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Abstract: The assessment of the soil redistribution and real long-term soil degradation due to erosion
on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging
spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our
study, we bring an approach for assessment of soil degradation by erosion by means of determining
soil erosion classes representing soils differently influenced by erosion impact. The adopted methods
include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface
properties using aerial hyperspectral data and the digital elevation model and fuzzy classification.
Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random
forest and Artificial neural network) were applied in the predictive modelling of soil properties.
The properties with satisfying performance (R2 > 0.5) were used as input data in erosion classes
determination by fuzzy C-means classification method. The study was performed at four study
sites about 1 km2 large representing the most extensive soil units of the agricultural land in the
Czech Republic (Chernozems and Luvisols on loess and Cambisols and Stagnosols on crystalline
rocks). The influence of site-specific conditions on prediction of soil properties and classification of
erosion classes was assessed. The prediction accuracy (R2) of the best performing models predicting
the soil properties varies in range 0.8–0.91 for soil organic carbon content, 0.21–0.67 for sand content,
0.4–0.92 for silt content, 0.38–0.89 for clay content, 0.73–089 for Feox, 0.59–0.78 for Fed and 0.82 for
CaCO3. The performance and suitability of different properties for erosion classes’ classification are
highly variable at the study sites. Soil organic carbon was the most frequently used as the erosion
classes’ predictor, while the textural classes showed lower applicability. The presented approach
was successfully applied in Chernozem and Luvisol loess regions where the erosion classes were
assessed with a good overall accuracy (82% and 67%, respectively). The model performance in two
Cambisol/Stagnosol regions was rather poor (51%–52%). The results showed that the presented
method can be directly and with a good performance applied in pedologically and geologically
homogeneous areas. The sites with heterogeneous structure of the soil cover and parent material will
require more precise local-fitted models and use of further auxiliary information such as terrain or
geological data. The future application of presented approach at a regional scale promises to produce
valuable data on actual soil degradation by erosion usable for soil conservation policy purposes.
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1. Introduction

Soil erosion is one of the most significant and widespread forms of soil degradation in Europe [1].
In the Czech Republic, soil erosion of different types (water, wind, and tillage) is identified as the most
severe type of soil degradation [2], which significantly affects soil functions, production of agricultural
crops and the quality of water resources. The degradation risk by erosion is currently relatively well
known at both local and regional scale due to evaluation using erosion models [3]. According to these
calculations, nearly 50% of arable land in the Czech Republic is endangered by water erosion and
about 10% by wind erosion [4]. Nevertheless, the widely applied erosion models (mostly based on
USLE/RUSLE models) only provide the estimation of potential erosion. The calculation of the actual
soil losses due to soil erosion and estimation of real long-term soil degradation are still insufficiently
developed in spite of being essential for policy and management purposes [5,6].

Currently, the assessment of soil degradation by erosion is solved mainly at a local scale using
different methods, e.g., direct field monitoring, observations and measurements obtained from
distributed point datasets (identification of erosion features and soil profile truncation, assessment
of Caesium-137, risk elements and other relevant soil properties) [7–11]. At a regional or global
scale, information on the level of soil degradation by erosion is often based on expert knowledge
approach consisting in the extrapolation of acquired local data using ancillary data. This is due to
the lack of reliable methods, since detailed soil mapping is not financially feasible and it is extremely
difficult particularly at this scale [12]. Nevertheless, estimates based on the physical evidence are much
required [5,13].

Application of remote sensing represents a possible solution in the assessment of soil degradation
by erosion at a regional and global scale. The main advantage of remote sensing methods consists in
the possibility of rapid data acquirement from large areas in a detailed spatial resolution. However,
its potential has not been fulfilled and there are still many theoretical and technical gaps and
unanswered questions [13,14]. Continual progress in measurement techniques, image processing
algorithms, development of computation models, new sensors and new satellite missions have brought
new data and methods. Use of hyperspectral data in the erosion assessment represents a promising
method, particularly in the context of the expectations forthcoming spaceborne hyperspectral
sensors with high signal-to-noise ratio (SNR) and pixel size from one to several tens of metre,
such as German Environmental Mapping and Analysis Program (EnMAP), Italian Hyperspectral
Precursor of the Application Mission (PRISMA), NASA’s Hyperspectral Infra-Red Imager (HyspIRI),
Japanese Hyperspectral Imager Suite (HISUI), French HypXIM, israel-italian Spaceborne Hyperspectral
Applicative Land and Ocean Mission (SHALOM) [15] or Chinese TianGong-1 [16].

Land degradation by soil erosion can be assessed directly using different remote sensing
methods [14,17,18]: (i) spatial delineation of degraded land and erosion features (rills, gullies, and
sediment depositions) using visual interpretation of aerial images [19], computer pre-processing [20–22] or
automatic classification methods [23–25]; (ii) soil loss measurement methods based on digital elevation
models (DEM) comparison (laser altimetry or radar interferometry); and (iii) assessment of soil
degradation stages and monitoring of soils affected by soil erosion and their properties. These methods
are based on classification techniques or use different mathematical and statistical procedures to
assess the correlation between erosion signs and their spectral reflectance [15,26,27]. Soil erosion and
accumulation affect chemical and physical properties of upper layer of soils; thus, spectral reflectance
is changed and eroded soils have different spectral response from non-eroded “healthy” soils [28–34].

Soil properties with direct relation to the spectral signature and with the best prediction
performance on one hand and a high variability due to erosion-accumulation processes on the other
hand include soil organic carbon (SOC) concentration, particle size distribution (particularly clay
content), CaCO3 concentration, Fe and Al oxides ratio and water content [15,35–40]. Other soil
properties used for determination of erosion-affected areas are soil colour, pH, structure or coarse
fragments content [41–45].
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Imaging spectroscopy or generally analysis of soil spectral characteristics has a great potential
for soil erosion assessment [36,46], as the hyperspectral data, thanks to their high spectral resolution,
allows for more efficient quantification of spectral features in comparison with, e.g., multispectral
data. Thus far, only few studies have employed this method in soil erosion assessment [47–49],
a majority of them in semi-arid conditions [30,33,45,50–52]. Several studies dealt with the monitoring
of specific soil properties related to soil erosion, such as development of soil crust [50] or changes in
soil moisture [47,48]. Hyperspectral data have scarcely been used for distinguishing soils influenced
by soil erosion. Hill et al. [51,52] used linear spectral mixture analysis and k-means clustering for
classification of erosion stages based on skeleton content determination. Schmid et al. [33] distinguished
erosion classes using support vector machine classification method and development of image-derived
endmembers for each erosion class. Lin and Zhou [31,45] have analysed a spectral response of different
eroded soils in subtropical China. They have compared a direct identification of erosion stages
by analysing laboratory hyperspectral data and an indirect identification using prediction of soil
properties; the latter performed better due to mixing and crossover effect among erosion groups.

However, there are still many limitations in the use of the image hyperspectral data for soil
erosion assessment. On one hand, there are restraints connected to data collecting, such as atmospheric
attenuation, signal-to-noise ratio, image resolution and, above all, the Bidirectional Reflectance
Distribution Function (BRDF) effect [36]. On the other hand, the limitations are often caused by
surface characteristics making the direct soil assessment impossible or difficult (soil covered with
vegetation, litter, dust or soil crust). Moreover, the spectral information is considerably influenced by
soil properties (soil moisture, soil roughness, soil texture or size of soil aggregates) and heterogeneity
of environmental settings. This is valid mainly in an erosion relief, where the combination of soil loss
and redeposition may lead to similar soil surface properties in eroded and accumulated soils [52,53].
A successful application of hyperspectral data then requires a very thorough planning of flight
campaigns, precise image corrections and a sufficient amount of reference soil data. In temperate
climate, a multi-temporal approach must be considered when assessing larger areas, as in each period
some of the soils are covered with vegetation.

In spite of the progress in knowledge and algorithms (especially in terms of atmospheric
correction), more studies are needed for refinement of this method and widening its application.

The aim of this study is to analyse the possibilities of imaging spectroscopy using aerial
hyperspectral data for the assessment of soil degradation by erosion on arable land in temperate
agriculture regions with different dominant soil unit. The specific objectives of this work were to:
(1) quantify the prediction performance of selected soil surface properties derived from hyperspectral
data in context of various soil environment, spectral pre-processing methods and regression methods;
and (2) determine erosion classes that represent soils differently impacted by soil redistribution by
applying the predicted soil surface properties as site-specific indicators and input data in classification
models of erosion classes distinguishing.

2. Materials and Methods

2.1. Regional Settings

Four study sites representing the most extensive soil units of agricultural land in the
Czech Republic were chosen. Soil regions are represented by Chernozems and Luvisols on loess
and Cambisols and Stagnosols on crystalline and sedimentary rocks. Locations of the study sites are
depicted in Figure 1. Sites are similar in terms of terrain characteristics (dissected relief including
a set of following terrain units: side valley, toe-slope, plateau and back-slope), land management
(long-term tillage, no conservation practices, plough depth 25 cm, 5–6 course rotation based on the
Norfolk system) and climatic conditions (rain erosivity). All study sites are located within regions
with high rates of both potential and actual degradation by erosion according to Maps of long-term
average annual soil loss by water erosion [3] and database of Monitoring of soil erosion on agricultural
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land [8]. The types of erosion influencing the soil redistribution include mainly sheet and rill erosion
and tillage erosion. Wind erosion is presumed to have a minor impact at the Chernozem site (Šardice).
Environmental settings and details of each locality are given in Table 1.
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Table 1. Study sites and their characteristics.

Site Area 1 Dominant Soil Unit
(WRB 2014) Bedrock/Parent Material MA 2 MAP 3 MAT 4 R 5 Soil Loss 6

Přestavlky 0.73
Haplic Stagnosol,
Haplic and Stagnic
Cambisol, Leptosol

Complex of Proterozoic
and Paleozoic rocks
(schist, granodiorite)

403 650 7–8 46 10 (0–106)

Šardice 1.45 Calcic Chernozem Pleistocene loess 218 550 9–10 49 29 (0–370)

Nová Ves 1.17 Haplic Cambisol Permian-Carboniferous
rocks (sandstone, siltstone) 471 750 6–7 54 8 (0–89)

Jičín 1.34 Luvisols, Albic Luvisols,
Luvic Chernozems Pleistocene loess 298 650 7–8 47 11 (0–185)

1 Area in km2; 2 mean altitude in m.a.s.l.; 3 mean annual precipitation in mm; 4 mean annual temperature in ◦C;
5 factor of rainfall erosivity in MJ·ha−1·cm·h−1; 6 average annual soil loss by USLE in t·ha−1·year−1 (mean
and range).

2.2. Flight Campaign (Imaging Spectroscopy) and Image Pre-Processing

Four image scenes were acquired during four flight campaigns from the VNIR (visible and
near-infrared) sensor—Compact Airborne Spectrographic Imager (CASI1500; 370–1040 nm) and SWIR
(short-wavelength infrared) sensor—Shortwave infrared Airborne Spectrographic Imager (SASI600;
960–2440 nm). Both sensors are developed by Itres Ltd. (Calgary, AB, Canada). The sensors are
pushbroom sensors with a Field Of View of 40◦. Sensors acquired data in 72 spectral bands in the
VNIR with a full width at half maximum (FWHM) of 10 nm (CASI) and 100 bands in the SWIR with
FWHM ≈ 15 nm (SASI). Sensors were mounted on Cessna 208B Grand Caravan aircraft. The flight
campaigns took place during dry conditions (minimum of five days after last rain), and study fields
were prepared for seeding—ploughed and harrowed without vegetation or litter. Details of individual
flight campaigns are given in Table 2.
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Table 2. Details of individual aerial hyperspectral campaigns.

Site ToA 1 SZ 2 SA 3 FA 4 Atmospheric Condition N. of Strips HF 5 SR 6

Přestavlky 7 May 2015 10:23 45◦ 131◦ 218◦ Slightly cloudy (cumulus)
visibility 40 km 1 ∼2060 1, 2

Šardice 21 September 2015 10:52 54◦ 144◦ 143◦ Slightly cloudy (cumulus)
visibility 40 km 1 ∼2575 1.2, 3.1

Nová Ves 22 April 2016 11:45 49◦ 153◦ 185◦ Slightly cloudy (cumulus),
visibility 30 km

2 ∼2266 1, 2.7

Jičín 22 April 2016 11:15 47◦ 142◦ 159◦ 3 ∼2266 1, 2.7
1 date and time of acquisition (local time); 2 solar zenith; 3 solar azimuth; 4 flight azimuth; 5 height of flight in m
above ground; 6 spatial resolution in m (CASI, SASI).

Data acquisition and pre-processing (geometrical and atmospheric corrections) were realized by
the Flying Laboratory of Imaging Systems (FLIS) [54,55] operated by Global Change Research Institute
CAS (Brno, Czech Republic). The radiometric correction was performed using the RadCorr Ver. 9.2.6.0
(Itres Ltd.) and by means of calibration parameters obtained in laboratory. Data output was given in
radiometric units (µW·cm−2·sr−1·nm−1). Atmospheric correction was applied to remove the effect of
atmospheric influences and convert radiance values into at-surface reflectance. MODTRAN radiative
transfer model incorporated into the program ATCOR-4 ver. 7.0 was used for this purpose. Algorithm
BREFCOR was used for BRDF effect reduction. The geometric correction and geo-referencing of images
was performed using the Geocor tool (Itres Ltd.), based on data recorded by the on-board GPS/IMU
sensors and digital elevation model. Image data were resampled by nearest neighbour method and
transformed into the UTM map projection.

Image data were masked by bare soil mask (by means of knowledge of study sites and NDVI
computing) and resampled to 6-metre spatial resolution (due to random noise reduction in data and
corresponding to the size of sampling plots) before processing. Spectral bands highly influenced by
the absorption in the atmosphere and bands on the edge of spectra influenced by noise were removed
from the dataset. The data finally include 49 bands for CASI (400–750 and 770–880 nm) and 53 bands
for SASI (1000–1080, 1200–1300, 1490–1770, 2060–2370 nm). Spectral data extraction from data cubes,
as well as other data manipulation, was done using the R software [56].

2.3. Data Collection and Soil Analysis

Soil sampling was carried out during four field campaigns following each flight campaign.
Fifty samples were taken from each site in an optimized network of borings fashioned using cLHS
(conditioned Latin hypercube sampling [57]) stratified random strategy. Terrain attributes and spectral
data obtained within hyperspectral campaign were used as feature space variables. This approach
ensures the cover of maximal variation of each variable. Exact position of sampling sites was measured
by GPS Trimble GeoXM receiver, with a post-processing accuracy of approximately 1m. Soil unit,
profile stratigraphy, soil depth, and thickness of horizons were determined by description of gouge
auger core. The composite soil samples for analysis of SOC, texture classes, CaCO3 and Fe oxides
content were taken from each site at 0–10 cm depth.

The soil samples were air-dried, ground and sieved using 2 mm sieve (ISO 11464: 2006). The basic
chemical and physical soil properties were obtained using standard laboratory procedures. Soil particle
size distribution (5 fractions: less than 0.002; 0.002–0.01; 0.01–0.05; 0.05–0.25; 0.25–2 mm) was obtained
by the pipette method (ISO 11277:2009). SOC was determined as total oxidized carbon and measured
using wet oxidation (ISO, 14235:1998). CaCO3 content was determined volumetrically after soil reaction
with HCl (ISO 10693, 1995). the amount of oxalate extractable Fe (Feox) by acid ammonium oxalate
extraction [58] and dithionite extractable Fe (Fed) was extracted by citrate-bicarbonate-dithionite
extraction [59].
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2.4. Statistical Analysis of Soil Properties

Different multivariate regression methods were used to establish relationships between image
spectral data and soil properties. Different pre-treatment and regression methods were tested. Selected
soil properties data were used in regression models as response variables, and spectral reflectance data
(transformed spectra) as predictors. Terrain derivatives were used for A horizon thickness establishing.
The best resulting regression models were then applied on all the image data with the aim of predict
spatial variability of particular soil surface properties and create maps. All spectroscopic and statistical
analyses were implemented in R environment [56].

2.4.1. Pre-Processing

Before performing statistical analyses, mathematical pre-treatments were applied to adjust raw
reflectance spectra. These transformations were performed to improve the prediction accuracy by noise
reduction and mitigation of influence of environment and sensing properties. Continuum removal
(CR), Savitzky-Golay filter (third order polynomial smoothing and 5 bands window widths) with first
(SG 1st) and second derivatives (SG 2nd) [60] and standard normal variate transformation (SNV) were
applied. Reflectance was transformed into absorbance (log (1/R) as well. Transformation of CASI and
SASI spectra were carried out separately as spectra was not acquired with same bandwidth. Bands on
the edge of spectra affected by pre-treatment due to moving window averaging were removed from
final dataset. R package Prospectr [61] was used for spectra pretreatment.

2.4.2. Calibration and Validation

The dataset was divided into training set used for fitting models and validation set used for
assessing the prediction accuracy of each model. Dividing in a 3:1 ratio was performed by random
stratified sampling. The procedure of prediction modelling was carried out using caret package [62] of
the R software. In the first step, the training set was used for fitting the model. Model performance
was assessed through 5-fold cross-validation of the training set. Random search method generated
by caret package, providing the automatic search of parameter values, was used for selecting the
best parameters of models. Single model with yielding smallest root mean squared error of cross
validation (RMSECV) value was selected for subsequent validation on the validation set. The final
prediction accuracy was assessed with root mean squared error of prediction (RMSEP) and coefficient
of determination (R2). The ratio of standard deviation to standard error of prediction (RPD) was also
calculated alternatively to R2. Goodness of fit was visually inspected through a plot depicting the
observed values against the predicted values.

2.4.3. Multivariate Techniques

Different multivariate techniques successfully used in soil imaging spectroscopy were selected
for testing their ability of soil properties prediction. The tested methods included Partial Least
Square Regression (PLSR) [63], Support Vector Machine Regression (SVMR) [64–66] (using different
kernel functions—linear, polynomic and radial), random forest (RF) [67] and artificial neural
network (ANN) [68]. More information can be found in Heung et al. [69], Vasques et al. [70] or
Gholizadeh et al. [27].

2.5. Assessment of Soil Erosion Classes

Assessment of the different erosion classes on the study sites was performed in several steps:
(1) definition of groups of site-specific erosion classes based on soil data from field campaigns;
(2) assessment of soil properties for distinguishing erosion classes; (3) classification of spatial data into
erosion classes; and (4) validation of results based on comparison with point soil data. Flowchart of
the whole process is depicted in Figure 2.
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2.5.1. Definition of Groups of Site-Specific Erosion Classes

Soil samples data were classified into groups based on description of soil profiles (soil profile
stratigraphy, soil depth or A horizon thickness), field observation (evidence of erosion such as ploughed
subsoil, increase in skeleton content) and expert knowledge of soil erosion evidences in different
pedological conditions on study sites. Setting of defining parameters of each class is site-specific
depending on soil type and parent material. The quantitative setting of each erosion stage at individual
study sites was based on previously performed regional studies [71,72]. Four groups (erosion classes
of soils) were established at each study site (see Table 3):

Non-eroded soils (NE)—unchanged autochthon soils with no or negligible evidence of material
removal or accumulation;

Eroded soils with various stage of degradation—moderately eroded (ME) and strongly eroded
(SE) soils—soil profiles with evidence of material removal and soil profile truncation; and

Accumulated soils (AC) formed by material re-deposition in concave parts of relief—soil profiles
with evidences of accumulation of new material manifested by increased thickness of A horizon or
burial of former surface horizons.

Table 3. Erosion classes distinguished at each site according to soil profile stratigraphy and thickness
of A horizon.

Site EC 1 Profile Stratigraphy SD 2 AHT 3 WRB 4

Přestavlky

AC Ap-A-Bw(g)-C >40
Haplic Cambisol (Colluvic),
Stagnic Cambisol (Colluvic),
Haplic Stagnosol (Colluvic)

NE A-Bw(g)-(B/C)-C >50 Haplic Cambisol, Stagnic
Cambisol, Haplic Stagnosol

ME Ap-Bw(g)-B/C-C 35–50 Haplic Cambisol, Stagnic
Cambisol, Haplic Stagnosol

SE Ap-(B/C)-C <35 Skeletic Cambisol,
Cambic Leptosol



Remote Sens. 2017, 9, 28 8 of 24

Table 3. Cont.

Site EC 1 Profile Stratigraphy SD 2 AHT 3 WRB 4

Šardice

AC Ap-A-A/C-Ck >80 Calcic Chernozem (Colluvic),
Calcic Kastanozem (Colluvic)

NE Ap-A-A/C-Ck 50–80 Calcic Chernozem

ME Ap-A/C-Ck 30–50 Calcic Chernozem,
Calcic Kastanozem

SE Ap-Ck <30 Haplic Calcisol,
Calcic Kastanozem

Nová Ves

AC Ap-A-Bw-C >40 Haplic Cambisol (Colluvic)

NE Ap-Bw-(B/C)-C >50 Haplic Cambisol

ME Ap-(Bw)-B/C-C 35–50 Haplic Cambisol

SE Ap-(B/C)-C <35 Skeletic Cambisol,
Cambic Leptosol

Jičín

AC Ap-A-Bt-C >50
Haplic Luvisol (Colluvic),

Luvic Kastanozem (Colluvic),
Luvic Phaeozem (Colluvic)

NE Ap-A-Bt-(B/C)-C >60 Haplic Luvisol,
Luvic Kastanozem

ME Ap-Bt-(B/C)-C 40–60 Haplic Luvisol

SE Ap-(B/C)-C >40 Haplic Calcisol
1 erosion class (AC—accumulated soils, NE—non-eroded soil, ME—moderately eroded soils, SE—severely
eroded soils); 2 soil depth in cm; 3 A horizon thickness in cm; 4 World reference base for soil resources 2014.

2.5.2. Assessment of Soil Properties for Erosion Classes Distinguishing

Each of erosion classes was consequently characterized by a range of values of distinctive soil
surface properties (soil erosion indicators, [30]) having specific spectral reflectance characteristics
that can be obtained using imaging spectroscopy (SOC, texture classes, CaCO3 and iron oxides).
We presume that in ME and SE, the removal of topsoil and its mixture with subsoil leads to
qualitative and quantitative changes in surface soil properties manifested in spectral reflectance
characteristics [30,33,41,42,73]. However, the soil properties of deposited material can vary significantly
(both topsoil and subsoil material can be accumulated), strongly depending on site-specific conditions
(topography, parent material, soil properties of parental soil, type, intensity and frequency of erosion
events). This fact can significantly influence the information value of surface soil properties and
the corresponding reflectance data and their applicability in defining the AC class [71,73]. For this
purpose, thickness of A horizon was used as an additional indicator for the definition of this class.
The thickness was spatially predicted using the data from borings and derivatives of DEM (altitude,
slope, curvatures, catchment area, and topographic wetness index). The 5 × 5 m2 resolution DTM
(DMR 4G®) distributed by Czech Office for Surveying, Mapping and Cadaster—ČÚZK, obtained using
laser scanning with a total mean height error of 0.3 m was used.

Soil properties applicability to distinguish individual erosion classes was analysed using multiple
range test (parametric and non-parametric, depending on statistics of normality and variability in the
set). Only the properties that showed significant differences in at least two erosion classes (by means
of unique confidence interval) were used for distinguishing the erosion classes. Soil properties which
achieved low prediction accuracy using hyperspectral image processing (R2 < 0.5) were not used as
defining parameters.
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2.5.3. Classification of Spatial Data into Erosion Classes

Classification of erosion stages was carried out using fuzzy C-means (FCM) clustering
algorithm [74]. C-means function from R package e1071 [75] was used for clustering execution.
The method creates partitioning of dataset in multivariate space by maximizing similarity between
samples within the same cluster and dissimilarity among different clusters. The probability of cluster
membership of samples is computed. Final classification into classes is based on the highest probability.

Spatial data of previously selected soil properties derived from hyperspectral images and DEM
were used as input data layers. Initial cluster centres were determined as means of soil properties
values for defined erosion classes.

2.5.4. Validation of Results

Summarizing the validation of results was performed by confusion matrix. Overall and individual
class accuracy was obtained for all study sites. Since the independent samples were not available,
point data classes determined under the field campaign were used for the validation.

3. Results and Discussion

3.1. Descriptive Statistics of Soil Samples

Summary statistics and correlation matrix for the soil samples from the study sites are shown
in Tables 4 and 5. The SOC content analysis in topsoil has revealed differences among the study
sites. Low contents were observed at Jičín site (Luvisols), where values ranged from 0.7% to 1.41%
(mean 1.03%), the highest variability and low to high contents were observed at Šardice site (range
0.84%–2.62%, mean 1.44%). On the other sites (Cambisols) Nová Ves (range 0.56%–1.44%, mean 1.07%)
and Přestavlky (range 0.61%–1.88%, mean = 1.19%), the content of SOC is low to medium. The soil
texture analysis has revealed silt loam (partially silty clay loam) at Jičín site, prevalence of loamy soils
at Šardice site (locally more sandy or clayey), sandy loam and loam at Nová Ves and silt loam and
loam at Přestavlky. CaCO3 content was analysed only on sites with loess parent material. At Jičín site,
presence of CaCO3 was identified only in 3 topsoil samples (~0.1%). At Šardice site, CaCO3 content
varies from 0% to 10%. Fe oxides in soils extracted by two reagents (Feox and Fedith) were analysed
only on Cambisols sites. The content of both was identified higher at Přestavlky site (Feox mean 0.77%;
Fedith mean 3.59%) than at Nová Ves site (Feox mean 0.21%; Fedith mean 1.24%).

Table 4. Descriptive statistics of soil properties measured in collected soil samples.

Site SOC (%) Sand (%) Silt (%) Clay (%) Feox (%) Fed (%) CaCO3 (%)

Přestavlky
n = 45

Mean 1.19 38.12 49.63 12.26 0.77 3.59
Min 0.61 26.2 30.6 7.5 0.20 1.37
Max 1.88 59.0 61.5 20.1 2.19 7.38
SD 0.25 8.37 7.17 3.22 0.51 1.81

Šardice
n = 50

Mean 1.44 38.91 38.49 22.6 4.07
Min 0.84 15.2 27.5 14.2 0
Max 2.62 58.3 49.1 48.3 10.0
SD 0.39 8.34 4.67 6.80 3.34

Nová Ves
n = 50

Mean 1.07 51.24 37.59 11.16 0.21 1.24
Min 0.56 29.8 15.9 6.7 0.11 0.63
Max 1.44 77.2 56.6 24.7 0.60 2.37
SD 0.17 12.32 9.95 3.57 0.10 0.36

Jičín
n = 50

Mean 1.03 12.24 66.12 21.64 0.01
Min 0.70 7.7 52 14.2 0
Max 1.41 18.2 75.0 32.5 0.1
SD 0.15 2.41 5.56 5.14 0.03
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Table 5. Correlation matrix of soil properties.

Site SOC Sand Silt Clay Feox

Přestavlky

SOC
Sand −0.51 ***
Silt 0.61 *** −0.93 ***

Clay −0.04 −0.54 *** 0.18
Feox 0.6 *** −0.52 *** 0.55 *** 0.13
Fed 0.58 *** −0.3 * 0.39 ** −0.07 0.73 ***

Šardice

SOC
Sand −0.26
Silt −0.28 * −0.58 ***

Clay 0.51 *** −0.83 *** 0.02
CaCO3 −0.74 *** −0.17 0.33 * −0.02

Nová Ves

SOC
Sand −0.45 **
Silt 0.45 ** −0.97 ***

Clay 0.3 * −0.75 *** 0.57 ***
Feox 0.37 ** −0.65 *** 0.57 *** 0.67 ***
Fed 0.18 −0.53 *** 0.43 ** 0.61 *** 0.39 **

Jičín

SOC
Sand 0.2
Silt −0.2 −0.39 **

Clay 0.13 −0.05 −0.9 ***
CaCO3 0.01 0.12 −0.31 * 0.28 *

* correlation is significant at the 0.05 level; ** correlation is significant at the 0.01 level; *** correlation is significant
at the 0.001 level; non-signed values are non-significant.

3.2. Prediction of Soil Properties by Imaging Spectroscopy

Different multivariate techniques (ANN, PLS, RF, SVM) were used to predict soil properties
spatial distribution using raw spectroscopic data and data adjusted by different pre-treatment methods
(log, SG 1st, SG 2nd, CR and SNV). The results of multivariate modelling indicate different prediction
accuracy according to soil properties, number of soil samples used for calibration, study sites,
used multivariate technique and pre-treatment methods. Table 6 summarizes the results of calibration
and validation by prediction models with the highest accuracy according to lowest RMSEP values.
Values of R2 and RMSE in training and validation sets for all models and different types of pre-treatment
are shown in Figure S1 (in supplementary material). Plots of measured vs. predicted soil parameters
for the validation datasets are given in Figure 3.

In summary, the best prediction accuracy was achieved for SOC content, where R2 value in the
validation set ranged for the best models within sites between 0.8 and 0.91. Consequently, these models
yielded RMSEP between 0.07% and 0.12%. SOC is the most frequently predicted soil property using
hyperspectral imaging data. Reported values of R2 and RMSE for SOC prediction from previous works
are highly variable [37] and depend on many local conditions and used techniques (type of sensors,
corrections, site conditions, size of study area, number of samples etc.). Nevertheless, the prediction
of SOC distribution is generally successful thanks to good spectral response of SOC and the values
reported in similar studies (R2

p ranged between 0.65 and 0.96) are comparable to our results [76–79].
Prediction accuracy of textural classes is highly variable among study sites and more variable than

in SOC prediction. R2
p and RMSEP values vary between 0.21–0.67 R2

p and 2.49%–9.04% RMSEP for
sand content, 0.4–0.92 R2

p and 2.75%–7.06% RMSEP for silt content and 0.38–0.89 R2
p and 1.47%–2.88%

RMSEP for clay content. In general, lower value of R2
p for certain textural class was achieved at the

sites where its content is low. This is, for example, the case of Jičín site where a very low prediction
accuracy of sand (R2

p 0.21) was assessed. Alternatively, the prediction accuracy of sand and silt
which are not spectrally active in VNIR-SWIR region can be influenced by a correlation between these
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properties and spectrally active properties (SOC, clay, CaCO3 and Fe forms). This is probable at Jičín
site where a good model performance for silt (R2

p 0.92) can be given by its strong correlation with clay
(R2

p 0.89) or at Šardice site where sand (R2
p 0.67) is highly negative correlated with clay (R2

p 0.89)
(Table 5). Another factor influencing the variability of the prediction accuracy can be a different level
of BRDF effect caused by diverse hyperspectral sensing conditions. This is valid for Přestavlky and
Nová Ves sites where the BREFCOR corrections have not led to full elimination of BRDF effect. A high
variability of model performances was reported in several studies dealing with texture prediction by
RS [80–85].

Table 6. Accuracy of the best prediction models (the best performing model according to lowest
RMSEP values).

Site SOC Sand Silt Clay Feox Fed CaCO3

Přestavlky
n 1 = 36/8 (44)

BM 2 SVM.l
SG (2nd)

ANN
log

SVM.p
SG (1st)

SVM.r
log

SVM.p
log

SVM.p
log -

R2
cv 0.92 0.88 0.88 0.91 0.99 0.63 -

RMSEcv 0.08 2.92 2.78 1.34 0.05 1.10 -

R2
P 0.83 0.61 0.40 0.38 0.73 0.78 -

RMSEP 0.12 5.87 5.05 1.96 0.44 1.10 -

RPD 2.08 1.42 1.42 1.64 1.16 1.65 -

n 1 = 36/12 (48)

BM 1 SVM.p
SG (1st)

PLS SG
(2nd)

SVM.l
SG (1st) PLS cr - - ANN

log

R2
cv 0.87 0.80 0.53 0.90 - - 0.84

RMSEcv 0.17 3.55 3.08 1.90 - - 1.32

R2
P 0.80 0.67 0.49 0.89 - - 0.82

RMSEP 0.16 5.06 3.82 2.88 - - 1.48

RPD 2.43 1.65 1.22 2.36 - - 2.26

Nová Ves
n 1 = 29/8 (37)

BM 1 SVM.l
SG (2nd)

ANN
raw

SMV.l
log

ANN SG
(1st)

SVM.r
log

SVM.r
raw -

R2
cv 0.79 0.95 0.89 0.99 0.90 0.72 -

RMSEcv 0.08 3.31 3.23 0.01 0.04 0.20 -

R2
P 0.80 0.41 0.69 0.41 0.89 0.59 -

RMSEP 0.11 9.04 7.06 1.47 0.11 0.29 -

RPD 1.55 1.36 1.41 2.43 0.91 1.24 -

Jičín
n 1 = 36/14 (50)

BM 1 SVM.p
SG (2nd)

SVM.p
raw

SVM.l
snv

SVM.p
raw - - -

R2
cv 0.90 0.01 0.89 0.98 - - -

RMSEcv 0.05 2.38 1.79 0.63 - - -

R2
P 0.91 0.21 0.92 0.89 - - -

RMSEP 0.07 2.49 2.75 1.92 - - -

RPD 2.14 0.96 2.02 2.67 - - -
1 number of samples used for calibration and validation; 2 best performing model including multivariate
technique and preprocessing method.

Models dealing with iron oxides and CaCO3 content performed with R2
p 0.73–089 for Feox,

0.59–0.78 for Fed and 0.82 for CaCO3 (only at site Šardice). Feox, Fed (iron oxides in general) and CaCO3

are only rarely studied soil properties by imaging spectroscopy. The high to moderate prediction
accuracy for Feox, Fed and CaCO3 is similar [84] or even better [86,87] in comparison to other studies.
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In conclusion, the analysis showed that the distribution of soil properties in eroded landscapes 
can be successfully predicted using the spectroscopic data. The prediction accuracy is adequate in 
majority of sites and predicted properties; however, a significant worsening in the model 
performance was observed in case of properties with low content [36]. Moreover, the presented 
models are locally-trained (for few field blocks in maximum) which increase their prediction 
capability in comparison with similar regional models [76]. 

Figure 3. Comparison of predicted and observed values in the validation set of sampling points:
(a) SOC; (b) sand; (c) silt; (d) clay; (e) Feox; (f) Fed; and (g) CaCO3. Colour of the points identifies the
study site: (red) Přestavlky; (dark blue) Šardice; (light blue) Nová Ves; (green) Jičín.

In conclusion, the analysis showed that the distribution of soil properties in eroded landscapes can
be successfully predicted using the spectroscopic data. The prediction accuracy is adequate in majority
of sites and predicted properties; however, a significant worsening in the model performance was
observed in case of properties with low content [36]. Moreover, the presented models are locally-trained
(for few field blocks in maximum) which increase their prediction capability in comparison with similar
regional models [76].
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Methods of machine learning SVM (71% of cases) and ANN (19%) showed the best prediction
accuracy. At Šardice site, the PLS model (10%) showed the best accuracy for two textural classes
(similar to machine learning models). PLS technique has been traditionally used in many studies
dealing with soil spectroscopy and its ability to prediction of soil properties from spectral data was
proven, but with varying accuracy [36]. In this study, PLS models reveal slightly lower accuracy than
other methods, however not significantly worse. More recently, machine learning techniques have
been used in imaging spectroscopy [30,76,88–91]. Whereas ANN method is not so frequently used due
to the need of a large training dataset, training demands and a tendency to over-fitting, the SVM has
become the most frequent method overcoming the difficulties of the ANN technique [27]. Contrarily
to the mentioned ANN shortcomings, the tendency to over-fitting by ANN was not fully proven in
our study. The problem with over-fitting was observed in RF in all cases. This finding is in contrast
to Viscarra Rossel and Behrens [92] and it is most probably influenced by insufficient optimization
of model parameters by random search method for automatic search of parameter values. General
applicability of SVM as a robust model with low sensitivity to noise in data [76,89] and its ability to
predict soil properties across hyperspectral images with small amount of samples was proven in our
study as the SVM was the method of the first choice in the majority of predicted properties at the
study sites.

Regarding the spectra pre-treatment methods, significant differences of prediction accuracy were
not observed. The majority of the best performing models (33%) used the techniques of absorbance
transformations. Raw data (reflectance), SG (1st), and SG (2nd) were used in 19%, CR and SNV in 5%
of the finally selected models. The methods of pre-treatment performed better (according to R2) than
reflectance and absorbance data in case of SOC and Feox prediction at Přestavlky and Nová Ves sites,
where the conditions of hyperspectral data acquisition were less favourable, which led to stronger
influence of BRDF effect. This effect can be highlighted at these sites by cementing effect of iron oxides
correlated to soil aggregation [36,93].

In case of other properties, the relationship between prediction ability and the use of
a pre-treatment method was not observed. Spatial distribution of all predicted soil properties for all
sites is shown in Figure 4.

3.3. Assessment of Soil Erosion Classes

Four erosion classes were distinguished on the study sites. The highest number of profiles was
identified as non-eroded (11 at Šardice, 29 at Přestavlky, 30 at Jičín and 40 at Nová Ves) except for the
Chernozem site Šardice where 23 profiles were classified as strongly eroded soils. Moderately eroded
soils were identified in 5–8 cases at each site. Accumulated soil class was identified only at Šardice (9)
and Jičín (12) sites.

3.3.1. Assessment of Soil Properties for Erosion Classes Distinguishing

Results of selection and assigning soil properties to each erosion class are shown in the Table 7.
The table shows selected soil properties and their centres (means) used for erosion classes classification.
The performance and suitability of different properties for erosion classes’ classification are highly
variable at the study sites. In summary, the SOC content is applicable at every site except for Jičín,
where the difference in the values among erosion classes was not significant. At three study sites
(except for Jičín), SOC can be used for distinguishing of NE and SE class with significantly the highest
and lowest SOC content, respectively. Potential of SOC for ME classification is low. In contrast to
Schmid et al. [30] a Hill and Schütt [42] who assessed the erosion stages in semi-arid climate, our study
showed difficulties in distinguishing the AC class using SOC content in topsoil. At Šardice site, the
SOC content in topsoil decreases in AC class. This is due to an advanced stage of erosion degradation
at the study site when loess is exposed in eroded parts of slopes and redeposited in the accumulation
positions [53,72]. Zádorová et al. [94] described this process as a retrograde soil development typical
for the most vulnerable loess regions with dissected relief. Moreover, the combination of preferential
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(interill erosion) and non-preferential (rill and tillage erosion) removal of soil material influences the
resulting variability of SOC distribution in topsoil [95–97].

Table 7. Class centres used for determination of erosion classes by fuzzy C-means method.

Site A Thick. SOC Sand Silt Clay Feox Fed CaCO3

Přestavlky
NE * 1.22 SE 35 SE * SE * SE -
ME * 1.17 37 SE * SE * SE -
SE * 1.10 NE 51 NE,ME * NE,ME * NE,ME -

Šardice

AC 87 NE,ME,SE 1.32 ME,NE * ME,NE * 17 NE - - 4.6 ME,NE

NE 62 AC,ME,SE 1.94 AC,SE * AC * 26 AC - - 0.2 AC,SE

ME 31 AC,NE 1.65 AC,SE * AC * 23 - - 1.1 AC,SE

SE 26 AC,NE 1.18 ME,NE * AC * 23 - - 6.6 NE,ME

Nová ves
NE * 1.11 SE * ME,SE 41 ME,SE * ME,SE 0.23 SE 1.3 ME -
ME * 0.95 * NE 26 NE * NE 0.14 0.96 NE -
SE * 0.89 NE * NE 23 NE * NE 0.13 NE 1.01 -

Jičín

AC 80 NE,ME,SE * 68 ME 20 ME - - -
NE 38 AC * SE 66 ME 21 ME - - -
ME 31 AC * 63 AC,NE 26 AC,NE - - -
SE 31 AC * NE 65 27 - - -

AC,NE,ME,SE class with significantly different mean values in indicated erosion classes (Multiple Range Test
Method: 95.0% LSD); * soil properties with prediction accuracy from hyperspectral data R2 < 0.5;—not analysed;
bolded values were used for erosion classes classification.

In case of texture, the classification potential of at least one textural class was proven at all the
study sites. However, the accuracy of prediction model for these properties did not reach required
limit of R2; therefore, only sand at Přestavlky, silt at Nová Ves and Jičín and clay at Jičín were used
for classification. At Přestavlky site, SE was significantly different from NE and ME in sand content.
This result can be expected at sites with high sand content where the fine particles are selectively
removed from the eroded soils. At Nová Ves, high silt content can be used for distinguishing NE
class. AC class was significantly distinguishable from NE at Šardice site by clay content. Iron oxides
applicability was observed only at Nová Ves site.

CaCO3 content was analysed only at Šardice site (only negligible amount was observed at
Jičín site), where it showed a good potential to distinguish AC class from NE and ME class. The AC
and SE classes were not significantly different, as the CaCO3 content is similarly high due to truncation
of soil profile and admixture of loess in the plough layer in case of SE class and accumulation of
CaCO3-rich material in case of AC class. The study showed that the CaCO3 content can be used as an
erosion classes indicator only in regions with CaCO3-rich subsoil that is exposed at soil surface due to
A horizon removal or tillage, similarly to [30,33].

Due to poor results of tested soil properties in AC class distinguishing, we used A horizon
thickness as an auxiliary indicator at Šardice and Jičín sites, where the AC class was identified.
The A horizon thickness prediction using DEM modelling was previously successfully used in
Zádorová et al. [71,72] for identification of deep colluvial soils. In our study, the A horizon thickness
showed very good potential in AC distinguishing at both sites. It was also significant for NE class in
Šardice; at Jičín site, it did not differ significantly in any other class except for AC.

3.3.2. Classification of Spatial Data into Erosion Classes

Results of classification based on FCM and previously determined class centres are shown in
Figure 5. In total, 1.24 km2 of strongly eroded soil was classified. This class is arranged in descending
order; 32.9% at Nová Ves, 29.1% at Šardice, 23.3% at Jičín and 16.9% at Přestavlky. At Přestavlky site,
the NE class (46.2%) followed by ME class (36.8%) cover the rest of the area. At Nová Ves site, the area
of moderately eroded soil (35.4%) exceeded the area of non-eroded soils (31.7%). At both localities,
SE class can be found only on the most exposed terrain position (in context of both water and tillage
erosion). The pattern of different erosion classes is more complex at Šardice and Jičín sites. The AC
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class is present mainly in the terrain concavities (side valleys) closely neighbouring to strongly and
moderately eroded soils at the back slopes (20.7% at Šardice; 13.6% at Jičín). Non-eroded soils were
classified in flat and nearly flat relief (plateaus) (22.0% at Šardice; 40.5% at Jičín). These findings are in
accordance with previous studies performed in regions with similar conditions. Zádorová et al. [94],
Schmitt and Rodzik [98] or Terhorst [99] observed a high heterogeneity of soil cover, depth and SOC
stocks and a significant area covered by strongly eroded soils in Chernozem and Luvisol loess regions.
The Cambisol regions on crystalline rocks were typical in terms of less pronounced erosion evidences
with lower incidence of both accumulated soils and soils with severe erosion removal [71].
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3.3.3. Validation of Results

The overall accuracy of erosion classes’ classification varies across the sites (Table 8). High
accuracy was obtained in Šardice site (82%), moderate accuracy was obtained in Jičín site (67.3%).
Přestavlky and Nová Ves achieved 51.1% and 52.6%, respectively. This is regarded as a low accuracy.
Significant deficiencies of the spectral modelling were expressed in case of classification of two
classes of eroded soils (SE and ME). The most frequent classification error is in all sites linked with
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misclassification of moderately eroded class to non-eroded or to strongly eroded class or vice versa.
In general, the moderately eroded class achieved lowest values of both producer and user accuracy.
This problem was also reported in Schmid et al. [30] who identified the majority of misclassifications
in the moderately eroded class. According to the results of classes’ separability and model validation,
distinguishing two classes of eroded soils shows to be too detailed and classification of one class of
eroded soil would be sufficient as the two classes overlap in a number of soil properties. Distinguishing
transitional classes can be performed using the fuzzy classification and comparison of membership
in non-eroded and eroded classes. However, distinguishing of different classes of eroded soils can
be reasonable and bring good results (77% in overall accuracy) in certain conditions as was proven
by Schmid et al. [30] in a large, severely degraded semi-arid region on CaCO3-rich parent material.
Zádorová et al. [94] reported similar degree of misclassification in case of slightly and strongly
accumulated soils at a Chernozem study site. The slightly accumulated soils showed the lowest overall
accuracy due to aggregating the properties of other classes.

Table 8. Confusion matrix of the erosion stages classification.

Observed Producer
Accuracy (%)

User
Accuracy (%)

Overal
Agreement RateSite Predicted AC NE ME SE

Přestavlky

AC - - - - - -

51.1%
NE - 17 5 2 58.6 70.8
ME - 12 2 2 25 12.5
SE - 0 1 4 50 80

Šardice

AC 8 1 0 0 88.8 88.9

82%
NE 0 10 1 0 90.9 90.9
ME 0 0 6 6 85.7 50
SE 1 0 0 17 73.9 94.4

Nová Ves

AC - - - - - -

52.6%
NE - 16 0 0 55.2 100
ME - 11 4 3 100 22.2
SE - 4 0 0 0 0

Jičín

AC 6 0 0 0 50 100

67.3%
NE 1 23 3 0 76.7 85.2
ME 0 6 4 1 57.1 36.4
SE 5 1 0 0 0 0

At Přestavlky site, two SE samples were classified as NE. The profiles are situated on the slope
with high amounts of rock fragments on the surface (up to 20%) and evidence of erosion features;
the misclassification to NE class is evident. At Nová Ves site, 4 NE soil profiles were classified as
SE. The pattern of eroded and non-eroded soils is very complex at this site, strongly depending
on the tillage erosion. The site is distinctive by abrupt change of soil depth within short distances.
Misinterpretation of erosion classes at this site can be therefore associated to an insufficient spatial
accuracy of input data (GNSS, hyperspectral, DEM) for the exact delineation of the soil variability at
short distances.

Few misclassifications between SE and AC classes were observed at Šardice (1) and Jičín (5) sites.
The misclassified points were situated near the inflex points of the slope where removal, transport and
sedimentation can act in dependence to the intensity and the type of erosion. The resulting surface soil
properties correspond to such a complex process and can overlap in the studied classes. This fact is
proven by the fuzzy membership that is evenly distributed to more erosion classes. Two samples in
the north part of Jičín site identified as AC were predicted as SE. This error can be again explained by
the mixed effect; the points are situated in the narrow transitional strip between Luvisol and gleyic
Chernozem nearby the stream.
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The validation of results showed high to moderate potential of used methods for erosion classes’
classification. In our study, the high applicability of spectral data is restricted to Chernozem and Luvisol
loess study sites (Šardice and Jičín). This can be attributed to two facts. The first is the homogeneity
of parent material and soil properties of former dominant soil cover at these sites, now changed by
erosion. The observed differences in the soil properties are then closely linked to erosion processes and
thus well performing in the prediction models. In contrast, the variability of soil properties at the sites
on heterogeneous crystalline and sedimentary rocks with more heterogeneous soil cover (Přestavlky
and Nová Ves) is a result of more co-acting processes and local conditions and is not necessarily linked
to the soil erosion. The second factor is the intensity of the soil cover change due to erosion processes.
Erosion leads to extreme (Šardice) and significant (Jičín) redistribution of soil material at the loess
sites and results in development of severely degraded soils with truncated soil profile on one hand
and several metres deep colluvial soils on the other hand [53]. The particular erosion classes are then
very distinctive and form a specific soil mosaic. The intensity of soil erosion at Cambisol study sites is
less pronounced; the accumulation class has not been identified and SE class covers marginal areas.
Thus, the soil properties variability given solely by soil erosion is presumably less significant and the
soil pattern driven by erosion material transport is less evident. Similar results were reported by [71]
who compared the soil units and SOC stock prediction DEM based models in Chernozem, Luvisol and
Cambisol study sites with similar area. They reported a very good model performance in Chernozem
and Luvisol sites and a poor performance at the Cambisol site. The studies from semiarid regions
dealing with soil erosion stages prediction using spectral data [30,33] showed high accuracy of the
model, similar to the results at Šardice site. However, the comparison is not fully relevant according to
differences in site area and conditions.

4. Conclusions

The study demonstrates the potential of different soil properties predicted using hyperspectral
data for the assessment of soil degradation by erosion at four pedologically different study sites
influenced by soil redistribution due to accelerated erosion. The erosion impact at the study sites was
evaluated by distinguishing four erosion classes representing different stages of soil redistribution
by erosion.

The study showed that: (i) soil properties prediction can be successfully performed using spectral
data and adequate prediction method; and (ii) selected soil properties are applicable for the assessment
of soil degradation by erosion. The selected predictive properties, best performing predictive methods
and classification models accuracy differed in the study sites. The accuracy of classification models was
influenced by variability of soil units and parent material. The presented approach was successfully
applied in Chernozem and Luvisol loess regions where the erosion classes were assessed with good
overall accuracy (82% and 67%, respectively). The model performance in two Cambisol regions
was rather poor (51%–52%). At study sites with less pronounced soil degradation, the restriction of
the erosion classes from four to three can bring better results. However, at severely degraded sites,
the limited number of classes may lead to a significant loss of information and decrease in models’
applicability in conservation management. The sites with heterogeneous soil properties and parent
material will require more precise local-fitted models and use of further auxiliary information such as
terrain or geological data.

The key requirement for a successful use of hyperspectral data in soil predictive modelling is
the application of high quality input spectral data with precisely performed corrections and limited
influence of physical factors. The approach presented in the study can be applied exclusively on
bare soil. Thus, the direct observation is in case of temperate agricultural regions limited to periods
with minimum vegetation cover. More images from different periods are needed to cover wider
areas. The study sites selected for the study and the periods of viewing were chosen with aim to
minimize the roughness, wetness and non-photosynthetic vegetation cover. Further research is needed
to find effective methods to filter out these factors and facilitate the use of hyperspectral imaging at
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regional scale, especially in context of increased use of no tillage farming. Implementation of satellite
hyperspectral sensors as well as further research on application of multi- and super-spectral sensors
represent other effective tools in application of presented approach.

The applicability of the presented approach at the global scale has considerable limitations.
To develop and apply a global model of a reasonable accuracy, utilizable for management purposes,
similar conditions (atmospheric, surface roughness etc.) within the flight campaigns or a very precise
image pre-processing (namely the elimination of the BRDF effect) are needed. Thus, regional models
performed at a watershed scale or at a level of a geologic/pedologic/agricultural region represent,
from the practical point of view, a more applicable option as a reasonable accuracy of the models can
be provided more easily.

The presented approach promise, mainly at the local a regional scale, to produce valuable data on
actual soil degradation, present structure of soil cover and redistribution of soil properties due to soil
erosion, that will be usable for soil conservation policy purposes. The acquired data can be directly
used by farmers for adjustment of management practices according to the level of soil degradation by
erosion. At present, such information on real erosion impact on different soils is not available in the
required detail and quality.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/1/28/s1,
Figure S1: R2 and RMSE of prediction models for training and validation datasets by study site, multivariate
technique and pre-treatment method.

Acknowledgments: This work was supported by the Ministry of Agriculture of the Czech Republic under
grant number NAZV QJ QJ1330118—“Using remote sensing for monitoring of soil degradation by erosion and
erosion evidence”.

Author Contributions: Daniel Žížala and Tereza Zádorová designed the workflow and conceived the
methods. The methods were performed by Daniel Žížala (field work, data-preprocessing, predictive modeling,
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pool in different soil regions. Geoderma 2015, 253–254, 122–134. [CrossRef]
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