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Abstract: The Upper Guinea Forest (UGF) region of West Africa is one of the most climatically
marginal and human-impacted tropical forest regions in the world. Research on the patterns and
drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the
region and to understand how climate and land use change will affect other tropical forests around
the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared
reflectance data with manually-interpreted measurements of woody vegetation cover from high
resolution imagery. The tasseled cap wetness (TCW) index was found to have the strongest association
with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI),
had relatively weak associations with woody cover. Trends in woody vegetation cover measured
with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends
in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean
Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were
primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous
vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest
ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation
resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent
in protected areas where human activities were restricted. Multiple lines of evidence suggested that
human land use and resource extraction, rather than climate trends or short-term climatic anomalies,
were the predominant drivers of recent vegetation change in the UGF region of West Africa.

Keywords: MODIS; Upper Guinea Forest; Africa; tropical forest; savanna; NBAR; vegetation change;
Mann–Kendall; tasseled cap transformation

1. Introduction

Information about the regional patterns and drivers of tropical forest dynamics is critical to
anticipate the impacts of these changes on ecosystem services, including carbon storage, biodiversity
conservation and climate regulation [1]. Satellite remote sensing has been widely used to study
variations of tropical forest vegetation phenology in relation to climate, and most of this research
has taken place in areas dominated by contiguous and intact tropical forest, such as the Congo
Basin [2], the Amazon [3,4] and insular Southeast Asia [5]. However, there is also a need for
research on vegetation dynamics in the more climatically marginal and human-impacted tropical
forest regions. These drier forests are generally found close to the minimum rainfall threshold that
separates closed-canopy forests from open woodlands and savanna and are often located at the frontier
of deforestation and degradation resulting from human land use [6,7]. Under projected increases of
temperature, drought and human populations that will result from continued global change [8–10],
more tropical forests are expected to become climatically marginal and affected by land uses, such
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as agriculture and logging. Therefore, research on the dynamics of drier tropical forests is critical to
support regional conservation efforts, as well as to further our understanding of the effects that future
global change will have on other areas of intact tropical rainforest.

To address this need, we used satellite remote sensing data to characterize recent vegetation trends
in the Upper Guinean Forest (UGF) region of West Africa, which is climatically marginal and heavily
impacted by dense human populations. The UGF receives less annual rainfall and has higher rainfall
seasonality than pan-tropical rainforests, which are characterized by annual rainfall greater than
1500 mm with little-to-no dry season [11,12]. Since the 1970s, a drying trend has been observed, and
these changes have been primarily associated with shifts in a natural low-frequency mode (65–80 years)
of sea surface temperature known as the Atlantic Multidecadal Oscillation [13]. Rapid population
growth has exacerbated regional development pressures, including timber harvesting and demand for
agricultural land [14]. Most research in West Africa has occurred in the drier Sahelian and Sudanian
regions and has focused on understanding the trends of increasing greenness that followed severe
droughts in the 1970s and 1980s [15]. In particular, there has been a debate as to whether regreening
represents an enhancement of herbaceous vegetation production [16,17], woody vegetation recovery
from the extensive drought-induced mortality [18,19] or both. Several broader continental and global
studies of deforestation rates in humid forests [6,7,20] and woody vegetation loss in dry forests [21]
have encompassed the UGF region. However, recent reviews have highlighted the relative lack of
knowledge about long-term vegetation dynamics in the wetter and cloudier forested regions of West
Africa [14,22,23].

The specific vegetation attributes that are derived from satellite observations depend on spectral
response to different plant characteristics. Green healthy leaves have low reflectance in the visible
wavelengths (ca. 400–700 nm) due to absorption by chlorophyll and other pigments, low reflectance in
the shortwave infrared (SWIR) wavelengths (>1400 nm) due to water absorption and high reflectance
in near infrared (NIR) wavelengths (ca. 750–1400 nm) because of the physical structure of healthy
leaves [24]. Dead or water-stressed vegetation typically increases the reflectance of visible and SWIR
wavelengths, but decreases the reflectance of NIR wavelengths, and these relationships provide the
basis for monitoring vegetation change using spectral vegetation indices (VIs). Most of the VIs fall into
one of two groups, with one group of vegetation greenness indices aimed at measuring vegetation
vigor or “greenness” using the red and NIR wavelengths and the other group of vegetation moisture
indices aimed at measuring water content using the SWIR wavelengths.

Greenness indices correlate with a wide range of vegetation properties, including the amount
of photosynthetically-active aboveground material, green vegetation fraction, leaf area index and
net primary production. The normalized difference vegetation index (NDVI) is one of the most
commonly-used greenness indices to monitor vegetation dynamics because the necessary wavelengths
are measured by numerous satellite sensors, many of which have collected long-term records [25].
However, trends in NDVI do not necessarily reflect changes in other vegetation characteristics, such as
physiognomic structure and water content. Some research has suggested that NDVI can be used to
estimate woody vegetation cover in savanna and woodland ecosystems [26,27], and that positive trends
in NDVI can be interpreted as woody vegetation encroachment or densification [28,29]. In contrast,
Mitchard and Flintrop [30] pointed out that the signals in the NDVI were more related to changes in
the grass layer than woody vegetation cover in West Africa. The NDVI is also subject to a number of
other limitations, including index saturation in closed canopies and sensitivity to atmospheric aerosols
and soil background [31].

Previous research has found that SWIR-based moisture indices are sensitive to the interaction
between the water content and the structure of the canopy in boreal [32], temperate [33] and
tropical forests [31,34]. Several recent studies have also found that SWIR-based VIs have the
potential to detect woody vegetation in tropical forest and savanna ecosystems. For example,
Rufin et al. [35] demonstrated that annual time series of tasseled cap wetness (TCW) captured
the trends of woody encroachment on pastoral land in the Amazon. Karlson et al. [36] showed
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that SWIR-based VIs were better at describing vegetation structure and aboveground biomass than
red/NIR-based VIs in Sudano-Sahelian woodlands. Kergoat et al. [37] demonstrated that SWIR-based
VIs were associated with dry-season vegetation biomass and vegetation cover fraction in the Sahel.
Caccamo et al. [38] found that SWIR-based moisture indices were better at detecting vegetation change
than red/NIR-based greenness indices because vegetation water content was more dynamic than
changes in greenness properties. Therefore, SWIR-based VIs can provide additional information
that complements the more widely-used greenness indices, particularly in tropical regions where
vegetation is sensitive to moisture stress [39].

The main objective of this study was to characterize trends in woody vegetation cover across
ecoregions in the UGF countries of West Africa. This research is novel in that it examines an
understudied region where vegetation trends have not previously been documented and because
it uses both greenness- and moisture-based indices to explore multiple dimensions of vegetation
dynamics. We addressed the following questions: (1) Which greenness- or moisture-based index
provides the most reliable indicator of woody vegetation cover across the study area? (2) Is woody
vegetation cover exhibiting an overall increase or decrease within the study area? (3) Do the observed
patterns of remotely-sensed vegetation change differ by country, ecoregion and protected area status?
This paper is organized as follows: the study area and dataset are briefly described, followed by
a detailed explanation of the data processing and statistical methods. The trends of different vegetation
indices are then compared across various geographic strata. The paper concludes with a discussion of
the importance of using multiple vegetation indices to explore change, inferences about drivers of the
observed changes and implications for West African forest ecosystems.

2. Materials and Methods

2.1. Study Area

The study area encompassed 985,480 km2 and covered five coastal countries that encompass the
UGF region of West Africa: Ghana, Côte d’Ivoire, Liberia, Sierra Leone and Guinea (Figure 1). In this
region, annual rainfall varies geographically from more than 2000 mm in the Western Guinean Lowland
Forests, to between 1200 and 1500 mm across the Eastern Guinean Forests and Guinean Forest-Savanna
Mosaic, to less than 1200 mm in the West Sudanian Savanna. Decreasing rainfall is generally associated
with a longer dry season and high inter-annual variability of rainfall [40]. Seasonal rainfall has
a unimodal pattern with one dry and one wet season in the Western Guinean Lowland Forests and
a bimodal pattern with two short wet seasons in the Eastern Guinean Forests. Rainfall regimes are
controlled by the Intertropical Convergence Zone (ITCZ) and the West Africa Monsoon (WAM) and
are also influenced by teleconnections with climate modes, such as the El Niño-Southern Oscillation
(ENSO) and Atlantic Multidecadal Oscillation (AMO) [40,41]. Natural vegetation is strongly associated
with rainfall and varies from dense evergreen rainforests, to drier closed-canopy semi-deciduous
forests, to woodlands and savannas with varying levels of tree cover [42]. The population density
in this area is one of the highest in the African continent, and most of the rural population relies on
subsistence agriculture for their livelihoods. This strong dependency on agricultural production has
resulted in the conversion of most of the natural vegetation for agriculture, and the remaining forests
are highly fragmented as a result. Only about 15% of the region is covered by closed canopy forests,
and these forests are still undergoing considerable degradation and deforestation as a result of land
use changes, logging and fire [14].
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Figure 1. Study area, overlaid with World Wide Fund (WWF) terrestrial ecoregions and ground 
validation points. The land cover was based on the 0.5-km MODIS-based Global Land Cover 
Climatology (2001–2010) using the IGBP classification. The study area mainly consisted of tropical 
forests, woody savannas, savannas and cropland/natural vegetation mosaics.  

2.2. Nadir BRDF-Adjusted Reflectance Data  

Data acquired via the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra 
and Aqua have been widely used to study forest dynamics in tropical regions because of their 
superior quality in terms of atmospheric correction, accurate geolocation and near-daily observations 
[43,44]. For this study, reflectance data for Bands 1–7 from the MODIS nadir bidirectional reflectance 
distribution function (BRDF)-adjusted reflectance (NBAR) product (MCD43A4 collection 5, 500 m 
resolution) were used along with the associated quality flags. The MCD43A4 product composites 
data over a 16-day period, and the composites are updated every 8 days. This product uses BRDF 
models to account for view angle effects and provide more consistent measurements of surface 
reflectance. The NBAR product has been used by other standard MODIS products, such as the 
MODIS land cover type product [45], and has been validated by ground-based measurements [46,47]. 
The NBAR reflectance data were accompanied by a quality product (MCD43A2) that classified the 
data quality into 5 levels based on the inversion information used by the BRDF model [48]. For this 
analysis, we downloaded all available imagery over the study area from six MODIS tiles (Vertical 
Tile Numbers 7–8 and Horizontal Tile Numbers 16–18) from 24 February 2000–31 March 2015 from 
the Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). 
Observations flagged as 0 (best quality), 1 (good quality) or 2 (magnitude inversion with observations 
≥7) were considered good observations and used to calculate the VIs. 

2.3. Vegetation Indices  

The enhanced vegetation index (EVI) was developed to minimize soil and atmospheric 
sensitivity and to reduce saturation effects associated with NDVI and has been shown to be a good 

Figure 1. Study area, overlaid with World Wide Fund (WWF) terrestrial ecoregions and ground
validation points. The land cover was based on the 0.5-km MODIS-based Global Land Cover
Climatology (2001–2010) using the IGBP classification. The study area mainly consisted of tropical
forests, woody savannas, savannas and cropland/natural vegetation mosaics.

2.2. Nadir BRDF-Adjusted Reflectance Data

Data acquired via the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra
and Aqua have been widely used to study forest dynamics in tropical regions because of their superior
quality in terms of atmospheric correction, accurate geolocation and near-daily observations [43,44].
For this study, reflectance data for Bands 1–7 from the MODIS nadir bidirectional reflectance
distribution function (BRDF)-adjusted reflectance (NBAR) product (MCD43A4 collection 5, 500 m
resolution) were used along with the associated quality flags. The MCD43A4 product composites data
over a 16-day period, and the composites are updated every 8 days. This product uses BRDF models
to account for view angle effects and provide more consistent measurements of surface reflectance.
The NBAR product has been used by other standard MODIS products, such as the MODIS land
cover type product [45], and has been validated by ground-based measurements [46,47]. The NBAR
reflectance data were accompanied by a quality product (MCD43A2) that classified the data quality
into 5 levels based on the inversion information used by the BRDF model [48]. For this analysis, we
downloaded all available imagery over the study area from six MODIS tiles (Vertical Tile Numbers 7–8
and Horizontal Tile Numbers 16–18) from 24 February 2000–31 March 2015 from the Land Processes
Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). Observations flagged as
0 (best quality), 1 (good quality) or 2 (magnitude inversion with observations ≥7) were considered
good observations and used to calculate the VIs.

https://lpdaac.usgs.gov/
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2.3. Vegetation Indices

The enhanced vegetation index (EVI) was developed to minimize soil and atmospheric sensitivity
and to reduce saturation effects associated with NDVI and has been shown to be a good indicator of
photosynthetic capacity and greenness in tropical forests [2,31,49]. A two-band EVI index was used
because it shows similar patterns as the three-band EVI, but is less affected by high-reflectance surfaces,
such as clouds [50].

EVI = 2.5 × ρNIR − ρRed
ρNIR + 2.4 × ρRed + 1

(1)

where ρNIR is the reflectance in the NIR wavelength (841–876 nm) and ρRed is the reflectance in the
red wavelength (620–670 nm).

The normalized difference water index (NDWI) provides information about canopy-level water
content and canopy structure in forest ecosystems and is generally less sensitive to saturation effects
than NDVI [31,33,51].

NDWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(2)

where ρSWIR is the reflectance in the SWIR wavelength (1628–1652 nm).
Tasseled cap (TC) indices are well-known linear transformations of band reflectances and have

been widely used for forest mapping and change detection. The TC brightness (TCB) is a function
of the total reflectance of the image and is often used as a measure of soil exposure. TC greenness
(TCG) is a function of the contrast between NIR and visible bands and is comparable to red/NIR-based
greenness indices such as NDVI and EVI. TCW is a function of the contrast between NIR and SWIR
bands and, in vegetated areas, can serve as an indicator of canopy structure or the amount of dead
or dried vegetation [52]. The calculation of TC indices was based on standard TC transformation
coefficients for MODIS Bands 1–7 [53].

TC angle (TCA) is defined as the angle formed by TCG and TCB in the vegetation plane,
representing the ratio of vegetated to non-vegetated surface. TCA has been used to characterize
vegetation density and succession in coniferous forests [32,54] and has shown good correlation with
LiDAR-derived canopy structure (canopy cover and height) in temperate forests in British Columbia,
Canada [55]. Generally, denser forest stands show higher TCA values.

TCA = arctan(TCG/TCB) (3)

2.4. Calculation of Annual Dry Season Vegetation Indices

The dry season is the best period to detect vegetation dynamics in the tropics because of low
cloud cover and sensitivity of vegetation to water availability. Rainfall seasonality in the study area is
strongly influenced by the West Africa Monsoon (WAM). The wet season starts in early May along the
Guinea coast as the monsoon begins. The monsoon begins its southern retreat in late August, and the
coastal wet season ends in early November. We quantitatively and objectively defined the start and
end of the dry season as 15 November and 31 March of the following year using methods developed
by Liebmann et al. [41] based on TRMM daily rainfall (3B42 V7) from 1 January 2000–31 March 2015.

We identified the beginning of the hydrological year as the onset of the wet season (1 April).
For each hydrological year (hereafter referred to simply as years), we first calculated VIs for each
16-day MODIS composite acquired during the dry season (15 November–31 March). Then, annual
dry season VI composites were calculated from the median of 18 dry season composites for each year,
resulting in a time series with 15 elements (15 years, 2001–2015) for each pixel. The median value was
used because it has been shown to be (1) less sensitive to data anomalies and (2) superior to other
statistics at detecting trends in woody vegetation fractions in tropical regions [35].



Remote Sens. 2017, 9, 5 6 of 18

2.5. Ground Validation Points

We selected ground validation points (GVPs) from Google Earth Digital Globe high spatial
resolution imagery to test the ability of the selected VIs to distinguish areas with different levels of
woody vegetation cover (Figure 2). Woody phanerophytes, including trees and shrubs, can maintain
their photosynthetic activity during the dry season and are visually identifiable from high resolution
imagery. Using an approach similar to [21], we defined three levels of woody cover: dense cover: >70%
canopy cover; open cover: 30%–70% canopy cover; and sparse cover: <30% canopy cover. To minimize
the potential spatial mismatch of GVPs footprints and the larger MODIS pixels, GVPs were selected
from the center of large areas (>1 MODIS cell) with relatively homogeneous woody cover. A total
of 510 GVPs were selected, stratified by major ecoregions of the UGF region (Figure 1 and Table 1).
The high-resolution imagery used to identify the GVPs was all from dry seasons between 2012 and
2015. The MODIS annual dry season VIs from corresponding years were extracted as the average of
3 × 3 MODIS pixel windows surrounding each GVP.
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Figure 2. Examples of high resolution Google Earth images for each level of woody dominance.

Table 1. Number of ground validation points used to examine the relationships between vegetation
indices and different levels of woody dominance.

Classes Forest 1 Guinean Forest-Savanna Mosaic West Sudanian Savanna Total

Dense 83 74 14 171
Open 71 75 26 172
Sparse 64 72 31 167
Total 218 221 71 510

1 Forest includes Eastern Guinean forests and Western Guinean Lowland Forests.

2.6. Analysis

2.6.1. The Ability of VIs to Separate Different Classes of Woody Vegetation

We used the area under the curve (AUC) of a receiver operating characteristic plot (ROC) to
evaluate the ability of VIs to separate the three woody vegetation classes. The inputs for AUC
calculations were classes of validation points and their associated VI indices. Values of AUC can range
from ≤0.5 for VIs that have no relationship with the classes to 1.0 for VIs giving perfect separation
of the classes. In this analysis, a multi-class AUC value was obtained by averaging the AUC values
for all pairwise comparisons [56] and was interpreted as follows: excellent >0.90; good 0.80–0.90;
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fair 0.70–0.80; poor 0.60–0.70; fail 0.50–0.60 [57]. The multi-class AUC was calculated using the
multiclass.roc command in the pROC package [58] in R.

2.6.2. Vegetation Trend Analysis

To focus the analysis on trends driven by human land use rather than climate variability, we
removed the effects of precipitation on the observed inter-annual patterns of VI. We corrected the
observed time series of VIs using the residual trend analysis procedure proposed by Evans and
Geerken [59]. In this method, linear regression is used to model annual VIs as a function of antecedent
precipitation. Previous analyses have shown that the forest phenology lags the cumulative precipitation
by about one month in moist tropical forests in the Congo Basin [2,60]. We tested the correlation
between annual VIs and antecedent 3-month cumulative precipitation [2] before the start of the dry
season at different time lags ranging from 0–9 months and found the strongest correlation occurred at
a two-month time lag (r = 0.44 for EVI, and r = 0.45 for TCW). Therefore, we developed regression
models of dry-season VIs as a function of 3-month cumulative precipitation at a 2-month lag before the
start of the dry season for every pixel (Figure S1). The residual VIs were then calculated by subtracting
the VIs predicted as a function of precipitation from the observed VIs at each MODIS pixel. Trends in
these residuals were interpreted as changes in vegetation that were independent of precipitation.

Trends were computed using a non-parametric Mann–Kendall (MK) test on the residual VIs [61].
The MK test is a rank-based test of a monotonic trend that is not sensitive to skewed data, extreme
values or non-linear trends, making it a robust test for the detection of trends in time series data.
The statistical power of the MK test depends on the pre-assigned significance level, the magnitude of
the trend, sample size and the amount of variation within a time series [61]. Trend analysis was carried
out only if: (1) there were at least 6 valid data points in the time series; and (2) there was no large data
gap (i.e., the maximum consecutive data gap was smaller than 5 years). Non-vegetated areas (e.g.,
water and “others” in Figure 1) were masked out from the trend analysis. The results of the MK test
for each MODIS pixel included: (1) a statistic, S, with a positive value indicating an increasing trend
and negative values indicating a decreasing trend; and (2) a significance test result. An alpha-level of
0.1 was used to carry out two-sided tests of statistical significance because of the short time series and
relatively small sample sizes. The trends were classified into positive (S > 0 and p < 0.1), negative (S < 0
and p < 0.1) and no trend (p ≥ 0.1). The MK test was performed by using the Kendall package in R.

2.6.3. Spatial Variability of Vegetation Trends

We partitioned the results of our vegetation change analyses by World Wide Fund (WWF)
terrestrial ecoregion, country and protected area to aid in the interpretation of regional trends.
WWF terrestrial ecoregions are distinct assemblages of natural communities, with boundaries that
approximate the original extent of these communities prior to major land use change [62]. The study
area was primarily covered by the West Sudanian Savanna (24.1%), Guinean Forest-Savanna Mosaic
(31.7%), Eastern Guinean Forest (18.7%) and Western Guinean Lowland Forest (21.0%) ecoregions
(Figure 1). The Guinean Montane Forests and Mangroves ecoregions were excluded from the analysis
due to their small area (4.5%). The Eastern Guinean Forests and Western Guinean Lowland Forests
comprise the UGF block and encompass some of the wettest parts of West Africa. The Guinean
Forest-Savanna Mosaic is influenced by complex interactions between climate, edaphic conditions and
anthropogenic activities, such as cultivation and fires. The West Sudanian Savanna is in the zone of
disturbance-determined ‘unstable’ savannas defined by Sankaran et al. [63], where disturbances such
as fire and herbivory are required for the coexistence of trees and grass.

Protected area (PA) boundaries were obtained from the World Database on Protected Areas
(accessed in July 2015). The PAs were reclassified into eco-reserve and reserve based on the Protected
Categories System defined by the International Union for Conservation of Nature. Specifically,
eco-reserves were PAs of Categories I (a and b) to V, which are designated to protect biodiversity and
ecosystem integrity and where human influence is generally prohibited or minimal. Reserves were
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PAs of Category VI, which are designated for sustainable natural resource management, such as timber
harvesting. Eco-reserves and reserves respectively accounted for 3.8% and 7.7% of the total study area.

3. Results

3.1. The Ability of VIs to Separate Different Classes of Woody Vegetation

TCG, TCW, TCA, NDWI and EVI were all positively associated with woody vegetation cover,
whereas TCB was negatively associated with woody vegetation cover (Figure 3). The AUC statistics
showed that all of the selected VIs provided good discrimination of dense woody cover from sparse
woody cover (Table 2, Figure 3). However, only TCW provided good separation of dense woody cover
from open woodlands (AUC = 0.86) and of open woodlands from sparse woody cover (AUC = 0.82).
The multiclass AUC statistics confirmed that TCW provided the best discrimination of different levels
of woody cover (AUC = 0.89), while the EVI always performed the worst (AUC = 0.70) (Table 2).
Therefore, we focused on trend analysis of TCW as an indicator of woody vegetation cover. We also
contrasted the TCW with EVI, a greenness metric similar to NDVI, to explore how trends in woody
cover differ from those exhibited by a more commonly-used vegetation greenness index.
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Upper Guinean Forest region of West Africa.

Table 2. Area under the receiver operating characteristic curve (AUC) for vegetation indices in relation
to classes of woody vegetation cover.

Dense vs. Open Dense vs. Sparse Open vs. Sparse Multiclass AUC

EVI 0.64 0.80 0.67 0.70
NDWI 0.70 0.88 0.72 0.76
TCA 0.71 0.89 0.71 0.77
TCB 0.70 0.81 0.67 0.73
TCG 0.66 0.82 0.67 0.72
TCW 0.86 0.98 0.82 0.89
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3.2. Trend Analysis on Different VIs

Trends of TCW and EVI exhibited very different geographic patterns, especially in the West
Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions (Figure 4). Overall, TCW showed
a more widespread negative trend (21%) than a positive trend (5%). On the contrary, EVI showed
a smaller area of negative trends (8.4%) than positive trends (15.9%). About 37.7% of the study area
showed different trend results for TCW versus EVI, and these areas were mostly in the drier parts of
the study area (Figure 4). Spatial patterns of significant vegetation trends for the raw and residual
VIs were very similar (Figure 4 and Figure S3). Thus, although precipitation was correlated with
inter-annual variability in remotely-sensed vegetation metrics, it was not the major driver of longer
term vegetation trends in the UGF region.
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3.3. Spatial Variability of Vegetation Trends

The percentage of area with significant vegetation trends increased from the moister tropical
forested ecoregions to the Guinean Forest-Savanna Mosaic and further to the drier West Sudanian
Savanna (Figure 5). All of the ecoregions exhibited a larger area of negative than positive TCW trends,
and the ratio of negative to positive TCW trends was higher in the West Sudanian Savanna than in
the other ecoregions. There was a predominance of positive EVI trends in all ecoregions, except for
Western Guinean Lowland Forests where there were more negative than positive EVI trends. There was
a smaller percentage of significant negative TCW trends within eco-reserves than outside eco-reserves
in all ecoregions except Eastern Guinean Lowland Forests. In contrast, the percentage of significant
negative TCW trends within reserves was equal to or greater than in non-protected areas across all
ecoregions. Eco-reserves also tended to have lower percentages of both positive and negative EVI
trends compared with reserves and non-protected areas in all ecoregions, except Eastern Guinean
Lowland Forests. However, these effects were generally weaker than for TCW.
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WWF terrestrial ecoregions. Abbreviations are: R: reserve; ER: eco-reserve; NP: non-protected; ALL:
ALL = R + ER + NP; WSS: West Sudanian Savanna; GFSM: Guinean Forest-Savanna Mosaic; EGF:
Eastern Guinean Forest; WGLF: Western Guinean Lowland Forests.

All five countries, with the exception of Liberia, had higher percentages of negative than positive
TCW trends (Figure 6). In contrast, the percentages of positive and negative TCW trends in the Western
Guinean Lowland Forests in Liberia were nearly equal. In the West Sudanian Savanna and Guinean
Forest-Savanna Mosaic ecoregions, Ghana and Côte D’Ivoire had higher ratios of positive to negative
EVI trends than the other countries. In contrast, Sierra Leone and the Western Guinean Lowland Forest
portion of the country of Guinea were strongly dominated by negative EVI trends.
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WSS: West Sudanian Savanna; GFSM: Guinean Forest-Savanna Mosaic; EGF: Eastern Guinean Forest;
WGLF: Western Guinean Lowland Forests.
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4. Discussion

In the UGF region of West Africa, the SWIR-based TCW index had the strongest association
with woody vegetation cover, whereas greenness indices, such as EVI, had weaker associations with
woody vegetation. In tropical forests, drivers of forest degradation, such as selective logging, remove
large trees and create canopy gaps, opening growing space for herbaceous understory plants and tree
regeneration. The shallow root systems of herbaceous plants and younger trees have less ability to
access deep subsurface water and are increasingly susceptible to drought stress over the course of the
dry season. As a result, the ability of degraded forests to maintain canopy moisture, photosynthetic
activity and evapotranspiration during the dry season are progressively reduced as more trees are
lost [34]. This drying of the canopy results in browning of vegetation, which decreases the absorption of
leaf pigments, such as chlorophyll a and b in the visible wavelengths [24]. However, given that tropical
forests are highly sensitive to water availability and its seasonal changes [39], the patterns of canopy
moisture captured by the SWIR-based vegetation indices appear to be more sensitive indicators of
variations in forest canopy density than the patterns of chlorophyll abundance measured by greenness
indices, which may explain the different geographic patterns of vegetation trends detected by TCW
and EVI. This finding is consistent with the results of a study conducted in forest and woodland
vegetation types in Sydney Basin Bioregion of Australia [38]. In particular, we found that only the
SWIR bands were capable of distinguishing the subtle differences between closed- and open-canopy
forests (Figure S4).

Trends in different vegetation indices can exhibit distinctive geographic patterns. Therefore,
assessment using multiple indicators provides complementary information about different aspects of
vegetation dynamics and facilitates trend interpretation and the attribution of proximal causes [17,64].
For example, a recent study of vegetation trends across Sub-Saharan Africa interpreted positive NDVI
trends as evidence that increasing rainfall is driving an expansion of woody vegetation into savanna
across much of central and southern Saharan Africa [30]. However, that study excluded West Africa
because of concerns that NDVI-based phenology was not a strong indicator of woody vegetation
cover in that region. Our analysis of TCW trends indicated that declines in woody coverage were
the predominant trends across the UGF region of West Africa, even in the drier Guinean Forest
Savanna Mosaic and West Sudanian Savanna ecoregions that were also characterized by widespread
trends of increasing greenness as measured by EVI. Such a decline in woody vegetation was also
captured between 1990 and 2000 along the West African forest-savanna transition zone [21]. Recent
landscape-level studies of land cover and land use change in the forested zone of southwestern Ghana
have also documented declining trends in woody vegetation cover, with the largest decreases occurring
near the forest-savanna boundary [65,66].

Despite the widespread decline of woody vegetation in many of the drier parts of the study area,
remotely-sensed greenness metrics also indicated a prevalence of greening, consistent with re-greening
trends found in many other studies of West Africa [15,18,19]. These results suggest that the widespread
greening trends in the West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions may be
driven by increases of herbaceous cover rather than woody vegetation. This result is contrary to studies
in drier parts of the West Sudanian Savanna, such as eastern Mali and Senegal, which have suggested
that observed greening trends were primarily due to tree and shrub recovery following the increase of
precipitation since the 1990s [18,19]. In contrast, our study area in the wetter savanna and forest regions
of West Africa was less affected by the Sahel drought of the 1970s and 1980s and did not experience as
much drought-induced mortality. As a result, the patterns of woody vegetation are mainly controlled
by disturbances, such as fires, grazing and agriculture [63], rather than moisture availability [67]. Both
the tree-growth-fire interaction model of Murphy and Bowman [68] and the analysis of Sankaran et
al. [63] indicate that much of our study area falls within the zone of disturbance-determined “unstable”
savannas in West Africa. There has been widespread conversion of natural vegetation to croplands
across West Africa over the past three decades, and these land use changes were likely a major driver
of the observed declines of woody vegetation.
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In the wettest part of our study area, the Western Guinean Lowland Forest, negative trends in both
EVI and TCW suggested that forest loss and degradation combined resulted in a loss of photosynthetic
capacity during the past decade. Because we used the residual trend analysis method, these vegetation
trends were independent of antecedent precipitation effects. Several other lines of evidence also
support the idea that they were more likely caused by human activity rather than long-term drying or
short-term drought as in the Congo and Amazon basins [2,69]. First, forests in the UGF region were
found to be more resilient to climate anomalies than other tropical regions because they contain more
drought-adapted species [70,71] and may be shifting to greater dominance by these drought-tolerant
species [72]. Second, the deforestation rate in this region is known to be among the highest in the
African continent due to the high population density [20]. Our analysis also showed that declining
TCW and EVI trends in Western Guinean Lowland Forests were less prevalent in Liberia, where rural
population densities are lower, than in Guinea and Sierra Leone. Third, the eco-reserves, which were
assumed to have the lowest levels of human intervention, had a lower prevalence of negative TCW and
EVI trends than other areas with higher levels of human impact. In combination, these observations
suggest that the vegetation changes in the West African rainforests have been driven by human land
use rather than climate change as has been documented in other tropical forest regions around the
globe [2,3].

Fire plays a central role in regulating the UGF region of West Africa, and its interaction with
human, climate and vegetation varies along the moisture gradient from savanna to rainforest.
For example, frequent fire prevents tree canopy closure and maintains relatively open tree-grass
mosaics in the savanna ecoregions study area [63]. In contrast, fire is an important agent of forest
degradation and loss in the drier parts of the tropical forest ecoregions [66]. Because humans are the
primary sources of ignitions in the region, fire can be a mechanism through which human land use
impacts forests. However, the interaction between land use and fire are complex and geographically
variable. Fire is widely used for debris clearing and land preparation in the dry forest zones [73],
but there is also evidence that expansion of croplands and pasture is fragmenting the landscape and
reducing fire activity in the savanna ecoregions [74]. Further research is needed to better understand
how fire interacts with climate change, human activities and vegetation in this highly dynamic system.

The designation and management of protected areas (PAs) has been proposed as a key strategy to
conserve biodiversity in the tropics [75]. Our findings showed that the effects of protected areas on
vegetation dynamics were strongly dependent on the type of PA. In particular, eco-reserves where
human influence was generally prohibited or minimal were most effective at reducing the negative
trend and increasing the positive trend of woody vegetation. Generally, the eco-reserves have the
largest influences on TCW trends, which are more related to woody dominance. Thus, the eco-reserves
in the region are buffering the negative influences of forest degradation and loss on biodiversity. On the
contrary, the reserves, which are managed mainly for the sustainable production of timber and other
natural resources, had relatively minor effects on vegetation trends compared to unprotected areas.
Although sustainable logging in these reserves would not necessarily cause widespread degradation,
our results suggest that combined pressures from overharvesting, illegal logging, fire encroachment
and land use change are having an impact [66,76,77]. The impacts of individual reserves on vegetation
trends vary considerably, and the effectiveness of any particular reserve will depend on multiple
contextual factors, including the destabilizing effects of armed conflicts, the availability of resources to
support effective management and enforcement and disputes with local residents over issues, such as
access to natural resources and crop damage and livestock depredation by wildlife.

Uncertainties and Limitations

The ability to observe vegetation trends with optical-infrared remote sensing depends on the
number of available clear sky observations and measurement noise. For example, restricting analyses
to only the highest quality data (e.g., data quality flagged as zero and one) would decrease the
measurement noise, but would result in fewer observations. In contrast, utilizing lower quality
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observations (e.g., data quality flagged as 0, 1, 2 and 3) would increase the number of available
observations, but would introduce more measurement noise into the analysis. For this analysis, we
did not find substantial changes in spatial patterns and overall trends of vegetation dynamics using
different quality flag criteria. Therefore, we compromised by including data with quality flagged
as 0, 1 and 2 to maximize the number of usable observations while eliminating the noisiest data from
the analysis.

The measurement noise in tropical regions is largely from clouds and cloud shadows during
the rainy season and high aerosol levels from biomass burning during the dry season. Despite
significant improvement in cloud detection, many residual clouds may still remain undetected in the
MODIS NBAR products in the ITCZ regions. Increasing the accuracy of cloud detection would help
to ensure that more bad observations are correctly excluded while all of the good observations are
retained. Newer methods for cloud screening and atmospheric correction, such as the multi-angle
implementation of atmospheric correction algorithm, have the potential to increase the number of
clear sky observations and more effectively screen out cloudy pixels in optical-infrared remote sensing
data [3]. Other metrics, such as vegetation optical depth (VOD), which is derived from satellite passive
microwave observations and is relatively insensitive to cloud cover and other sources of atmospheric
contamination, can provide alternative measurements for monitoring tropical vegetation dynamics,
albeit at relatively coarse spatial resolutions [78].

The SWIR-based TCW index was found to strongly correlate with woody cover in the UGF
region of West Africa. Although the TCW index has proven to be a useful metric of forest structure
in a variety of forest ecosystems (Healey et al., 2005), further testing is needed to determine whether
the relationships with woody plant cover that we detected can be extrapolated more broadly across
Sub-Saharan Africa and other tropical regions of the globe. Furthermore, because the TC indices require
SWIR bands, they have been only developed for SWIR-enabled sensors, such as Landsat and MODIS,
and cannot be used with the longer-term AVHRR record. Although the 15 years of MODIS records are
still relatively short for trend detection, the next generation of satellite data, for example, NPP (National
Polar-orbiting Partnership) VIIRS (Visible Infrared Imaging Radiometer Suite instrument), will build
on the heritage of land science data from MODIS and extend the length of the available data record.
The Landsat archive, which also offers more than three decades of historical data, is increasingly being
used for long-term change detection [79–81], although the longer revisit period combined with data
gaps continue to present challenges in many of the wettest and cloudiest tropical regions.

5. Conclusions

In the UGF region of West Africa, SWIR-based vegetation moisture indices were strongly
(AUC = 0.86) associated with woody vegetation cover, whereas red/NIR-based vegetation greenness
indices had weaker (AUC = 0.70) associations with woody vegetation. Using multiple indicators
therefore provided complementary information about vegetation dynamics that contributed to trend
interpretation and the attribution of proximate causes. In particular, our findings confirmed that
greenness trends are not a reliable indicator of changes in woody vegetation cover in the wetter regions
of West Africa dominated by forests, cropland mosaics and woody savanna. Instead, the combination
of increasing EVI trends and decreasing TCW trends across nearly 40% of our study area indicated
that the dominance and vigor of herbaceous vegetation was likely increasing in areas where woody
vegetation was declining. In contrast, decreasing trends of both EVI and TCW in the wettest tropical
rainforest regions indicated that declines in forest cover were resulting in a loss of photosynthetic
capacity. Multiple lines of evidence suggested that human land use, rather than climate trends or
anomalies, was the predominant driver of these vegetation changes across the region. Protected
areas managed for limited or no human intervention were effective at buffering human impacts on
vegetation change, whereas protected areas managed for natural resource extraction were not. In the
future, the interaction of these human impacts with increasing temperatures and potentially lower
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rainfall will likely increase the vulnerability of West African tropical forest and woody savanna to
further loss and degradation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/1/5/s1: Figure S1.
Spatial patterns of correlation coefficient between TCW (upper) and EVI (lower) and three-month antecedent
cumulative precipitations at a lag of two months before the start of the dry season. Figure S2. Numbers of
observation used to calculate Mann–Kendall trend analysis for each MODIS pixel. Figure S3. Dominant trend for
the raw vegetation indices (without controlling for the effects of precipitation). Figure S4. Mean and standard
deviations of MODIS spectral reflectance at ground validation points with different levels of woody vegetation
cover within the Eastern Guinean forests and Western Guinean lowland forests. NIR and SWIR represent
near-infrared and short wavelength infrared, respectively. Band wavelengths are blue (459– 479 nm), green
(545–565 nm), red (620–670 nm), NIR1 (841–876 nm), NIR2 (1230–1250 nm), SWIR1 (1628–1652 nm) and SWIR2
(2105–2155 nm).
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