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Abstract: To investigate the characteristics of Spinning Enhanced Visible and Infrared Imager
(SEVIRI)-derived products from the UK Met Office algorithm, one year of cloud occurrence frequency
(COF) and cloud-top height (CTH) data from May 2013 to April 2014 was analysed in comparison
with Cloud Profiling Radar (CPR) and Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP)
cloud products observed from the A-Train constellation. Because CPR operated in daylight-only
data collection mode, daytime products were validated in this study. It is important to note that the
different sensor characteristics cause differences in CTH retrievals. The CTH of active instruments,
CPR and CALIOP, is derived from the return time of the backscattered radar or LiDAR signal,
while the infrared sensor, SEVIRI, measures a radiatively effective CTH. Therefore, some systematic
differences in comparison results are expected. However, similarities in spatial distribution and
seasonal variability of COFs were noted among SEVIRI, CALIOP, and CPR products, although COF
derived by the SEVIRI algorithm showed biases of 14.35% and −3.90% compared with those from
CPR and CALIOP measurements, respectively. We found that the SEVIRI algorithm estimated larger
COF values than the CPR product, especially over oceans, whereas smaller COF was detected by
SEVIRI measurements over land and in the tropics than by CALIOP, where multi-layer clouds and
thin cirrus clouds are dominant. CTHs derived from SEVIRI showed better agreement with CPR than
with CALIOP. Further comparison with CPR showed that SEVIRI CTH was highly sensitive to the
CO2 bias correction used in the Minimum Residual method. Compared with CPR CTHs, SEVIRI
has produced stable CTHs since the bias correction update in November 2013, with a correlation
coefficient of 0.93, bias of −0.27 km, and standard deviation of 1.61 km.
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1. Introduction

Current uncertainties in the roles played by clouds and aerosols in the Earth’s radiation budget
limit our understanding of the climate system and the potential for global climate change [1], as well
as weather analysis and forecasting. Clouds are highly variable in space and time, and they influence
both solar and thermal radiative transfer in addition to the water cycle. Optically thick, low-level
clouds usually have a negative net radiative forcing because their thermal effect is small, although the
reflection of the solar radiance dominates. In contrast, the net radiative effect of high-level clouds is
often positive because the thermal contrast between them and the surface is large [2,3]. Thus, detailed
monitoring of cloud properties is required to understand the distribution and impact of clouds on
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regional and global scales. Satellites can provide information on the global distribution of cloud cover
and cloud properties and variations. Measurements from passive satellite imagers at visible to thermal
infrared wavelengths on board many geostationary and polar orbiting satellites provide a wealth of
information on cloud properties. The current operational geostationary satellite in Europe, Meteosat
Second Generation (MSG) has the 12-channel Spinning Enhanced Visible and Infrared Imager (SEVIRI)
and provides high temporal frequency observations every 15 min to help deliver information on
cloud characteristics.

The UK Met Office uses data from Meteosat satellites for weather analysis and forecasting.
Cloud parameters are derived operationally from radiances observed by SEVIRI and include cloud
detection, cloud-top temperature, height, and effective cloud amount (ECA), which is the product of
the fractional coverage and the cloud emissivity. These parameters are used as image interpretation
tools for forecasters and as inputs to numerical weather prediction (NWP) and automated nowcasting
systems [4]. Validation of these satellite-derived cloud parameters is important for understanding
their accuracies and characteristics for use in various applications. Many validation studies have been
conducted with ground-based reference data, such as observations from cloud radar [5], Cloudnet [6],
and aircraft experiments [7]. However, these validations are obviously restricted in space and time.
Moreover, inter-satellite comparisons of cloud parameters are more resistant to the deficiencies in
temporal and spatial coverage and have thus been effective in determining the value and limitations
of various satellite products. The Cloud Retrieval Evaluation Workshop (CREW) has led research
activities in evaluating the strengths and weaknesses of the well-established algorithms that retrieve
cloud properties from passive imager instruments such as SEVIRI, Advanced Very-High-Resolution
radiometer (AVHRR), and Moderate Resolution Imaging Spectroradiometer (MODIS) on board both
polar and geostationary satellites. CREW working group members operate the highly-advanced cloud
retrieval algorithms. The UK Met Office has participated in CREW and has provided cloud products
including the CREW Common Database for five “golden” days, which have been inter-compared and
validated against observations from the A-Train satellite constellation by Cloud-Aerosol LiDAR and
Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Aqua. The A-Train Validation
of Aerosol and Cloud Properties from SEVIRI (AVAC-S) software [8] was developed in the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to support this activity.

In this study, AVAC-S software was developed and used for validating the UK Met Office cloud
products for one year of data. This study is organized as follows. Section 2 briefly introduces the
cloud data from SEVIRI, Cloud Profiling Radar (CPR), and Cloud-Aerosol LiDAR with Orthogonal
Polarization (CALIOP), which are used in this comparison study. In addition, the AVAC-S system and
the methodology used to validate cloud products are presented. In Section 3, some details of SEVIRI
cloud cover and cloud-top height (CTH) validation results are compared with CPR and CALIOP
products. We discuss the results and compare them with those of previous studies in Section 4.
Section 5 summarises and concludes the study.

2. Materials and Methods

2.1. Datasets

The UK Met Office has utilised Meteosat data in real time to retrieve products for various
applications. Meteosat-10 data have been operational since 21 January 2013 after its launch on
5 July 2012. The SEVIRI instrument on the MSG satellites has a set of channels designed to provide
accurate cloud-top properties [9].

The first step in deriving SEVIRI cloud parameters is to produce a cloud mask that identifies
clear, partly cloudy and fully cloudy fields of view using the techniques previously developed for
AVHRR [10]. However, an important development for processing MSG radiances is the inclusion
of clear sky simulated radiances calculated using the Unified Model (UM) profiles input into the
Radiative Transfer for Television Infrared Observation Satellite Operational Vertical Sounder (RTTOV),
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which is a fast radiative transfer model [11]. This allows for an excellent opportunity for comparing
the differences between observed and simulated radiances, which should be small for clear sky scenes.
The cloud detection tests encompass spectral differencing by using various channel combinations
and comparing the measured and simulated differences. Spatial coherence and visible reflectance
information is also used. Additionally, for low cloud detection in twilight conditions, the temporal
differencing technique is applied in accordance with the frequent observation merit of geostationary
satellites [12].

The UK Met Office SEVIRI-derived cloud-top products contain information about the cloud-top
pressure (CTP), temperature (CTT), and height (CTH) relative to the local topography for pixels
identified as cloudy in the satellite scene. These cloud-top products were derived by using three
independent algorithms in the following order: Minimum Residual (MR), Stable Layers (SL), and
Profile Matching (PM) methods. First, the identified cloudy pixels are assigned to a cloud-top
pressure and ECA by using an MR technique [13] based on an NWP forecast profile and SEVIRI
radiances. Currently, three SEVIRI channels, including two infrared windows at 10.8 and 12.0 µm, and
a CO2 absorption channel at 13.4 µm, are used in this technique. The atmospheric stability from the
background NWP model profile is also considered to ensure that the cloud is not placed at the bottom
of an unstable layer. The CTP from the MR method is used mainly for the assignment of high clouds,
of which CTP is less than 480 hPa. An SL method is employed if a suitable solution is not found by
the MR method, that is, if the uncertainty in the MR solution is greater than a prescribed threshold,
which is normally the case for low cloud. The SL method uses the 10.8 µm window channel radiance
and attempts to find the best level for the cloud-top to obtain an agreement between observed and
simulated radiances. The concept of this method is based on the knowledge that clouds are normally
topped by a stable layer that prevents the air parcels from rising further [14,15]. In practice, this means
that the upper-level clouds tend to use the solution of the MR method, and the lower-level clouds apply
the SL method with a priori constraints. If no proper CTP solution is obtained from these two methods,
the PM method, which has no a priori constraint, is used as a fallback solution; however, such cases
are rare. This approach begins at the bottom of the profile and moves the cloud layer upward until
agreement with the observed radiance at 10.8 µm is achieved. After the ECA and CTP are determined,
CTT and CTH are obtained through the conversion of the UM background vertical profile.

2.1.1. CPR/CloudSat

CloudSat is a satellite experiment designed to measure the vertical structure of clouds and to
observe cloud and precipitation from space simultaneously with A-Train satellite constellation [16].
The primary CloudSat instrument is a 94 GHz, near nadir-looking, CPR which measures the power
backscattered by clouds. CloudSat was launched in tandem with CALIPSO, a second Earth System
Science Program (ESSP) mission, which is equipped with CALIOP, a dual frequency LiDAR instrument.
The CPR was developed jointly by the National Aeronautics and Space Administration (NASA)/Jet
Propulsion Laboratory (JPL) and the Canadian Space Agency (CSA). The overall design of the CPR
has a strong heritage from many cloud radars presently in operation in ground-based and airborne
applications. The CPR samples profiles at 625 kHz, correspond to a range of sampling distance of
240 m. Each profile has 125 vertical bins. One vertical profile of the atmosphere is recorded every 0.16 s
by averaging approximately 600 pulses. CPR provides an instantaneous footprint of approximately
1.3 km across-track by 1.7 km along-track at mean sea level [17]. The Cooperative Institute for Research
in the Atmosphere (CIRA) CloudSat Data Processing Center (DPC) generates and provides the data for
subsequent level 0 (raw data) through level 2 (derived products), including radar backscatter profiles
(1B-CPR), cloud geometrical profiles (2B-GEOPROF), cloud classification (2B-CLDCLASS) and other
products. The data used in this study are radar backscattering profiles and CTH in 2B-GEOPROF
acquired from CIRA CloudSat DPC (ftp://ftp1.cloudsat.cira.colostate.edu). CTH data were obtained
from height values for 125 vertical bins and the cloud mask, indicating the presence of a cloud inside
a CPR bin. The cloud mask has values of 0 for clear condition, 1 for error, 5 for ground clutter,
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5–10 when the bin is judged to be contaminated by clouds weakly through the along-track integration,
and 20–40 when clouds are detected. A larger cloud mask value is related to a higher confidence
in cloud detection. CloudSat project team suggested that vertically connected CloudSat bins with
significant cloud mask values (≥30) are regarded as a cloud layer [18]. Marchand et al. [19] analysed
the sensitivity of CPR cloud detection to different CPR cloud mask values compared with CALIOP
observations. In this study, CPR CTH is defined as a layer at the point where the accumulated value
from the top downward becomes larger than 30 as defined by the AVAC-S software.

2.1.2. CALIOP/CALIPSO

CALIPSO is a joint NASA–Centre National D’études Spatiales (CNES) satellite mission designed
to provide measurements aimed at improving our understanding of the role of aerosols and clouds in
the climate system. The CALIPSO satellite was launched in April 2006 together with the CloudSat
satellite. CALIPSO and CloudSat fly in close formation as part of the A-Train satellite constellation.
The satellite carries CALIOP as a primary instrument, which provides detailed profile information
of cloud and aerosol particles and their corresponding physical parameters. CALIOP measures
high-resolution profiles (1/3 km in the horizontal and 30 m in the vertical at 532 nm in low and
middle troposphere) of the attenuated backscatter by aerosols and clouds at visible (532 nm) and
near-infrared (1064 nm) wavelengths along with polarized backscatter in the visible channel [20].
Accurate aerosol/cloud heights and extinction coefficient profiles are derived from the total backscatter
measurements. The depolarization measurements enable the discrimination between ice clouds
and water clouds and the identification of non-spherical aerosol particles. Additional information,
such as the estimates of aerosol particle size, is obtained from the ratios of the signals obtained at the
two wavelengths.

CALIOP provides information for layers down to the level in which the LiDAR signal is fully
attenuated even in the case of multi-layer clouds, which occurs at the cumulative optical depth of 3–5.
However, the interpretation of CALIOP measurements is often limited by a low signal to noise ratio
when using the original high-resolution profiles. Therefore, measurements are usually averaged over
several LiDAR shots to allow for a higher confidence in the correct detection and identification of cloud
layers. CALIOP products are retrieved from the NASA Langley Atmospheric Science Data Center
(ASDC: Hampton, VA, USA; http://eosweb.larc.nasa.gov) and defined in three different versions with
respect to the along-track resolution: 333 m (individual FOVs), 1 km, and 5 km. In this study, LiDAR
Level-2 5-km Cloud Layer information (Version 3) was used considering the confidence in addition to
the corresponding SEVIRI product resolution, which is 3 km at the nadir and becomes larger towards
higher latitude regions. The highest level CTHs were used in this comparison study, although CALIOP
provided the cloud layer top altitudes in the case of multi-layer clouds.

2.2. Methodology

The main tool used in this study is AVAC-S software developed by EUMETSAT, which is related
to CREW activity [8]. Optimal Cloud Analysis (OCA), Cloud Analysis (CLA) from EUMETSAT, and
Climate Monitoring Satellite Application Facility (CMSAF) cloud products are included within the
validation targets of AVAC-S. This information is intended to support scientists in evaluating processing
schemes used to derive physical parameters from MSG-SEVIRI measurements in comparison with
the relevant parameters from polar orbiting A-Train sensors, which offer high-accuracy, independent
information. The main function of AVAC-S is the mapping of MSG-SEVIRI data and A-Train data,
including CPR, CALIOP, MODIS, and Polarization and Directionality of the Earth’s Reflectances
(POLDER) products, on a common grid with several utilities for analysis and visualisation. AVAC-S
software was set up in the UK Met Office; the ingestion routine for the SEVIRI parameters was added
for this study.

http://eosweb.larc.nasa.gov
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2.2.1. Data Period

One year’s worth of data, from May 2013 to April 2014, was used in this comparison study.
Because the amount of data is large, we collected data every seven days during that period and
created a matchup dataset including a total of 329 CPR overpasses. Because the CPR instrument has
been in daylight-only data collection mode since October 2011 after undergoing a battery anomaly
problem [21], only the daytime observations are used in this comparison study.

2.2.2. Matching SEVIRI and A-Train Observations

The A-Train satellites regularly overfly the SEVIRI/MSG observation disk. AVAC-S generates the
matchup data of the SEVIRI and A-Train products on the basis of the CPR overpass, which is assumed
to be the best-suited instrument for validating SEVIRI cloud parameters. The matching method
we used in this study is the same as the one Hamann et al. [3] used. However, we did not use parallax
correction function in AVAC-S for the SEVIRI viewing zenith angle as in Hamann et al. [3]; instead
we used parallax-corrected CTH products when generating matchup datasets.

2.2.3. Validation Methods and Scores

The statistical validation scores are calculated using the daily and monthly datasets merged from
each individual matchup pixel along the matchup track. In the case of cloud occurrence frequency
(COF), the SEVIRI parallax-corrected CTH product is used. If CTH data on the corresponding pixel
exists, it is assumed to be cloudy, and vice versa. A cloudy pixel from cloud detection can be considered
a clear pixel when the simulated radiance does not sufficiently converge to the observed radiance in
the CTH retrieval process and also when the error from a different satellite viewing angle is reduced.
The CTH are not retrieved over the partly cloudy pixel, thus the partly cloudy pixels are not dealt
with in the COF analysis. A binary representation of the results, where cloud cover values of 1 and
0 for cloudy and clear conditions, respectively, are used for each individual pixel. The results are
accumulated over the full matchup tracks for each individual month to obtain the scores for COF.
It should be noted that the scores are computed by using the matchup data that contain valid CTH
values in all three products, CPR, CALIOP, and SEVIRI. For validation with CPR or CALIOP, the mean
COF and bias can be computed as

MeanCOF =
∑ cloudy

∑ allpixels
(1)

bias = MeanCOFSEVIRI − MeanCOFre f (2)

For the other scores, we used the following definitions referring to the notations in the contingency
matrix in Table 1 [22].

Table 1. Contingency matrix for comparison of Spinning Enhanced Visible and Infrared Imager
(SEVIRI) cloud occurrence frequency (COF) with the cloud products from A-Train.

SEVIRI Cloudy SEVIRI Clear

Reference cloudy (CPR or CALIOP) a: hits b: misses
Reference clear (CPR or CALIOP) c: false positives d: correct negatives

Note: CPR: Cloud Profiling Radar; CALIOP: Cloud-Aerosol LiDAR with Orthogonal Polarization.

Probability of detection (POD) for both cloudy and cloud-free conditions:

PODcloudy =
a

a + b
(3)
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PODclear =
d

c + d
(4)

False alarm ratio (FAR) for both cloudy and cloud-free conditions:

FARcloudy =
c

a + c
(5)

FARclear =
b

b + d
(6)

Proportion correct (PC):

PC =
a + d

a + b + c + d
(7)

Hanssen–Kuiper’s skill score (KSS) or True Skill Statistic (TSS):

KSS =
a·d − b·c

(a + b)·(c + d)
(8)

The POD and FAR scores estimate the SEVIRI efficiency in determining cloudy or clear conditions.
POD (FAR) values are desired to be as high (low) as possible. The PC, which is also known as the
accuracy or hit rate, is a condensed measure of the overall efficiency of cloud detection. Finally, the KSS
quantity is a counter measure because the PC is heavily influenced by the results for the most common
category and can sometimes be misleading. For example, if a case is almost totally cloud-free and all
of the few cloudy portions are missed by SEVIRI, the PC score will still be high. The KSS score is more
robust: 1 very good; −1 very bad. For cloud detection schemes, values above 0.5 show that the scheme
is reliable and skilled. Along with quantitative analysis using the statistical scores, qualitative analysis
was also conducted to evaluate the cloud detection performance of SEVIRI. The COF distribution in
the SEVIRI observation area was analysed, and its seasonal variation and detection tendency over land
and ocean was investigated.

SEVIRI CTHs were compared with the corresponding measured maximum cloud-top values as
interpreted from CPR and CALIOP vertical cloud classification. In the case of CTH, we restricted
the number of validation scores to just two, including bias (mean error) and standard deviation
(bias-corrected root–mean–square differences).

CTH bias:
∆CTH = CTHSEVIRI − CTHre f (9)

bias =
1
N

N−1

∑ ∆CTH. (10)

Standard deviation:

SD =

√
1

N − 1

N−1

∑
[
∆CTH − ∆CTH

]2 (11)

Owing to different characteristics of satellite observations, such as differences in viewing
geometry and observation time, unwanted large CTH differences can be found, particularly over
non-homogenous cloud areas. Thus, two filters were used in this study for evaluating and
characterising the SEVIRI CTH products more strictly. The first is a spatial uniformity filter, which
excludes the data when the CTH standard deviation of the surrounding 5 × 5 pixels is larger than
1 km. The second is that any data with large CTH variances from the SEVIRI output (≥1 km2) are
filtered out because they do not converge sufficiently for generating accurate CTH values in the cloud
retrieval algorithm.
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3. Results

3.1. Cloud Occurrence Frequency

Table 2 summarises all of the matchup results for individual months for the mean COFs for
CPR, CALIOP, and SEVIRI cloud products; bias scores of SEVIRI against CPR and CALIOP products;
and the numbers of co-located data used to calculate the validation scores. It should be noted that the
numbers of co-located data in January and February 2014 were relatively small owing to the outage of
Meteosat-10 for scheduled decontamination on 14–21 January 2014, in addition to a data collection
failure for this study during that period. Most of the matchup data were collected from the SEVIRI
observation area with a higher satellite zenith angle because of the collocation time calculation fault;
thus, the scores do not have strong consistency and should be interpreted carefully. The bias score
clearly shows that CALIOP estimated a greater COF of 61.23% for the comparison period from May
2013 to April 2014. In addition, CPR detected a significantly lower COF of 42.98%, and SEVIRI COF
was in the middle but was closer to that of CALIOP with a value of 57.33%. That is, CALIOP showed
a COF 3.90% higher (in absolute terms) than that derived for SEVIRI, whereas CPR showed a COF
14.35% lower than that for SEVIRI. On the seasonal variation of monthly-mean COFs, a trend is
apparent in all three products such that COFs increased in the boreal winter and early spring and
decreased in the boreal summer over the Meteosat-10 observation area, where December–February
(June–August) represents boreal winter (summer). The monthly-mean COFs of CPR, CALIOP, and
SEVIRI varied within 9% from 37.01 to 46.04, 13% from 53.20 to 66.19, and 9% from 51.39 to 60.51,
respectively, when ignoring January and February due to the statistical insignificance. CALIOP showed
slightly larger seasonal variability. The bias of the SEVIRI COF was from 13.09 to 15.89 compared with
the CPR and from −5.68 to −1.57 for CALIOP.

Table 2. Summary of cloud occurrence frequencies over all matchup cases per month among Cloud
Profiling Radar (CPR), Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP), and Spinning
Enhanced Visible and Infrared Imager (SEVIRI). All results are given in cloud occurrence frequency
units (%).

Year Month
Mean Cloud Occurrence (%) SEVIRI Bias (%)

Number of Data
CPR CALIOP SEVIRI CPR CALIOP

2013

May 43.39 61.70 57.32 13.93 −4.38 68162
June 38.85 57.31 53.25 14.40 −4.06 59384
July 37.01 53.20 51.39 14.38 −1.81 77620

August 40.67 58.13 56.56 15.89 −1.57 82891
September 40.69 58.76 55.68 14.99 −3.08 72390

October 42.16 61.85 57.36 15.20 −4.49 67751
November 44.14 61.93 58.46 14.32 −3.47 82263
December 45.12 66.19 60.51 15.39 −5.68 97163

2014

January 55.40 64.16 64.01 8.61 −0.15 8466
February 52.64 66.95 57.56 4.92 −9.39 11934

March 45.94 64.35 60.21 14.27 −4.14 80800
April 46.04 64.36 59.13 13.09 −5.23 107137

Overall mean 42.98 61.23 57.33 14.35 −3.90 815961

To investigate the COF tendency with regard to the surface type, we computed the scores over
land and ocean separately (Table 3). About 64% of the derived matchup dataset corresponded to
ocean pixels, with the remainder over land surfaces. All COFs showed larger values over the ocean.
The differences of COFs with respect to the surface type were about 7%–11% for the CPR and the
CALIOP products, increasing to about 20% for SEVIRI. The SEVIRI product even showed a positive
bias over the ocean compared with CALIOP in the monthly statistics for most months except for
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December and April (not shown here). This means that the SEVIRI algorithm detected clouds very
rigorously over the ocean surface.

Table 3. Mean cloud occurrence frequencies and the biases of Spinning Enhanced Visible and
Infrared Imager (SEVIRI) cloud products with regard to the surface type (land/ocean) for a one-year
validation period.

Surface Type Mean Cloud Coverage (%) SEVIRI Bias (%)
Number of Data

CPR CALIOP SEVIRI CPR CALIOP

All 42.98 61.23 57.33 14.35 −3.90 815961
Land 35.67 56.87 44.74 9.07 −12.14 291108
Ocean 47.03 63.65 64.32 17.28 0.67 524853

Note: CPR: Cloud Profiling Radar; CALIOP: Cloud-Aerosol LiDAR with Orthogonal Polarization.

Table 4 provides POD, FAR, PC, and KSS scores derived from the matchup dataset, for the
different surface types. In comparison between SEVIRI and CPR, PODcloudy was high with values
close to 0.90 and large FARcloudy values around 0.32. In addition, both PODclear and FARclear were low,
with values of 0.67 and less than 0.1, respectively. Poor PODclear and FARcloudy values were expected
because SEVIRI detected more clouds than CPR with a COF bias of 14.35%. Over land, PODcloudy
decreased, and both PODclear and FARclear increased, which can be attributed to the relatively weak
cloud detectability of SEVIRI over land. Moreover, for the comparison with CALIOP, PODcloudy and
FARclear showed less accurate results of 0.82 and 0.25, respectively, than those of the CPR case. However,
PODclear and FARcloudy improved to 0.82 and 0.12, respectively. Again, these results are attributed to
the high sensitivity of CALIOP to clouds. According to PC, KSS, and the scores previously described,
the SEVIRI COF showed closer agreement with the CALIOP COF than the CPR COF. However,
the SEVIRI COF appears to have a relative weakness in detecting clouds over land in general.

Table 4. Probability of detection (POD), false alarm ratio (FAR), proportion correct (PC), and Kuiper’s
skill score (KSS) scores of Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud detection
compared with Cloud Profiling Radar (CPR) and Cloud-Aerosol LiDAR with Orthogonal Polarization
(CALIOP) with regard to surface type.

Reference Data Surface Type PODcloudy PODclear FARcloudy FARclear PC KSS Number of Data

CPR
All 0.9019 0.6743 0.3239 0.0988 0.7722 0.5763 815961

Land 0.8340 0.7669 0.3351 0.1072 0.7909 0.6009 291108
Ocean 0.9305 0.6120 0.3196 0.0916 0.7618 0.5425 524853

CALIOP
All 0.8231 0.8213 0.1209 0.2538 0.8224 0.6444 815961

Land 0.7147 0.9051 0.0914 0.2936 0.7968 0.6199 291108
Ocean 0.8769 0.7661 0.1322 0.2196 0.8366 0.6430 524853

In order to infer the spatial distribution of the mean COFs, the matchup data were grouped into
latitude–longitude grid boxes of 2◦ × 2◦. The estimated mean COF distributions and the differences
are presented in Figure 1. The grey-scale brightness in the upper panel of the Figure 1 presents the
mean COF maps over the grid box for CPR, CALIOP, and SEVIRI. The values range from 0 (dark)
to 1 (white); the boxes with white “x” symbols with a black background in the figure show that no
data were collected in those areas. The coloured maps in the lower panel show the differences in
the mean COF among SEVIRI, CPR, and CALIOP. The red (blue) colour indicates that the SEVIRI
mean COF is larger (smaller). A high frequency of clouds occurred most often in the inter-tropical
convergence zone (ITCZ) and mid-latitude storm belts along with lower concentrations occurred in
subtropical deserts and oceanic subtropical highs. The COF distribution patterns for the CPR, CALIOP,
and SEVIRI products showed generally good agreement. However, CPR (CALIOP) had the lowest
(highest) frequencies over most areas. These trends were more distinct over the broad region near
the ITCZ. Again, the SEVIRI COFs were generally between those of CPR and CALIOP. It is clear
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that the CPR COFs were distributed less with much lower frequency than those of SEVIRI except for
the desert areas that are nearly cloudless over the year, such as Sahara and Kalahari in Africa, and
Syria and Arabia in the Middle East. In contrast with the CPR data, the CALIOP estimation of COFs
was significantly higher and showed relatively high frequency. This trend was particularly apparent
over the tropical convective areas of South America, Africa, and the Atlantic Ocean near the equator.
The COF of SEVIRI was relatively higher in the mid- and high-latitude regions, where the satellite
zenith angle of Meteosat-10 became larger. Except for some desert regions, positive values appear
to dominate the COF difference map between SEVIRI and CPR over all areas, particularly showing
larger positive bias on the South Atlantic Ocean, most oceans of the Northern Hemisphere, and over
Eastern Europe, which indicates that CPR detected fewer clouds than SEVIRI. The difference in the
COF between SEVIRI and CALIOP was smaller. CALIOP captured higher frequency in the tropical
region. In contrast, SEVIRI detected a slightly higher amount of clouds than CALIOP in mid- and
high-latitude regions.
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SEVIRI, CPR, and CALIOP, although some systematic differences were noted in the frequency 
values. As mentioned in relation to Figure 1, SEVIRI detected significantly more clouds than CPR 
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Figure 1. Cloud occurrence frequency maps for Cloud Profiling Radar (CPR), Cloud-Aerosol
LiDAR with Orthogonal Polarization (CALIOP), and Spinning Enhanced Visible and Infrared Imager
(SEVIRI; upper panels) and the difference maps of SEVIRI compared with CPR and CALIOP products
(lower panels) for a one year comparison period between May 2013 and April 2014. The brightness
and the colours represent averaged values over a 2◦ latitude × 2◦ longitude grid box.

In order to investigate the seasonal COF changes, COF distributions for a boreal summer month
(July 2013) and a boreal winter month (December 2013) are shown in Figure 2. We selected the
December data because of the lack of data for January and February. For these maps, all possible
observations were used from 11 to 31 July and from 1 to 31 December. In July, the cloud belt of
the ITCZ was located near 0◦–10◦N, and the cloud-free zones were distributed broadly within the
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north and south boundaries of the ITCZ related to the subtropical ridges. Very low COF regions
are shown through the Sahara Desert, the Mediterranean, and the Middle East, and over southern
Africa including Kalahari. Moreover, high COF zones occurred over the Eastern Atlantic over the
Sub-Tropical High. This COF pattern was more noticeable in SEVIRI data than those of CPR and
CALIOP. In December, the ITCZ moved to the south, and the contrast of cloudy and clear zones were
weakened. The COFs increased over southern Africa and South America, where they were very low in
summer. These seasonal COF changes were generally shown on all products from SEVIRI, CPR, and
CALIOP, although some systematic differences were noted in the frequency values. As mentioned in
relation to Figure 1, SEVIRI detected significantly more clouds than CPR over the ocean regardless
of the season, except for the constant cloud-free region. CALIOP estimated the cloudy region more
widely near the ITCZ, whereas SEVIRI showed a lower frequency in this area. This tendency was
more clearly observed over ocean than over land. In addition, SEVIRI caught more clouds where the
satellite zenith angle of Meteosat-10 became larger, which was more evident in the winter hemisphere
compared with the CPR COFs.Remote Sens. 2017, 9, 24 10 of 19 
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Figure 2. Cloud occurrence frequency maps for Cloud Profiling Radar (CPR), Cloud-Aerosol LiDAR 
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crosses indicate the CTHs from CPR and SEVIRI, respectively. CALIOP is highly sensitive to small 
ice cloud particles and optically thin clouds, and therefore detects higher CTHs. A broad 
distribution of thin cirrus clouds just below the tropopause is clearly shown in the CALIOP CTHs. 
The CPR CTHs are plotted along the top of the CPR reflectivity contour. SEVIRI retrieved similar but 
slightly lower CTHs than those from CPR for convective clouds, where the CPR reflectivity became 
strong. SEVIRI captured some portion of thin cirrus clouds detected by CALIOP. However, it also 
produced CTHs in the middle of the troposphere below very thin cirrus clouds because they did not 
sufficiently affect the SEVIRI radiances. 

Figure 2. Cloud occurrence frequency maps for Cloud Profiling Radar (CPR), Cloud-Aerosol LiDAR
with Orthogonal Polarization (CALIOP), and Spinning Enhanced Visible and Infrared Imager (SEVIRI).
The upper panel (a) is from 11 to 31 July 2013, and the lower panel (b) is from 1 to 31 December 2013.

3.2. Cloud-Top Height

By utilizing AVAC-S, it is possible to plot all of the CTHs within the matchup dataset in the same
figure, as demonstrated in the cross-section plot in Figure 3, which shows a section of CPR overpass
37,288 on 1 May 2013. CPR reflectivity is represented in the figure by coloured contours. The CALIOP
results are represented by CTH values in dark green triangles, and white and red crosses indicate the
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CTHs from CPR and SEVIRI, respectively. CALIOP is highly sensitive to small ice cloud particles and
optically thin clouds, and therefore detects higher CTHs. A broad distribution of thin cirrus clouds just
below the tropopause is clearly shown in the CALIOP CTHs. The CPR CTHs are plotted along the top
of the CPR reflectivity contour. SEVIRI retrieved similar but slightly lower CTHs than those from CPR
for convective clouds, where the CPR reflectivity became strong. SEVIRI captured some portion of thin
cirrus clouds detected by CALIOP. However, it also produced CTHs in the middle of the troposphere
below very thin cirrus clouds because they did not sufficiently affect the SEVIRI radiances.Remote Sens. 2017, 9, 24 11 of 19 

 

 
Figure 3. Colour-coded Cloud Profiling Radar (CPR)-derived radar reflectivity and cloud-top heights 
(CTHs) along CPR overpass 37,288 on 1 May 2013. CTHs from Cloud-Aerosol LiDAR with 
Orthogonal Polarization (CALIOP), CPR, and Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) are plotted as dark green triangles and white and red crosses, respectively. 

The CTH comparison among SEVIRI, CPR, and CALIOP was conducted by using the same 
matchup dataset as that was used in the COF analysis. In total, 329 CPR overpasses were selected. 
The spatial distribution of the matchup data is shown in Figure 4a. The data points are well 
distributed over the Meteosat-10 observation disk. Figures 4b and 4c show comparisons of SEVIRI 
CTHs with CPR and CALIOP, where the values were filtered by the spatial uniformity test and 
quality control threshold test using the CTH variance from SEVIRI algorithm for more rigorous 
analysis of the SEVIRI CTH product. In the case of the comparison with CPR, the total number of 
matchup data for which both CPR and SEVIRI had valid CTH values was 346,287. Applying the 
spatial uniformity filter, 217,895 (63%) data points were selected. After the CTH variance test, 
193,555 data points were finally selected. That is, approximately 44% of the collocated data were 
eliminated by this data filtering process for rigorous quality control. The use of these filters removes 
some cases with small clouds and/or multi-layer cloud scenes. However, if these filters were not 
used, then issues related to establishing meaningful collocations (i.e., only using data where both 
SEVIRI and A-Train sensors are directed to the same clouds) would mean that the comparison 
dataset was too noisy to be useable. 

On the scatter plot of CTH retrieved from the SEVIRI algorithm against CALIOP measurements 
(Figure 4c), a large scatter of data points is shown. SEVIRI produced lower CTHs around 1–2 km, 
although CALIOP retrieved them as mid- or high-level clouds. This occurred mainly because the 
data corresponding to thin cirrus clouds, as previously shown in Figure 3, can be regarded as 
different clouds effectively measured by SEVIRI and CALIOP in this case. The data count density 
showed larger scattering than with CPR, where the axis of major density departed from the complete 
one-to-one matching line towards the lower SEVIRI values. The distribution was slightly broader 
with a correlation coefficient of 0.78, a bias of −1.61 km (i.e., the lower SEVIRI CTH), and a standard 
deviation of 3.24 km from 220,199 data points. The bias appeared to be larger for higher clouds, 
whereas better coherence was shown for low clouds between the CALIOP and SEVIRI CTHs. 
Moreover, the scatter plot was relatively distinct between the CPR and SEVIRI CTH products with a 
correlation coefficient of 0.92, a bias of −0.20 km (SEVIRI low), and a standard deviation of 1.67 km. 
The frequency was less than for the CALIOP comparison, although low SEVIRI CTH outliers were 
still detected. The discontinuity of the SEVIRI CTH distribution occurred near 5 km in height, which 
resulted from the SEVIRI CTH algorithm that selectively used the MR or SL methods near 480 hPa. 
As shown in Figure 4, average CTHs derived from SEVIRI are closer to CPR measurements than to 
CALIOP measurements. Thus, further comparisons with CPR products were conducted. 

Figure 3. Colour-coded Cloud Profiling Radar (CPR)-derived radar reflectivity and cloud-top heights
(CTHs) along CPR overpass 37,288 on 1 May 2013. CTHs from Cloud-Aerosol LiDAR with Orthogonal
Polarization (CALIOP), CPR, and Spinning Enhanced Visible and Infrared Imager (SEVIRI) are plotted
as dark green triangles and white and red crosses, respectively.

The CTH comparison among SEVIRI, CPR, and CALIOP was conducted by using the same
matchup dataset as that was used in the COF analysis. In total, 329 CPR overpasses were selected.
The spatial distribution of the matchup data is shown in Figure 4a. The data points are well distributed
over the Meteosat-10 observation disk. Figure 4b,c show comparisons of SEVIRI CTHs with CPR and
CALIOP, where the values were filtered by the spatial uniformity test and quality control threshold test
using the CTH variance from SEVIRI algorithm for more rigorous analysis of the SEVIRI CTH product.
In the case of the comparison with CPR, the total number of matchup data for which both CPR and
SEVIRI had valid CTH values was 346,287. Applying the spatial uniformity filter, 217,895 (63%) data
points were selected. After the CTH variance test, 193,555 data points were finally selected. That is,
approximately 44% of the collocated data were eliminated by this data filtering process for rigorous
quality control. The use of these filters removes some cases with small clouds and/or multi-layer
cloud scenes. However, if these filters were not used, then issues related to establishing meaningful
collocations (i.e., only using data where both SEVIRI and A-Train sensors are directed to the same
clouds) would mean that the comparison dataset was too noisy to be useable.

On the scatter plot of CTH retrieved from the SEVIRI algorithm against CALIOP measurements
(Figure 4c), a large scatter of data points is shown. SEVIRI produced lower CTHs around 1–2 km,
although CALIOP retrieved them as mid- or high-level clouds. This occurred mainly because the data
corresponding to thin cirrus clouds, as previously shown in Figure 3, can be regarded as different
clouds effectively measured by SEVIRI and CALIOP in this case. The data count density showed larger
scattering than with CPR, where the axis of major density departed from the complete one-to-one
matching line towards the lower SEVIRI values. The distribution was slightly broader with a correlation
coefficient of 0.78, a bias of −1.61 km (i.e., the lower SEVIRI CTH), and a standard deviation of 3.24 km
from 220,199 data points. The bias appeared to be larger for higher clouds, whereas better coherence
was shown for low clouds between the CALIOP and SEVIRI CTHs. Moreover, the scatter plot was
relatively distinct between the CPR and SEVIRI CTH products with a correlation coefficient of 0.92,
a bias of −0.20 km (SEVIRI low), and a standard deviation of 1.67 km. The frequency was less than for
the CALIOP comparison, although low SEVIRI CTH outliers were still detected. The discontinuity
of the SEVIRI CTH distribution occurred near 5 km in height, which resulted from the SEVIRI CTH
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algorithm that selectively used the MR or SL methods near 480 hPa. As shown in Figure 4, average
CTHs derived from SEVIRI are closer to CPR measurements than to CALIOP measurements. Thus,
further comparisons with CPR products were conducted.Remote Sens. 2017, 9, 24 12 of 19 
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surface state, and radiative model approximations. Thus bias corrections are critical for the proper 
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sensitivity of the detector. They found that the CO2 channel had a significant sensitivity to ice 
contamination and showed larger bias. The UK Met Office has monitored the satellite observed 
radiances and adapted the monitoring results periodically for operational product retrievals and 
NWP applications. During the period analysed in this study, the SEVIRI CO2 channel bias correction 
increment (BC) was updated three times for SEVIRI CTH processing: on 10 July, 24 September, and 
15 November 2013. Figure 5 shows the time series of SEVIRI CTH validation scores compared with 
CPR CTHs. The uppermost dotted line represents the standard deviation; the solid line in the middle 
represents the correlation coefficient; and the dashed line at the bottom shows the bias. The number 
of data used for each validation is shown as a bar graph. Constant and good correlation scores of 0.9 
were noted during the validation period. However, the variation of bias score was outstanding 
along with the changes in CO2 BC value. Prior to the update in July, when the −1.15 K CO2 BC 
increment was used, SEVIRI CTHs had larger negative biases of approximately −0.5 km. The biases 
increased to positive values after the large BC change to 0.85 K in July. Note that the data on 10 July 
are the results from Meteosat-9 instead of Meteosat-10 because of its decontamination process. The 
CO2 BC change in September from 0.85 K to −0.15 K led to a decrease in the bias values down to 
about −0.25 km. Moreover, another change to −0.65 K in November enhanced the negative biases 
slightly larger, but to make correlation coefficient and standard deviation slightly better as 0.93 and 

Figure 4. (a) Geographical distribution of collocation dataset used in this study and scatter plots for
Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud-top height (CTH) with comparison
to (b) Cloud Profiling Radar (CPR) CTH and (c) Cloud-Aerosol LiDAR with Orthogonal Polarization
(CALIOP) CTH.

Observed and simulated clear sky radiances differ because of the cumulative effects of instrument
noise, spectral response function errors, inadequate knowledge of the atmospheric and surface state,
and radiative model approximations. Thus bias corrections are critical for the proper use of infrared
channels for cloud height estimation [23]. Hewison and Muller [24] reported ice contamination of
the SEVIRI sensor, which causes a change in the spectral response as well as the sensitivity of the
detector. They found that the CO2 channel had a significant sensitivity to ice contamination and
showed larger bias. The UK Met Office has monitored the satellite observed radiances and adapted
the monitoring results periodically for operational product retrievals and NWP applications. During
the period analysed in this study, the SEVIRI CO2 channel bias correction increment (BC) was updated
three times for SEVIRI CTH processing: on 10 July, 24 September, and 15 November 2013. Figure 5
shows the time series of SEVIRI CTH validation scores compared with CPR CTHs. The uppermost
dotted line represents the standard deviation; the solid line in the middle represents the correlation
coefficient; and the dashed line at the bottom shows the bias. The number of data used for each
validation is shown as a bar graph. Constant and good correlation scores of 0.9 were noted during the
validation period. However, the variation of bias score was outstanding along with the changes in CO2

BC value. Prior to the update in July, when the −1.15 K CO2 BC increment was used, SEVIRI CTHs
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had larger negative biases of approximately −0.5 km. The biases increased to positive values after the
large BC change to 0.85 K in July. Note that the data on 10 July are the results from Meteosat-9 instead
of Meteosat-10 because of its decontamination process. The CO2 BC change in September from 0.85 K
to −0.15 K led to a decrease in the bias values down to about −0.25 km. Moreover, another change to
−0.65 K in November enhanced the negative biases slightly larger, but to make correlation coefficient
and standard deviation slightly better as 0.93 and 1.61, respectively. Without the large variability of
biases and standard deviations shown in January and February, when small numbers of data were
collected, SEVIRI produced CTHs with more stable bias compared to CPR CTHs. The variation of the
standard deviation score is not apparent relative to the CO2 BC changes, although it fluctuated slightly
more between September and November.
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Figure 5. Time series of the daily validation scores of standard deviation (STD; dotted line), correlation
coefficient (solid line), and bias (dashed line) from May 2013 to April 2014. The number of validation
data (grey bar) from the cloud-top height (CTH) comparison between the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) and Cloud Profiling Radar (CPR) products is also shown. Black x marks
on the x-axis indicate the dates the bias correction was updated.

To investigate the effect of CO2 BC updates on CTH retrieval, the CTH results derived from
SEVIRI applying the previous and the updated BC values are shown in Figure 6. Figure 6 shows
a section of CPR overpass 39,413, when CO2 BC increment was updated from 0.85 K to −0.15 K on
24 September 2013. The cross-section plots are the same types as those in Figure 3, although the
figures in the left-hand (right-hand) panel represent the results prior to (following) the BC update.
The CPR reflectivity and the CTHs from CALIOP and CPR are the same in both panels, and the SEVIRI
CTHs (red crosses) changed as expected. In Figure 6, it is clear that the SEVIRI CTHs became lower
owing to the decrease in the CO2 BC value by 1 K, from 0.85 K to −0.15 K. The heights of low clouds
that might be determined by the SL method showed no apparent change, although those for the
middle and high clouds, which are generally assigned by the MR method, decreased. The decrease in
the mid-level SEVIRI CTHs is remarkable, and it is evident that the BC update led to better results.
The problematic mid-level clouds appear to have disappeared after this update. This shows BC
change can affect the choice of method between MR and SL in the CTH algorithm. However,
the underestimation of CTHs over the deep convective clouds became slightly larger compared
to CPR CTHs. Figure 7 shows the scatter plots of CTH from SEVIRI against CPR for each CO2 channel
BC value. The CTH changes with BC values are clear in these plots as well. Prior to the BC change,
the distribution of CTHs showed more data points on the lower right-hand side of the one-to-one line
in which SEVIRI CTHs showed a slightly large negative bias of −0.45 km (Figure 7a). A large increase
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in the SEVIRI CTHs is shown in Figure 7b, which resulted in a positive bias of 0.22 km with apparent
discontinuity at about 5 km in height. The next two changes resolved these issues, making the SEVIRI
CTHs more reliable. The correlation coefficients and the standard deviations did not significantly vary
from the BC update. Since the BC increment was updated to −0.65 K in November 2013, SEVIRI has
produced more stable values compared to the CPR CTHs, with a correlation coefficient of 0.93, bias of
−0.27 km, and standard deviation of 1.61 km. Thus, it is evident that the CO2 BC increment is critical
and needs to be carefully selected in the SEVIRI CTH algorithm.Remote Sens. 2017, 9, 24 14 of 19 

 

 
Figure 6. Comparison of Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud-top heights 
(CTHs) derived by using different CO2 bias correction increment (BC) values. The left-panels show 
the results derived by using the CO2 BC values prior to the update, and the right-hand panel shows 
the CTH derived afterward for CPR (Cloud Profiling Radar) overpass 39,413 on 24 September 2013. 
CTHs from Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP), CPR, and SEVIRI are 
plotted as dark green triangles and white and red crosses, respectively. 

(a) (b) 

Figure 6. Comparison of Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud-top heights
(CTHs) derived by using different CO2 bias correction increment (BC) values. The left-panels show
the results derived by using the CO2 BC values prior to the update, and the right-hand panel shows
the CTH derived afterward for CPR (Cloud Profiling Radar) overpass 39,413 on 24 September 2013.
CTHs from Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP), CPR, and SEVIRI are
plotted as dark green triangles and white and red crosses, respectively.
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Figure 7. Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud-top height (CTH) scatter
plots compared with Cloud Profiling Radar (CPR) CTH for each period used a different CO2 bias
correction increment. The periods and CO2 increment values are (a) 1 May–26 June 2013, CO2 BC:
−1.15 K; (b) 17 July–18 September 2013, CO2 BC: 0.85 K; (c) 25 September–13 November 2013, CO2 BC:
−0.15 K; and (d) 20 November 2013–30 April 2014, CO2 BC: −0.65 K.

4. Discussion

4.1. Cloud Occurrence Frequency

The COF distributions analysed here show consistency with previous studies. For example,
Hartmann et al. [25] used one year of International Satellite Cloud Climatology Project (ISCCP) data
from March 1985 to February 1986 and analysed the cloud types categorised by cloud-top pressures
into high, middle, and low clouds using intermediate boundaries of 440 hPa and 680 hPa, and by cloud
optical thickness into optically thin and thick clouds using 9.38 as a reference. They reported that
high-cloud types occurred preferentially where convection occurred in the tropics and in mid-latitude
storm tracks. In addition, they found that low clouds were predominant over ocean and were most
abundant in the subtropical eastern oceans, where the sea surface temperature is comparatively low
and the mean air motion is downward. Total cloud cover was the greatest over high-latitude oceans,
where stratus regimes are dominant, and in regions of intense tropical convection. They also showed
that thin, high-level cloud frequency features decreased in summer relative to winter over the Atlantic
Ocean, Africa, and Europe for the Meteosat-10 observation area [25] (Figures 2 and 3). Wang et al. [26]
investigated the spatial and temporal variability of sub-visual clouds (SVC) and opaque clouds by
using Stratospheric Aerosol and Gas Experiment (SAGE) II data from 1985–1990. They found that
the latitudinal movements of the tropical maxima are in concert with the seasonal shift of the ITCZ.
Cloud occurrence in the subtropical regions has a distinct seasonal variation, with maximum frequency
in local summer and minimum during local winter. However, for the Meteosat-10 observation area,
a slight decrease of SVC occurrence was found [26] (Plate 2). Similar cloud spatial variability was
reported in sequential papers of Wylie [27–29]. Three COF cloud products investigated in this study
showed similar spatial distribution and variability to the previous studies, although some systematic
differences were noted in COF values. The difference shown in the statistical scores can be attributed
to the different characteristics and sensitivity of the sensors. CALIOP is more sensitive to the small
ice particles in clouds because it uses beams at a shorter wavelength of 532 nm. Thus, it senses thin,
high-level cloud much better than the other sensors. On the contrary, CPR, which uses a microwave
wavelength of 3.2 mm (94 GHz), is effective in detecting rain droplet-size cloud water particles. It is
essentially insensitive to very thin cirrus clouds, which have small sizes and low concentrations of
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ice crystals, because the radar backscatter in the cirrus volume is insufficient for generating a return
signal that rises above the CPR detection threshold. CPR is also relatively ineffective for detecting
clouds in the lowest kilometre of the atmosphere owing to radar contamination from ground clutter.
As indicated by the different characteristics of various sensors, SEVIRI detects clouds over a wider
area than CPR, and it shows lower COFs than CALIOP near the ITCZ and mid-latitudes, where thin,
high clouds containing small ice particles are dominant. The COF difference between the SEVIRI and
the CALIOP products decreases in summer, particularly for thin, high-level clouds of the Meteosat-10
area, as shown in previous studies. In this study, we found that the UK Met Office SEVIRI algorithm
detects clouds very strictly over the ocean surface with mean COF of 64.32%, which is even larger than
CALIOP products (63.65%). Over estimation of SEVIRI COF is dominant over the high-latitude oceans,
where the satellite zenith angle of Meteosat-10 became larger. On the contrary, SEVIRI algorithm has
a relative weakness in detecting clouds over the land surface with the COF bias of −12.14% compared
to CALIOP products. From passive infrared measurements, the cloud detection of low level clouds
over land is challenging for the following reasons: first, the thermal contrast between them and
the surface is small. Second, surface type, emissivity and temperature in the satellite field of view
are complex and inhomogeneous, which is normally neglected in the cloud detection algorithm.
Thus, further investigation is required for cloud detection over land.

4.2. Cloud-Top Height

The CTH comparison results in this study are in line with those from previous research.
Weisz et al. [30] compared AIRS and MODIS CTH retrievals with CALIOP and CPR products using
the data on 22 July 2006 when the scenes include various cloud types. They found the CTH retrieved
from AIRS and MODIS agree well in general, and these retrievals are closer to the values obtained
by CPR than the ones obtained by CALIOP. They also noted that the ability to retrieve CTH of
optically thin cirrus clouds and very low clouds is limited due to the nature of infrared measurements.
Holz et al. [31] investigated the difference between MODIS and CALIOP CTH for the months of
August 2006 and February 2007. They found that the MODIS CTH was 2.6 ± 3.9 km lower than
the CALIOP products. The mean differences were larger than 4 km for optically thin high clouds.
The large CTH differences were observed mainly for high thin cirrus clouds in the equatorial region.
They noted that CTH bias depended on the CALIOP product resolution used in the comparison.
The 5-km CALIOP averaged product (same resolution as we used in this study) is more sensitive
to optically thin clouds than the 1-km product because the signal-to-noise ratio increases through
horizontal averaging of CALIOP LiDAR shots. Hence, the higher clouds are detected in the 5-km
CALIOP product and the CTH difference to the data from infrared passive sensor becomes larger.
Hamann et al. [3] compared ten SEVIRI CTH data sets retrieved from Meteosat-9 satellite observations
from ten retrieval algorithms of different institutes in Europe and the USA and validated them with
products from CALIOP and CPR by using the five golden day datasets in 2008. In their research,
the correlations of the SEVIRI datasets with CALIOP and CPR measurements were between 0.77 and
0.90, and the mean SEVIRI CTHs were 1.1 to 2.5 km lower than the CALIOP measurement, as CALIOP
is more sensitive to optically thin clouds. The differences between the SEVIRI and the CPR CTHs
ranged from −0.8 to 0.6 km. They also validated CTH retrievals for three different cloud regimes:
optically thick and thin single layer clouds and multi-layer clouds. They found that the correlation
coefficients were generally above 0.95 and the biases were on the order of a few hundred metres,
but the retrieval uncertainties for optically thin clouds and multi-layer clouds became greater.

In this study, we investigated the CTH accuracy derived from SEVIRI measurements on board
Meteosat-10 in the UK Met Office for a longer time period (one year). We found that the SEVIRI
CTH products showed similar characteristics to the products from CALIOP and CPR measurements.
The overall statistics showed a bias of −1.61 km and a standard deviation of 3.24 km compared
to CALIOP CTH, and a bias of −0.20 km and a standard deviation of 1.67 km compared to
CPR products. The difference of these statistics from those in Hamann [3]’s study is within the
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acceptable limits considering the difference in the study period, satellites (Meteosat-9 and Meteosat-10),
and the filters used. The visual inspection of comparison plots for many different times and locations
suggests that the bias tends to be larger for optically thin clouds and multi-layer clouds than for
well-defined single-layer clouds. The reason is that the UK Met Office SEVIRI algorithm assumes
a single layer cloud when retrieving CTH similar to many other CTH algorithms for passive infrared
measurements. To improve the CTH retrieval for these cloud situations, further research is needed in
multi-layer approaches suggested by Pavolonis and Heidinger [32], Minnis et al. [33], and recently by
Watts et al. [34] for SEVIRI retrievals. In this study, we also found that CTH derived from SEVIRI
measurements depended on the CO2 channel bias correction increment used in the algorithm.
Therefore, careful treatment of the bias correction values is required.

5. Summary and Conclusions

This study investigated the characteristics of the UK Met Office SEVIRI products of COF and
CTH conducting an inter-comparison of the cloud products from the CPR and the CALIOP on board
the A-Train constellation. The evaluation was made on the basis of 329 CPR overpasses allowing
for approximately 800,000 individual matchups among the CPR, CALIOP, and SEVIRI products for
one year from May 2013 to April 2014. Due to the CPR data availability, only daytime products
were compared in this study. The COFs showed good agreement in terms of spatial distribution and
temporal variability despite systematic biases, which are expected due to the differences in observation
and instrument characteristics of the three sensors. The distribution and variability of the SEVIRI
COFs were also consistent with previous studies. CALIOP detected clouds most sensitively and
widely, followed by SEVIRI, with a mean frequency difference of −3.90% in COF. The CPR showed less
sensitivity with a COF 14.35% lower than that for SEVIRI. Particularly over the tropics, it is outstanding
that the CALIOP COFs showed high frequency and were distributed over the large area near the
ITCZ. This can be attributed to CALIOP’s high sensitivity to clouds with small ice particles and low
optical thickness, which are not enough to be sensed by other sensors. The seasonal variability of the
three products showed a similar pattern of decline in summer and an increase in winter. These results
suggest that SEVIRI COFs are reliable. However, SEVIRI detected clouds more strictly over oceans
(with 64.32% of SEVIRI COF which is 17.28% and 0.67% higher than those from CPR and CALIOP
products, respectively) with relatively less effectiveness over the land surface (44.74% of SEVIRI COF
with 9.07% and −12.14% biases against CPR and CALIOP COFs, respectively), where accurate cloud
retrievals from passive infrared measurement are challenging.

This study also investigated the CTH retrievals by the UK Met Office SEVIRI algorithm compared
to CALIOP and CPR products. Differences among the products in the CTH analysis were also noted.
The high sensitivity to thin, high clouds of CALIOP was apparent, which generated a larger scatter
in the plots of CTH retrieved by the SEVIRI algorithm against CALIOP measurements. The majority
of the scatter points were on the lower right-hand side of the one-to-one line, meaning that the CTH
retrieved by the SEVIRI algorithm was lower than the CALIOP CTH. Some points were retrieved
by SEVIRI as lower clouds with around 1–2 km CTH while CALIOP retrieved them as mid- or
high-level clouds. The mean SEVIRI CTHs were 1.61 km lower than CALIOP measurements with
a correlation coefficient of 0.78. The average CTHs derived from SEVIRI were closer to CPR products
with a correlation coefficient of 0.92 and a bias of −0.20 km. Thus, further analysis was conducted with
the CPR products. Considering that the CO2 channel BC used in the SEVIRI CTH retrieval algorithm
was updated periodically through radiance monitoring, the effect of these BC changes was analysed.
The results showed that the SEVIRI CTHs derived by the MR method were highly sensitive to CO2

BC values. The correlation and STD did not change much, but the retrieved CTH changed noticeably
with CO2 BC updates with the bias ranging from −0.7 to 0.5 km. The first update of CO2 BC value
from −1.15 K to 0.85 K led to an increase in CTH values up to about 0.67 km in mean CTH values.
Since the BC update in November 2013, SEVIRI has produced more stable CTHs compared with the
CPR CTHs, with a correlation coefficient of 0.93, bias of −0.27 km, and standard deviation of 1.61 km.
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This study found that the bias correction values need to be carefully monitored and selected when the
CTH algorithm is applied with simulated and observed radiance comparison.
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