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Abstract: Algorithms for Land Surface Temperature (LST) retrieval from infrared measurements are
usually sensitive to the amount of water vapor present in the atmosphere. The Satellite Application
Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF) are currently
compiling a 25 year LST Climate data record (CDR), which uses water vapor information from
ERA-Int reanalysis. However, its relatively coarse spatial resolution may lead to systematic errors in
the humidity profiles with implications in LST, particularly over mountainous areas. The present
study compares LST estimated with three different retrieval algorithms: a radiative transfer-based
physical mono-window (PMW), a statistical mono-window (SMW), and a generalized split-windows
(GSW). The algorithms were tested over the Alpine region using ERA-Int reanalysis data and relied
on the finer spatial scale Consortium for Small-Scale Modelling (COSMO) model data as a reference.
Two methods were developed to correct ERA-Int water vapor misestimation: (1) an exponential
parametrization of total precipitable water (TPW) appropriate for SMW/GSW; and (2) a level
reduction method to be used in PMW. When ERA-Int TPW was used, the algorithm missed the right
TPW class in 87% of the cases. When the exponential parametrization was used, the missing class rate
decreased to 9%, and when the level reduction method was applied, the LST corrections went up to
1.7 K over the study region. Overall, the correction for pixel orography in TPW leads to corrections in
LST estimations, which are relevant to ensure that long-term LST records meet climate requirements,
particularly over mountainous regions.

Keywords: LST; Split-Windows; Mono-Window; retrieval algorithms; thermal infrared; Meteosat;
water vapor; orographic correction

1. Introduction

Land surface temperature (LST) is a crucial variable for environmental and climate studies.
Together with surface emissivity, LST controls the surface’s upward thermal radiation. LST also
partly controls the surface’s turbulent heat flux, which modulates the thermodynamic structure of
the atmospheric boundary layer [1]. Several studies pointed out the importance of LST in a range
of applications, such as general model assessment [2,3], data assimilation [4–8], hydrology [9,10],
and climate monitoring [11,12], among others.

Taking into account the growing interest in LST as an essential climate variable, the Satellite
Application Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF) are
currently compiling a 25 year LST Climate data record (CDR) with hourly temporal and 0.05 degree
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spatial resolutions [11], using brightness temperatures measured by the European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat First Generation (MFG) and
Meteostat Second Generation (MSG) satellites. The atmospheric correction makes use of profiles
of water vapor and temperature extracted from the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalyses, namely ERA-Interim (hereafter ERA-Int), a global atmospheric
reanalysis from 1979, continuously updated in real time [13]. One of the main advantages of such
an LST dataset is its high homogeneity, since the retrieval algorithm and ancillary data used are
the same for the whole processing period, and the process makes use of recent EUMETSAT efforts to
recalibrate top-of-atmosphere radiances.

A main interest in such long records of remotely sensed LST is to complement the widely
used near-surface air temperature in situ measurements in climate monitoring applications [14,15].
In-situ data present large gaps and uncertainties where station density is low, e.g., over sparsely
populated areas like deserts and mountains. According to a recent study [16], there is growing
evidence that the rate of warming is amplified with elevation. However, it has been extremely difficult
to define the rate of warming in mountainous regions due to the lack of surface in situ measurements
at high elevation sites [17]. This issue may be overcome by using long-term time series of spatially
continuous remotely sensed LST datasets. A study addressing the rapid warming over the Tibetan
plateau using nighttime Moderate Resolution Imaging Spectro-radiometer (MODIS) data and station
observations [18] may be viewed as a first step in this direction; however, the added value of LST
crucially depends on the quality of the dataset over such areas.

LST is usually retrieved from remote sensors using data from one or more channels within
the thermal infrared window of the electromagnetic spectrum [19–21]. LST retrieval algorithms are
usually sensitive to the amount of water vapor in the atmosphere [20,22], which is an input either in
the form of water vapor profiles in the case of physical retrievals or of total precipitable water (TPW),
which is generally used by statistical methods. This information is often obtained from numerical
weather prediction (NWP) models or reanalysis. Because they provide the most stable and consistent
information over long periods of time, reanalyses are preferred in the development of CDRs but their
relatively coarse spatial resolution (currently of the order of 80 km) may lead to systematic errors
in the humidity profiles, particularly over mountainous areas with implications in LST CDRs over
such regions.

In this study, we address the problem of water vapor misestimation when using ERA-Int data at
high altitudes and its implications in the retrieval of LST. We also develop orographic correction models
with the aim of reducing the propagation of error in LST estimates due to water vapor misestimation.

The structure of this paper is organized as follows: in Section 2 the satellite and model data are
described, as well as the LST retrieval algorithms used for the study; here, the problem of ERA-Int
water vapor misestimation is addressed and the methods to overcome this problem are introduced;
in Section 3 the methods developed in Section 2 are applied, and LST estimates with and without them
are compared for the chosen retrieval algorithms; finally, Section 4 summarizes the main conclusions
of this work.

2. Data and Methods

2.1. Data

2.1.1. Study Area

The study focused on the Alpine region, which is the highest and most extensive mountain
range in Europe. The Alps are within the MSG/Spinning Enhanced Visible and Infrared Imager
(SEVIRI) disk and are part of the domain of the high resolution Consortium for Small-Scale Modelling
(COSMO) numerical weather prediction model run at the Swiss Federal Office of Meteorology and
Climatology, MeteoSwiss (Figure 1). The Alps were, therefore, our testbed to assess the impact errors
in LST retrievals associated with misrepresentation of atmospheric profiles and/or total water vapor
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content associated with altitude. We used profiles both from high (about 2 km COSMO) and medium
(about 80 km ERA-Int) spatial resolution NWP runs. The data corresponded to 6-hourly fields for
1 day per month over the full year of 2014, covering the area shown in Figure 1; however, due to
the particularly high cloud frequency over the Alpine region, no data were analyzed for October.
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2.1.2. Satellite Data

We considered LST estimates from Top-of-Atmosphere (TOA) brightness temperatures measured
by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the EUMETSAT MSG
satellite. SEVIRI is the primary MSG instrument and has the capability to observe the Earth in
12 spectral channels, with view zenith angles (VZA) ranging from 0◦ to 80◦, and with a temporal
resolution of 15 min and a spatial resolution of 3-km at the subsatellite point. MSG-3 top-of-atmosphere
10.8 µm and 12.0 µm brightness temperatures, as well as the respective cloud mask, are provided by
the LSA SAF. Cloud masks were determined using the software developed by the SAF in support
of Nowcasting and Very Short-Range Forecasting (NWC SAF) following the algorithm described
by [23]. The LSA SAF also provided surface emissivity values for the split-window channels (centered
at 10.8 µm and 12.0 µm) which are obtained via a combination of land cover classification and
SEVIRI-based fraction of vegetation cover updated daily on a pixel-by-pixel basis [22,24].

2.1.3. Model Data

The LST algorithm that is currently being developed by the CM SAF makes use of ERA-Int
water vapor and temperature profiles at 60 pressure levels with a horizontal resolution of 80 km [13].
The base altitude for these profiles is defined by a relatively coarse orographic field representative
of the model spatial resolution. For mountainous regions, departures of ERA-Int height from actual
topography can be very large, and in the Alps these differences can reach 2500 m in a reduced number
of locations (Figure 2).

The COSMO model is a non-hydrostatic operational weather prediction model maintained
and continuously improved by the national weather services affiliated with the consortium for
small-scale modelling (COSMO) [25]. The COSMO model run at MeteoSwiss has a high-resolution
topography (of about 2 km), which makes it more suitable to be used as the reference orography field.
Furthermore, the small horizontal scale fluctuations of humidity profiles are expected to be more
realistically represented in such a high-resolution model.

The differences between COSMO and ERA-Int surface orography fields are shown in Figure 2,
which clearly puts into evidence the finer details represented in the former. Figure 3 shows that,
if COSMOS’s grid cells are taken to be a realistic representation of surface orography, then out of
the totality of pixels, the number of cases where ERA-Int underestimates surface height by more than
1000 m is of 2974 pixel locations over the area of study, leading to a sample of 43,096 retrieved LST
values covering the year 2014. Overestimation is less frequent, with only 241 pixel locations where
ERA-Int surface height is higher than that of COSMO’s by 1000 m or more. This asymmetry results
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from the smoothing of the topography performed for numerical stability reasons in medium resolution
models, and is stronger in those used to build reanalyses datasets. As will be further discussed below,
this smoothing may lead to systematic errors in LST estimates over high elevation areas which make
use of such reanalyses profiles.Remote Sens. 2017, 9, 38 4 of 12 

 

 
Figure 2. Histogram of orographic differences between ERA-Int and COSMO for the studied area. 

The differences between COSMO and ERA-Int surface orography fields are shown in Figure 2, 
which clearly puts into evidence the finer details represented in the former. Figure 3 shows that, if 
COSMOS’s grid cells are taken to be a realistic representation of surface orography, then out of the 
totality of pixels, the number of cases where ERA-Int underestimates surface height by more than 
1000 m is of 2974 pixel locations over the area of study, leading to a sample of 43,096 retrieved LST 
values covering the year 2014. Overestimation is less frequent, with only 241 pixel locations where 
ERA-Int surface height is higher than that of COSMO’s by 1000 m or more. This asymmetry results 
from the smoothing of the topography performed for numerical stability reasons in medium 
resolution models, and is stronger in those used to build reanalyses datasets. As will be further 
discussed below, this smoothing may lead to systematic errors in LST estimates over high elevation 
areas which make use of such reanalyses profiles. 

 
Figure 3. Map of orographic differences between ERA-Int and COSMO for the studied area. 

2.2. LST Retrieval Algorithms 

A variety of LST retrieval algorithms may be found in the literature (see [19–21] for a 
comprehensive description). Here, we restrict our discussion to the three following approaches: 

• Generalized Split-Windows (GSW) is based on the formulation by Wan and Dozier for the 
Advanced Very High Resolution Radiometer (AVHRR) and MODIS sensors [26] and later 
adapted for MSG/SEVIRI [22,27,28]; LST is computed using a semi-empirical expression 
involving top-of-atmosphere brightness temperature and surface emissivity in two thermal 
infrared channels (10.8 and 12 μm), the so-called split-window channels: 

Figure 2. Histogram of orographic differences between ERA-Int and COSMO for the studied area.

Remote Sens. 2017, 9, 38 4 of 12 

 

 
Figure 2. Histogram of orographic differences between ERA-Int and COSMO for the studied area. 

The differences between COSMO and ERA-Int surface orography fields are shown in Figure 2, 
which clearly puts into evidence the finer details represented in the former. Figure 3 shows that, if 
COSMOS’s grid cells are taken to be a realistic representation of surface orography, then out of the 
totality of pixels, the number of cases where ERA-Int underestimates surface height by more than 
1000 m is of 2974 pixel locations over the area of study, leading to a sample of 43,096 retrieved LST 
values covering the year 2014. Overestimation is less frequent, with only 241 pixel locations where 
ERA-Int surface height is higher than that of COSMO’s by 1000 m or more. This asymmetry results 
from the smoothing of the topography performed for numerical stability reasons in medium 
resolution models, and is stronger in those used to build reanalyses datasets. As will be further 
discussed below, this smoothing may lead to systematic errors in LST estimates over high elevation 
areas which make use of such reanalyses profiles. 

 
Figure 3. Map of orographic differences between ERA-Int and COSMO for the studied area. 

2.2. LST Retrieval Algorithms 

A variety of LST retrieval algorithms may be found in the literature (see [19–21] for a 
comprehensive description). Here, we restrict our discussion to the three following approaches: 

• Generalized Split-Windows (GSW) is based on the formulation by Wan and Dozier for the 
Advanced Very High Resolution Radiometer (AVHRR) and MODIS sensors [26] and later 
adapted for MSG/SEVIRI [22,27,28]; LST is computed using a semi-empirical expression 
involving top-of-atmosphere brightness temperature and surface emissivity in two thermal 
infrared channels (10.8 and 12 μm), the so-called split-window channels: 

Figure 3. Map of orographic differences between ERA-Int and COSMO for the studied area.

2.2. LST Retrieval Algorithms

A variety of LST retrieval algorithms may be found in the literature (see [19–21] for
a comprehensive description). Here, we restrict our discussion to the three following approaches:

• Generalized Split-Windows (GSW) is based on the formulation by Wan and Dozier for
the Advanced Very High Resolution Radiometer (AVHRR) and MODIS sensors [26] and later
adapted for MSG/SEVIRI [22,27,28]; LST is computed using a semi-empirical expression involving
top-of-atmosphere brightness temperature and surface emissivity in two thermal infrared channels
(10.8 and 12 µm), the so-called split-window channels:

LST =

(
A1 + A2

1 − ε
ε

+ A3
∆ε
ε2

)
T10.8 + T12

2
+

(
B1 + B2

1 − ε
ε

+ B3
∆ε
ε2

)
T10.8 − T12

2
+ C, (1)

where T10.8 and T12 are the brightness temperatures in channels 10.8 and 12 µm, respectively,
ε = ε10.8+ε12

2 and ∆ε = ε10.8 − ε12 are, respectively, the mean of and the difference between surface
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emissivities, ε10.8 and ε12, in the two considered channels, and Ai, Bi, (i = 1, 2, 3), and C are
coefficients calibrated for classes of TPW and VZA [29].

• Statistical Mono-Window (SMW) [11], where LST is computed based on an expression involving
TOA brightness temperature and emissivity in a single thermal infrared channel (centered at
10.8 µm):

LST = A
Tc

εc
+ B

1
εc

+ C, (2)

where Tc and εc are the brightness temperature and the surface emissivity of the considered
channel, respectively, and A, B, and C are coefficients calibrated for different classes of TPW and
VZA [29].

• Physical Mono-Window (PMW) [11,30], which is based on the direct inversion of the radiative
transfer equation for one channel in the thermal infrared window (again centered at 10.8 µm):

LST ≈

 c2νc

ln
(

c1ν
3
cτc(θ)εc

Lc(θ)−Lup
c (θ)−Ldn

c (1−εc)τc(θ)
+ 1
) − β

/α, (3)

where εc, τc, Lc, Lup
c , Ldn

c are, respectively, the surface emissivity, atmospheric transmissivity,
top-of-atmosphere radiance, upward atmospheric path radiance, and downward atmospheric
path radiance for the considered channel, c1 and c2 are constants from Planck’s law, and α, β are
coefficients that depend on the spectral characteristics of the considered channel, and νc is
the channel central wavenumber. A radiative transfer model is used to estimate τc, Lup

c , and Ldn
c

using information on air temperature and humidity from atmospheric profiles. In this study,
the Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) model is used for this
purpose [31].

These three models were chosen due to the fact that the GSW is the operational model used
to retrieve LST in the LSA SAF [24] and both mono-window algorithms are being used to produce
the 25 year LST CDR at the CM SAF [11].

2.3. Orographic Correction of Atmospheric Profiles

As described above, the three LST algorithms use as input either the total content of water
vapor within the column of atmosphere between the surface and the sensor (Equations (1) and (2)),
or the actual atmospheric temperature and humidity profiles (used to solve Equation (3)). Here, we will
describe two methodologies to account for the correction of the profile surface height:

• The exponential parametrization of Total Column Water Vapor. Assuming hydrostatic equilibrium,
which is a good approximation for the vertical dependence of the pressure field in the real
atmosphere, TPW decreases exponentially with height, where the rate of decay depends on
the temperature lapse rate. As such, we tested a parametrization based on the exponential
decrease of TPW with altitude [32,33], i.e.,

TPW1 = TPW0 exp
(

H0 − H1

α

)
(4)

where TPW1 and TPW0 are the estimated and reference TPW, respectively. H1 and H0 are the high
and coarse resolution altitude, respectively. The scale parameter α is estimated by linear regression
using COSMO fields of height and TPW for all grid-points and for all data considered in this
study. For each COSMO grid point and observation, we considered the values of height and of
TPW over each grid point and the surrounding eight neighbors. Differences in H and ratios in
TPW were then computed between surrounding neighbors and the central grid point (Figure 4).
Taking into account COSMO spatial resolution of about 2 km, the rationale is that for the area
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delimited by the eight neighbors, changes in TPW are mainly driven by differences in topography,
while the thermodynamic properties of the atmospheric profile are maintained. The value of
parameter α is then estimated by linear regression performed between differences in H and
the natural logarithm of the ratios in TPW. The obtained estimate for parameter α was 1547 m,
i.e., TPW decreased by a factor of e when surface elevation increased by 1547 m.
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Figure 4. Scatterplot of the ratio of COSMO total precipitable water (TPW) at each grid point with
respect to its surrounding neighbors, TPWi, versus differences in height ∆H (grey dots). The black
curve represents an exponential fit to the data. Circles and whiskers represent the mean and standard
deviation of TPW/TPWi, respectively, considering classes ∆H in steps of 100 m.

• The Level reduction, which consists of using the surface pressure from COSMO and then,
by linear interpolation, truncating the ERA-Int profile at that COSMO pressure level. This method
is required for radiative transfer based LST retrieval algorithms (that use water vapor and
temperature profiles as input). The method may also be used for statistically based algorithms with
the drawback of introducing more variables to the models (thermodynamic profiles, where only
TPW is required).

We will restrict its use to cases where surface height is underestimated, as these correspond to
the most critical cases where deviations of ERA-Int surface from actual orography may reach 1000 m
or more (Figures 2 and 3).

3. Results

3.1. Difference between ERA-Int and COSMO TPW

The comparison between ERA-Int TPW and COSMO reference TPW is shown in Figure 5 for
grid points with altitude differences (COSMO minus ERA-Int) greater than 1000 m. Differences in
TPW reach a maximum of 17.2 mm and present an average of 4 mm and root mean square difference
(RMSD) of 5 mm. For each bin of the histogram (Figure 5), the median (black solid line), 25th,
and 75th percentiles of height differences between ERA-Int and the reference COSMO indicate
that the differences of height tend to be larger with the increase in the departures of ERA-Int TPW
from reference.
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Since, to our knowledge, there are no LST validation in situ stations at high altitudes, a proper 
validation study of the proposed corrections is still not possible. Instead, a sensitivity study was 

Figure 5. Histogram representing the relative frequency of ERA-Int TPW departures from COSMO
reference TPW (in blue) for classes of 0.25 cm over the Alps for 2014. Median, 25th, and 75th percentiles
of differences of height between ERA-Int and COSMO are shown in black lines.

Figure 6 shows the agreement between TPW classes determined by ERA-Int and COSMO profiles,
plotting the percentage of cases that fall in different pairs of ERA-Int/COSMO TPW classes for
the period between April and September. The selected period corresponds to the season where
(clear sky) TPW is most variable, when the atmosphere is warmer, and, therefore, able to hold larger
water vapor contents. When ERA-Int is compared with COSMO without any orographic correction
(Figure 5a), only 13% (i.e., 10% + 3% along the diagonal) of the total amount of grid-points are in
the same TPW class, i.e., about 87% of ERA-Int profiles (i.e., the total of off-diagonal cells) are in
the wrong TPW class. Furthermore, about 75% of the points miss by one class and 12% by two classes
(Figure 6a). If the exponential parametrization (Equation (4)) is applied (Figure 6b), then the fraction of
correct hits rises from 13% to 91% (i.e., 81% + 10% along the diagonal). The remaining 9% differ by
one class.
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3.2. Sensitivity Analysis

Since, to our knowledge, there are no LST validation in situ stations at high altitudes, a proper
validation study of the proposed corrections is still not possible. Instead, a sensitivity study was
performed in which LST was retrieved using each of the three above mentioned algorithms using
COSMO profiles (for PMW) and COSMO TPW (for GSW and SMW). These LSTs were considered as
the reference. Next, LST was retrieved for the same grid-points under the same conditions, but with
ERA-Int profiles/TPW. The same procedure was repeated using corrected ERA-Int profiles/TPW.
The exponential parametrization method (Equation (4)) was applied to get corrected TPW fields for
GSW and SMW, while the level reduction method was applied to adjust the profiles used by the PMW.
The RMSD was computed to compare LST retrieved with ERA-Int profiles and the reference LST
(retrieved with COSMO profiles). The same procedure was applied when comparing the corrected
LST. Table 1 shows LST RMSD per season—November to March and April to September which,
for simplicity, we will call extended winter and extended summer, respectively—and per difference in
ERA-Int and COSMO surface height, for PMW, SMW, and GSW.

Table 1. Land surface temperature (LST) root mean square difference (RMSD) (K) when comparing LST
derived with COSMO profiles (reference) and LST derived with ERA-Int original profiles (Orig)
and ERA-Int corrected with the different methods (Corr), for a physical mono-window (PMW)
(a), statistical mono-window (SMW) (b), and generalized split-windows (GSW) (c). N represents
the number of profiles in a determined class of altitude difference and season. The seasons are extended
winter (November–March) and extended summer (April–September).

LST (K)
(RMSD)

1000 < ∆H < 1250 1250 < ∆H < 1500 1500 < ∆H < 1750 ∆H > 1750

Orig Corr N Orig Corr N Orig Corr N Orig Corr N

(a) PMW
November–March 0.3 0.0 16,544 0.4 0.0 7230 0.5 0.0 2762 0.6 0.0 1126
April–September 1.0 0.2 9091 1.2 0.2 4132 1.3 0.1 1582 1.8 0.1 629

(b) SMW
November–March 0.1 0.0 16,544 0.0 0.0 7230 0.0 0.0 2762 0.0 0.0 1126
April–September 0.5 0.2 9091 0.5 0.2 4132 0.5 0.1 1582 0.4 0.0 629

(c) GSW
November–March 0.1 0.0 16,544 0.0 0.0 7230 0.0 0.0 2762 0.0 0.0 1126
April–September 0.4 0.1 9091 0.4 0.1 4132 0.4 0.1 1582 0.3 0.0 629

As shown in Table 1(a), the RMSD obtained for PMW forced with ERA-Int increased with elevation,
regardless of the season. RMSD ranged between 0.3 K (extended winter, for altitude differences
between 1000 and 1250 m) and 1.8 K (extended summer, for altitude differences greater than 1750 m).
When the level reduction orographic correction was applied, RMSD decreased significantly, with new
values ranging between 0 K (several cases) and 0.2 K (extended summer, for altitude differences
between 1000 m and 1250 m and between 1250 m and 1500 m). Furthermore, the highest RMSD of
1.8 K in extended summer 2014, for altitudes greater than 1750 m, decreased to 0.1 K.

The RMSD estimated for SMW LST are shown in Table 1(b). Here, the results are not as striking as
for the PMW, where LST had a strong dependence on the season but not on the elevation differences.
RMSD ranged between 0 K (in several cases) and 0.5 K in the extended summer months, a period when
TPW values in the clear-sky atmosphere are usually larger. When the exponential parametrization
orographic correction was applied, RMSD also decreased, with a maximum gain of 0.4 K.

Finally, as shown in Table 1(c), the GSW LST RMSD present the same behavior as the SMW,
showing a higher dependence on month of the year than on altitude differences. Here, RMSD ranged
between 0 K (in several cases) and 0.4 K (extended summer, for altitude differences between 1000 m
and 1750 m). Again, the most critical cases seemed to occur during the warmer period of the year,
when the TPW tends to be higher under cloud-free conditions.
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These results indicate that PMW is much more sensitive to water vapor than SMW and
GSW. This is because PMW requires the whole water vapor profile rather than column integrated
values, and for small changes in the water vapor profile, the retrieved LST value will also change.
Conversely, both SMW and GSW depend on classes of TPW, which means that a small change (or even
a substantial change, considering that the TPW classes are generally broad) in water vapor may have
no effect on LST. Furthermore, GSW is less sensitive to the TPW input than SMW, as the differences
in the two adjacent split-window channels are themselves sensitive to the actual water content in
the atmosphere (e.g., [19–21]).

4. Discussion

There is growing evidence that the rate of warming is amplified with elevation [16].
Air temperature observations at ground stations are essential to study elevation-dependent warming,
but many high-altitude areas are still heavily under-sampled [17]. To overcome those limitations,
spatially-continuous remotely-sensed land surface temperature (LST) climate data from satellites could
be used for elevation dependent warming studies [16,18]. This study addresses systematic errors that
can be present in satellite-based LST retrievals at high-altitudes and proposes methods to correct for
those errors.

Long-term satellite-based LST retrieval algorithms from geostationary satellite sensors rely
on reanalyses data (such as ERA-Int) with a relatively coarse horizontal resolution to estimate
the atmospheric water vapor content. This implies a rather poor representation of small scale
orographic features. In particular, reanalyzed water vapor fields can significantly depart from
real values for pixels in mountainous regions. For the Alpine region investigated in this study,
these differences reach a maximum of 17.2 mm.

The impact of the different water vapor estimates in three different LST retrieval schemes
(the SMW, the GSW, and the PMW) was assessed. In the case of SMW and GSW, only vertically
integrated water vapor affects the retrieval, as these models are calibrated in classes of TPW (in steps
of 7.5 mm). Errors in TPW translate into the selection of the wrong class, i.e., the wrong set of model
coefficients will be used, which allows a margin of TPW uncertainty within each correct class.

In terms of class hits (Figure 6), ERA-Int profiles miss the TPW class in 87% of the cases,
where 75% of these misses reflect a deviation of one class and 12% of two classes. It was shown
that the exponential parametrization orographic correction method dramatically improves the amount
of ERA-Int profiles within the correct class (91%). These results correspond to the cases where ERA-Int
orography field exceeds the higher resolution orography in more than 1000 m.

Results presented in Table 1 show that the radiative transfer based algorithm (PMW) is much
more sensitive to water vapor when the original ERA-Int profiles are used. The PMW takes the full
ERA-Int profiles as one of its inputs, i.e., the atmospheric radiances and transmissivity will be affected
by errors in the profile. Furthermore, for the thermal window channels used for LST estimation,
radiative transfer is particularly sensitive to the lower levels in the atmosphere where most water
vapor content lies. Therefore, when inverting the radiative transfer equation and the calibrated Planck
function, LST will be affected even with a relatively small change in the humidity profile.

This work mainly consists of an LST sensitivity study to water vapor errors related to
the misrepresentation of the surface orography associated to each atmospheric profile. For that
purpose, we compare LST retrievals using water vapor inputs with different spatial resolutions in
the Alpine region. We show that RMSD up to 1.8 K may arise in LST retrievals (Table 1) over pixels
where the profile surface height deviates by 1000 m or more from a reference orography. We also show
that the largest height deviations in models occur for high elevations, where TPW is systematically
overestimated and, therefore, will be a source of systematic errors in LST retrievals. We further show
that this may be overcome by an adequate adjustment of reanalysis profiles and/or total column water
vapor to the geographic elevation. When using the level reduction method, the highest RMSD of 1.8 K
in extended summer 2014, for altitudes greater than 1750 m, decreased to 0.1 K (Table 1).
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A deeper insight into the impact of height deviations on LST estimates for three LST retrieval
algorithms is provided by scatterplots of corrected versus original values of LST for the different classes
of ∆H and for extended summer and winter (Figure 7). The above mentioned larger sensitivity of PMW
(followed by SMW) to water vapor translates into the deviations from the 1:1 line which increase from
right to left in the panels of the figure. As also discussed, deviations are larger during the extended
summer than during the extended winter, reflecting the larger amounts of water vapor in the former
season than in the latter. It is worth noting that corrections do not present a systematic character,
tending to decrease (increase) towards lower (higher) LST values. This implies that, on average,
corrections will have lower values. Finally, it is worth noting that biases in the corrections are strongly
conditioned by the value of LST, a major issue that must be taken into account when LST data are used
for climatological purposes, namely when building up CDRs.
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An ideal validation of results would require data from in situ high altitude LST dedicated stations,
which were not available in the course of this study. Furthermore, due to the large footprint of
MSG/SEVIRI pixel (3–5 km), ideal conditions (as those provided by an LST dedicated station at high
altitude in a homogeneous region at the sensor spatial resolution) would be very difficult to achieve.

5. Conclusions

Studies focusing on elevation dependent warming related to climate change have been facing
difficulties related to the scarceness of air temperature in-situ observations over mountainous regions.
The current availability of long-term time series of spatially continuous data of remotely-sensed Land
Surface Temperature (LST) appears as a valuable means to overcome this problem. One example of
such a database is the one being produced by CM SAF and LSA SAF. However, the algorithms used to
retrieve LST depend on reanalyzed water vapor profiles defined in a grid associated to a smoothed
orography, which leads to misestimations in the water vapor profile.
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Two orographic correction methodologies were developed aiming at improving LST retrievals by
correcting the water vapor profile and/or the total precipitable water estimations. Improvements in
the LST retrieval vary depending on the method used but may reach 1.7 K (RMSD), an extremely large
discrepancy for climatological applications.

Given the lack of in-situ LST stations in high altitude regions, a direct comparison against ground
measurements was not possible at this stage. The relatively large footprint of the MSG/SEVIRI pixel
makes the task difficult to achieve. Nevertheless, LST products derived from MSG/SEVIRI or other
sensors would certainly benefit from field campaigns in high-elevation regions, and are needed to
close an important gap in satellite product validation.

This study was performed over the Alpine region, which despite being the highest mountain
range in Europe is not the highest mountain range encompassed in the MSG-disk, and is far from being
the highest mountain range in the world. An example is Mount Kilimanjaro in eastern Africa, which is
also within the MSG-disk. This mountain reaches an altitude of about 5900 m, while the ERA-Int
orographic field has a maximum of 2115 m. Differences here may reach 3800 m, a value well above
those covered in this study since the maximum difference in the Alps only goes as high as about as
2500 m.

LST estimates in high elevation regions may be affected by other sources of error, namely due to
the high spatial (and temporal) variability of surface emissivity associated to the changes in landcover
and snow/ice with height. Getting a highly detailed emissivity map over mountain regions is
challenging, and should be covered in future works.
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