.

Figure 6 presents seasonal dynamics in the LAI estimated by exponential regressions produced
from the entire growing season (Figure 4) and the two phases (Figure 5) for the pooled sites (Asia and
Europe). The estimated LAI from both cases ranged from 0 to 8.6 with NDVI and from 0 to 24 with
EVI, showing either overestimation or underestimation at most sites. LAI estimated from both NDVI
and EVI was less satisfactory. Separating the season into two phases led to an abrupt change in
seasonal LAI, where the transition from Before to After occurred in the mid-season (near Day of Year
(DOY) 200), resulting in no better estimation than the estimation obtained with the entire growing
season. LAI estimates from both cases showed similar variation and magnitude with the measure
LAI in the increasing phase, but most of the discrepancy in the estimates occurred in the decreasing
phase. The timing of the peak in LAI was acceptable in comparison to the peak of the measured LAI
(within ±3 to 6 days) except MSE in 2003 showing double peaks (DOY 183 and 215) associated with
the summer monsoon. However, the largest difference between the estimated and the measured LAI
and between the two cases occurred during the peak.
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Figure 4. The pooled relationships between LAI and NDVI and between LAI and EVI using the
data from the entire growing season. The regressions for Asia includes the data from Haean and
Mase (y = e(9.92x−6.81) with R2 = 0.62 for NDVI and y = e(8.07x−3.69) with R2 = 0.56 for EVI), while the
regressions for Asia and Europe includes Haean, Mase, and El Saler-Sueca (y = e(8.73x−5.86) with
R2 = 0.60 for NDVI and y = e(7.78x−3.46) with R2 = 0.60 for EVI).

Figure 5. The pooled relationships between LAI and NDVI and between LAI and EVI using the data
separated into two growth phases. The regressions for Asia include the data from Haean and Mase,
while the regressions for Asia and Europe include Haean, Mase, and El Saler-Sueca.

Figure 6. Comparison of the measured LAI (open circles with dashed line) and the estimated LAI
using the data from the entire growing season (E, solid line) and the combined two growth phases
(B and A, dashed line).
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3.2. Estimation of LAI from the Consistent Development Curve Method

A consistent development curve for rice across the study sites was presented in Figure 7.
The scaled LAI slowly increased for about 80 days before the VImax (Day 0). The maximum in
the scaled LAI occurred between Day 0 and 10 days after Day 0. A relatively slow decrease occurred
after this peak. The estimated LAI from the consistent development curve method ranged from 0 to
4.7 (Figure 8). Magnitudes and seasonal patterns in LAI from NDVI and EVI were well reproduced
across all sites except a few points of noticeable deviations from the measured LAI (e.g., HK in 2010).
Compared to the results from the exponential regressions of the entire growing season and the two
phases (Figure 6), the consistent development curve method had better estimates of LAI in the peak
and the decreasing phase at all sites (Table 3). Although the consistent development curve method had
a limited scale due to the use of the average observed LAImax (5.3) being set as LAImax, it improved
applicability of the seasonal course of LAI much better than the exponential model did.

Figure 7. Consistent development curves drawn from the scaled LAI in relation to NDVImax and
EVImax, respectively, using the generalized additive model. The data from all sites were used. Scale was
calculated as the ratio of the observed LAI at each site to the average observed maximum LAI (LAImax,
5.3 from all sites).

Figure 8. Comparison of the measured and the estimated LAI. Open circle with the dashed line
indicating the measured LAI, whereas the solid line indicates the estimated LAI from NDVI (black line)
and from EVI (gray line), respectively, using the consistent development curve method.
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In order to further validate the consistent development curve method, we applied the method to
an independent dataset (MSE, 2006, Shizukuishi, 2000, and Aso, 2003 in Japan; [43,45]), which were
not used to draw the consistent development curve in Figure 7. The measured LAI and VIs were
collected and processed with the same methods described in the method section. The estimated LAI
from VIs showed a good comparison with the measured LAI at both sites (R2 = 0.92 for NDVI and
R2 = 0.86 for EVI at MSE, R2 = 0.98 for NDVI and R2 = 0.97 for EVI at Shizukuishi, and R2 = 0.98 for
NDVI and R2 = 0.98 for EVI at Aso; Figure 9), capturing well the increasing and decreasing phases of
and the magnitudes of LAI. The estimated LAI using EVI showed a slight shift of the peak compared
to that of the measured LAI at MSE in 2006.

Figure 9. Validation of the consistent development curve method in estimating LAI by applying to
an independent dataset from MSE, 2006, Shizukuishi, 2000, and Aso, 2003 in Japan).

Table 3. Statistics of the correlation between the measured and the estimated LAI. Estimates of LAI
were calculated from consistent development curve method (Figure 7) and exponential regression
method (Figure 4). R2 is the adjusted coefficient of determination, RMSE is the root mean square
error, and CV is coefficient of variation of RMSE. HK = Haean (S. Korea), MSE = Mase (Japan), and
ESES2 = El Saler-Sueca (Spain).

VI Site Year
Consistent Development Curve Exponential Regression

R2 RMSE CV (%) p R2 RMSE CV (%) p

NDVI

HK 2010 0.78 0.89 59.08 <0.005 0.75 0.93 57.12 <0.005

MSE

2002 0.90 0.38 23.18 <0.005 0.65 1.19 59.25 <0.005
2003 0.90 0.33 22.41 <0.005 0.24 0.84 56.44 <0.005
2004 0.92 0.21 11.49 <0.005 0.75 1.30 56.37 <0.005
2005 0.95 0.77 41.92 <0.005 0.89 0.37 28.00 <0.005
2006 0.92 0.57 25.11 <0.005

ESES2 2007 0.92 0.77 27.46 <0.005 0.68 0.65 54.22 <0.005
2008 0.93 0.72 23.77 <0.005 0.60 0.37 57.85 <0.005

Shizukuishi 2000 0.98 0.54 19.42 <0.005

Aso 2003 0.98 0.77 41.79 <0.005

EVI

HK 2010 0.73 1.19 73.38 0.008 0.56 1.11 69.45 0.03

MSE

2002 0.93 0.39 21.00 <0.005 0.86 1.57 69.53 <0.005
2003 0.96 0.20 14.48 <0.005 0.74 1.54 57.30 <0.005
2004 0.91 0.23 11.90 <0.005 0.85 1.22 43.22 <0.005
2005 0.88 0.64 42.93 <0.005 0.68 5.76 342.96 <0.005
2006 0.86 0.69 31.70 <0.005

ESES2 2007 0.89 0.82 29.25 <0.005 0.64 1.63 90.44 0.01
2008 0.88 0.82 27.43 <0.005 0.69 1.04 40.86 <0.005

Shizukuishi 2000 0.97 0.57 20.41 0.01

Aso 2003 0.98 0.72 39.73 <0.005
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4. Discussion

4.1. Estimation of LAI using Different Growth Phases

We hypothesized that the phenological and physiological features of rice are different at the
beginning of the growing period compared to those at the senescence period. When the exponential
regression method was applied to estimate LAI, LAI estimates from the two growth phases generally
fitted better to the LAI measurements than those from the entire growing season did. LAI estimates
from the latter were frequently underestimated during the decreasing phase, confirming the necessity
of considering different developments of seasonal phenology. Large deviations of LAI estimates from
LAI measurements were observed in the middle of the growing season (e.g., MSE, 2004 and ESES2,
2007 for NDVI and EVI, Figure 6) when saturation of VIs occurred at high LAI. Due to hysteresis effects
centering on LAImax in the relationship between LAI and VIs, the abrupt change occurred in transition
between the two phases in the middle of the growing season (Figure 6). No better seasonal estimates
in LAI from the two phases was produced than those from the entire growing season. This hysteresis
effect may result from changes in leaf pigment and chlorophyll content at different vegetative growth
stages [62–64]. Therefore, attention must be paid to seasonal estimates of LAI using the relationship
between LAI and VIs particularly in the second half of the growing season when VIs were saturated.

In relation to the LAI estimates of rice, neither NDVI nor EVI was preferable with the general
regression approach. Over- and under-estimation of LAI were frequently observed from the LAI-NDVI
and the LAI-EVI relationships. When NDVI was greater than 0.85 at specific sites and years (e.g., MSE,
2005 and ESES2, 2007–2008) in the middle of the growing season, LAI tended to be overestimated.
When EVI was greater than 0.8 at MSE (2005), an extreme overestimation of LAI was observed. On the
contrary, LAI was underestimated when EVI was low (<0.6) at MSE (2002). A change rate of LAI
along the change in NDVI and EVI was greater in the exponential regression as VIs were saturated.
Estimation of LAI became very sensitive to a small change in VIs, resulting in the difference ranging
from −3 to 20 between the estimated and the measured LAImax. These results led to a caution in using
the exponential regression approach due to saturation effect on the relationship between LAI and VIs.

Double peak in the estimated LAI at MSE (2003) reflects the limitation of TIMSAT in recovering
the seasonal variation of VIs (Figures 1 and 6). VIs were more scattered in mid-summer due to the
influence of summer monsoon than other sites. This scatter affected subsequent analyses to define
a smoothed curve and estimate daily VIs. VIs, which were smoothed by TIMESAT, could not capture
the specific signal of LAI [65]. We found that statistical methods to obtain seasonal VIs and LAI did
not necessarily provide correct data for the rice.

4.2. Performance of the Consistent Development Curve Method

We attempted to identify a better approach based on consistencies in the developmental processes
of the rice crops, and provided a good reference case in that the seasonal change in the LAI of rice
paddies can be determined with both NDVI and EVI using the consistent development curve method.
This method showed significant improvement in estimating the seasonal course for LAI, resulting in
a better estimate in LAI than an exponential model did (Figure 8). Reliance on consistent biological
regulation of phenological development through the detection of the maximum in LAI and VIs allows
the identification of seasonal dynamics in the LAI of the rice paddies. An exponential tendency in the
relationship between LAI and VIs is extracted mostly from single or more localized sites [23,24,27].
In cases where study locations are geographically spread across different climate regions and where
year-to-year climate variation occurs, such simple relationships may not be sufficient to estimate LAI
universally. This study, however, has proved that the consistent development curve method can
identify seasonal course of LAI spreading different geographical locations and climates.

Less satisfactory agreement between the measured LAImax and the estimated LAImax was
generated from a failure in detecting a local LAImax. Differences between a local LAImax at a specific site
and the average observed LAImax (5.3) was carried into the conversion of the scaled LAI from curve to
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normal LAI by multiplying the daily values of the curve by the average observed LAImax. For instance,
a local LAImax (6.0) at MSE in 2006 was higher than the average observed LAImax, resulting in lower
estimate of LAImax. On the contrary, that the local LAImax (3.5) at Aso in 2003 was lower, leading to an
overestimation of VImax. The consistent development curve method is strong in detecting the seasonal
phenological development of the relationship between LAI and VIs. However, the need still remains
to improve accuracy in estimating the maximum value.

NDVI and EVI appropriately estimated seasonal pattern and magnitude of LAI (Figures 8 and 9,
Table 3). The LAI-NDVI relationship was slightly better in finding the timing of LAImax than the
LAI-EVI relationship did. For instance, the timing of LAImax from NDVI matched well with that of the
measured LAImax, but LAImax from EVI occurred in several days later (e.g., 12 days in 2005 and 7 days
in 2006) due to the delayed peak of EVI (Figure 1). Because the number of departed days from the
peak day of EVI was accounted in the estimated LAI, this results in a slight shift of the entire seasonal
pattern of the estimated LAI toward a later season. We speculate that EVI was not strongly convinced
to capture the maturation of rice in these years, hence relatively weaker explanation was observed in
estimating LAI with EVI than with NDVI.

5. Conclusions

Improving seasonal estimation in LAI can provide valuable information to aid accurate estimating
of biophysical processes by process-based models and interpretation of vegetation dynamics [28].
Estimation of LAI in crops is still a challenge due to crops’ distinctive phenological changes
before and after VImax [66]. Varying management practices at individual sites hinder the generally
applicable and the universal relationship between LAI and VIs to be adopted to specific species.
Consistent development curves with VIs in this study show improvement in detecting phenological
development and estimating the seasonal LAI of rice. There is still a shortcoming in the use of VIs to
estimate LAI due to the limitation of the smoothing process (e.g., TIMESAT) in recovering the seasonal
variation of VIs.

Despite a few limitations, we utilized the VIs as a detector of the seasonal phenological
development. It also illustrates its applicability across different climatic conditions and management
cycles. We expect that the consistent development curve method with VIs can improve the seasonal
estimation of LAI for the various crop types across space. With the consistent development curve
approach, which performs more accurately than traditional regression approaches, estimates of critical
parameters such as crop growth and productivity in the process-based models can be refined and
applied to other crops to determine their phenological stages. Further testing will demonstrate whether
this “biophysically-based” approach, as in the case of rice, can effectively estimate the critical LAI
values needed in regional process-based models.
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