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Abstract: The modeling and partitioning of regional evapotranspiration (ET) are key issues in global
hydrological and ecological research. We incorporated a stomatal conductance model and a light-use
efficiency-based gross primary productivity (GPP) model into the Shuttleworth–Wallace model to
develop a simplified carbon-water coupling model, SWH, for estimating ET using meteorological
and remote sensing data. To enable regional application of the SWH model, we optimized key
parameters with measurements from global eddy covariance (EC) tower sites. In addition, we
estimated soil water content with the principle of the bucket system. The model prediction of ET
agreed well with the estimates obtained with the EC measurements, with an average R2 of 0.77 and a
root mean square error of 0.72 mm·day−1. The model performance was generally better for woody
ecosystems than herbaceous ecosystems. Finally, the spatial patterns of ET and relevant model outputs
(i.e., GPP, water-use efficiency and the ratio of soil water evaporation to ET) in China with the model
simulations were assessed.

Keywords: SWH model; evapotranspiration partitioning; remote sensing; GPP modeling;
Shuttleworth–Wallace model; FLUXNET

1. Introduction

Evapotranspiration (ET) is a key process of the ecosystem water cycle and energy balance and is
closely linked to ecosystem productivity [1,2]. Thus, detailed and precise knowledge of regional ET is
important to obtain a better understanding of the global carbon and water cycles [2–4]. Simulating ET
at regional scales with high accuracy remains challenging despite the development of many relevant
models [5,6]. For example, a comparison of 15 model simulations from the Global Soil Wetness Project-2
(GSWP-2) revealed that the annual mean global land surface ET ranged from 272 to 441 mm·year−1,
indicating large discrepancies among the models [7]. A comparison by Chen et al. [6] of eight ET
models revealed a range of annual mean ET values from 535 to 852 mm in China, confirming large
model-to-model differences. Thus, further improvements in regional ET simulation and partitioning
are needed.
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The Penman–Monteith model (P-M model) [8] and the Shuttleworth–Wallace model (S-W
model) [9] are favored because they capture the physical process understanding to the best of our
current knowledge. At the site scale, since most input variables can be measured directly or estimated
from meteorological and biotic measurements, these two models are widely used [10–14]. At the
regional scale, however, the P-M and S-W models are seldom used because some key variables,
particularly the canopy stomatal conductance, are difficult to derive using remote sensing data.
Cleugh et al. [15] developed a remote sensing ET algorithm using the P-M scheme in which canopy
stomatal conductance was estimated as a function of the Normalized Difference Vegetation Index
(NDVI) and Leaf Area Index (LAI). Based on Cleugh’s algorithm, Mu et al. [16,17] developed a new
version of a global remote sensing ET model. Compared with measurements from eddy covariance
(EC) systems, Mu’s model generally illustrated good performance for many FLUXNET sites [16].

The S-W model is a two-source model developed from the P-M model. This model simulates
the water vapor flux from plants (i.e., plant transpiration) and soil (i.e., soil evaporation) separately.
The S-W model has been widely used because of its simple and accurate consideration of hydrological
processes and good performance [11–14,18,19]. Most studies indicate that the performance of S-W for
diverse ecosystems is superior to that of other ET models, particularly in terms of partitioning [10,20].
If the variables and parameters are available, the S-W model could be promising for modeling and
partitioning ET at the regional scale.

Using the Ball–Berry model [21] to estimate canopy stomatal resistance and a soil moisture
function to estimate soil surface conductance, we previously deployed the S-W model to simulate ET
with high accuracy in four grassland ecosystems [14]. By further adopting a light-use efficiency-based
gross primary productivity (GPP) model, we developed a model, SWH, for estimating and partitioning
ET using meteorological data and remote sensing products [22]. Compared to EC measurements,
the SWH model produced satisfactory estimates of ET and GPP in a temperate forest and alpine
grassland. However, two features of the current version of the SWH model prevent its application
at the regional scale. First, key parameters that were optimized at individual sites prior to model
development are not available for regional application. Second, soil water content, an input variable,
is measured directly with soil moisture sensors, which are difficult to access at the regional scale.
Therefore, to apply the SWH at the regional scale, parameterization and soil water content estimation
must be addressed. Accordingly, the objectives of this study are: (1) to optimize key parameters of the
model by using the in situ measurements from FLUXNET towers across the globe; (2) to estimate soil
water content with a bucket system model; (3) to evaluate the model performances on ET and GPP
simulation in different biome types with the FLUXNET measurements; (4) using China as a case study
region, to assess the spatial patterns of ET, GPP, the fraction of soil evaporation (E/ET) and water use
efficiency (WUE, GPP/ET) based on the outputs of the new model.

2. Materials and Methods

2.1. Model Description

The SWH model simulates plant transpiration and soil water evaporation separately with
algorithms based on the Penman–Monteith equation [8]. A full description of the SWH model is
available in Appendix A and in Hu et al. [14]. Five resistances are necessary to estimate ET with
the SWH model (Figure 1, Appendix A), i.e., soil surface resistance (rss), canopy stomatal resistance
(rsc, the reverse of canopy stomatal conductance), the aerodynamic resistances encountered by the
water flux leaving leaf lamina (rac) or soil surface (ras) before being incorporated into the mean canopy
flow and the transfer resistance between the hypothetical mean canopy flow and the reference height
(raa). rss and rsc are the most critical for model performance among the five resistances. rss was
estimated as a function of soil water content [23,24]:

rss = b1(
SWCs

SWC
)

b2

+ b3 (1)
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where SWC and SWCs are the soil water content and saturated water content in the surface soil
(m3·m−3) and b1 (s·m−1), b2 and b3 (s·m−1) are empirical constants. b1 is fixed as 3.5 s·m−1 [23].
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Figure 1. Flowchart of evapotranspiration (ET) estimation with the SWH model. The meanings of the
acronyms in this figure are available in Abbreviation.

Using the scheme of the Biome-Biogeochemical(Biome-BGC model) [24], SWC was estimated
using a one-layer bucket model in which soil water storage was estimated as the balance of water
input (i.e., precipitation and snowmelt) and output (i.e., ET, runoff and sublimation). Runoff was
calculated as the surplus precipitation overpassing the water storage at the point of the saturated and
field-holding capacity. Snowmelt and sublimation were calculated as functions of air temperature and
solar incident radiation. Thereafter, SWC was calculated using soil water storage and the parameter
‘effective soil depth’ (d), which is determined by parameterization, explained below. Due to the
insensitivity of the model output, the same empirical values of 0.45 and 0.35 m3·m−3 were used
for saturated water content and field-holding capacity, respectively, for all ecosystems. Details for
calculating the SWC are available in the Biome-BGC handbook (http://www.ntsg.umt.edu).

We estimated rsc by introducing the Ball–Berry model in our study[21]:

rsc =
1

g0 + a1 pnhs
cs

(2)

where g0 and a1 are empirical parameters, Pn (µmol·m2·s−1) is the photosynthetic rate and hs is the
leaf surface relative humidity, which was approximated using the air relative humidity. CS is the leaf
surface CO2 content. CS should vary seasonally and inter-annually, considering it is insensitive to
model simulation; hence, we simplified it as a constant (390 ppm). Note that a varying CO2 must be
used if long-term trend analysis is to be conducted.

http://www.ntsg.umt.edu
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Pn is a key driving variable in the estimation of rsc. We used GPP, which was estimated using a
satellite-based light-use efficiency model, to replace this variable [22]:

GPP = ε× PAR× FPAR. (3)

where PAR is the incident photosynthetically-active radiation (µmol·m−2·s−1) and FPAR is the fraction
of PAR absorbed by the canopy, which was estimated as a function of NDVI [25] (FPAR = 1.24NDVI − 0.168).
At the very beginning, we used the MODIS LAI/FPAR product directly, finding many outliers or no
data available at many sites, which hampered the job of parameterization. Therefore, we used NDVI to
estimate FPAR and LAI. ε is the light-use efficiency (µmol·CO2·µmol−1 PPFD, photosynthetic photon
flux density(PPFD)) and is down-regulated by air temperature and the vapor pressure deficit (VPD):

ε = εmax × f (T)× f (VPD) (4)

f (T) =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)− (T − Topt)
2 (5)

f (VPD) =


0 VPD ≥ 3.5

VPDmax−VPD
VPDmax

0.5 < VPD < 3.5
1 VPD ≤ 0.5

(6)

where εmax is the apparent quantum yield or maximum light-use efficiency and f (T) and f (VPD)
are the downward-regulation scalars for the effects of temperature and VPD (kPa) on the light-use
efficiency of vegetation, respectively. Tmin, Tmax and Topt are the minimum, maximum and optimum
air temperatures (◦C) for photosynthetic activity, respectively. If the air temperature falls below Tmin

or increases above Tmax, f (T) is set to zero. In this study, Tmin, Topt and Tmax were set to 0, 20 and
40 ◦C, respectively [26]. A minimum and maximum VPD, which indicates the start and full constraint
of VPD was set as 0.5 and 3.5 kPa, respectively [27].

Note that various schemes are used to down-regulate ε in different light-use efficiency-based GPP
models [26,28–30]. We compared most schemes and their combinations to yield the solution used in
this study, which has a relatively high accuracy and is convenient for use at the regional scale [31].

In the SWH model, LAI and the light extinction coefficient (λ) are needed to estimate the
downward solar radiation reaching the soil surface. LAI was estimated as a function of FPAR and
λ using Beer’s law (Equation (A6) in Appendix A). A plant functional type-specific λ was obtained
based on a meta-analysis of global terrestrial ecosystems [32]. Soil heat flux (G) is needed to estimate
the net radiation to the soil surface (Equation (A5) in Appendix A), which was estimated as a function
of net radiation and NDVI (G = 0.1Rn(1 − 0.98NDVI4) [33]. The model time step was set to 8 days
because the satellite products were calculated as 8-day composites.

2.2. Site Information

The EC flux data and in situ meteorological measurements from 68 FLUXNET sites (The LaThuile
free fair-use Dataset), were extracted from the Level 4 product, which was downloaded directly
from the FLUXNET website (Oak Ridge National Laboratory Distributed Active Archive Center
(ORNL DAAC), 2013). Data for 8 additional sites were obtained from the Chinaflux network. After
removing the sites for which there was less than one year of measurements and no net radiation
measurements or NDVI data were available, 63 sites remained for analysis in this study (Table S1),
including 7 cropland sites, 11 grassland sites, 5 savanna sites, 3 wetland sites, 3 shrubland sites,
7 deciduous broadleaf forest sites (DBF), 5 evergreen broadleaf forest sites (EBF), 19 evergreen
needleleaf forest sites (ENF) and 3 mixed forest sites (MF).
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2.3. Data

Continuous records of half-hourly GPP were calculated based on the net ecosystem
exchange (NEE) and ecosystem respiration (Re), with Re determined with nocturnal thermal
sensitivity curves [34]. The data gaps of NEE associated with equipment failures and unsuitable
micrometeorological conditions were filled with the temperature response approach or light response
approach [34]. A continuous one-day GPP and ET were summed to obtain daily values. The daily
values were then averaged to 8-day intervals in accordance with the temporal resolution of the MODIS
data. These EC-derived GPP and ET were then used to calibrate and test the model. Meteorological
data (i.e., air temperature, precipitation, relative humidity, wind speed, Rn and PAR) were the input
driving variables for the modified SWH model. In situ measurements of these variables at the flux
tower sites were used when deriving the site-specific parameter sets. In addition to the flux data from
FLUXNET towers, we also collected data of annual values of GPP and ET at 43 non-Chinaflux sites in
China, which was extracted from the published literature (site information is available in Yu et al. [35]).
Since this dataset included only the annual values, it was not used for parameterization, but only for
testing the model performance.

To estimate regional ET in China based on in situ measurements at 750 nationwide meteorological
stations, air temperature, precipitation, relative humidity and wind speed were spatially interpolated
at a resolution of 10 km with the method of a bi-variate thin plate with elevation as a covariate using
the ANUSPLIN software package [36]. Rn was calculated as the balance of incident downward and
upward shortwave and longwave radiation, in which the MODIS albedo product was used to estimate
the net downward shortwave radiation, and the model of Allen et al. [37] was used to estimate the
net upward radiation. Incident shortwave radiation and PAR were estimated with the Ångstrøm
equation [38]. Detailed information of this method is available in Zhu et al. [39].

NDVI is another key driving variable in the SWH model. MODIS NDVI (MOD13Q1) data
are satellite products acquired from the website of ORNL DAAC (1 km, http://daac.ornl.gov).
These MODIS products contain some cloud-contaminated or missing data. Therefore, before inputting
the data into the model, these products were processed using the software package TIMESAT3.0
(an asymmetric Gaussian method) to exclude noise and fill gaps [40].

2.4. Parameterization

We used in situ measurements of ET and GPP with EC systems at the 63 sites across the globe to
optimize b2, b3, a1, g0, εmax and d. We first optimized the parameters site by site, yielding 63 site-specific
parameter sets. The parameters were optimized by Monte Carlo simulation, which was described in
detail in our previous study [14]. Briefly, we performed 10,000 Monte Carlo simulations to select ten
top-performance parameter sets, and the mean of the ten top-performance parameter sets was regarded
as the best-fit parameter set. As expected, the site-specific parameters resulted in desirable model
performance at most sites. For regional application of the model, we next calculated the bulk average
values of the parameters for each biome based on the site-specific parameters; i.e., all parameter sets of
the sites belonging to the same biome were averaged as the parameter set for that biome. Note that
the flux data and meteorological data at some sites were gap-filled due to diverse technique problems
causing the data missing, which might cause large uncertainties if the gaps were very big, and this in
return may cause unreliable parameterization. To minimize this adverse effect we excluded the sites
with poor calibration performance, i.e., if the R2 between EC measurements and model predictions
was less than 0.6, the parameter estimated at this site was not used to estimate the biome-average
parameters. Finally, the estimated parameter sets at three sites (i.e., ID-Pag, US-Ha1, and DHS in
Table S1) were excluded.

At the very beginning, we calibrated the model using the measurements from half of the sites,
and the measurements from the remaining sites were used to test the model performance (Figure S1).
Comparing with the results with all sites being used for calibration, we yielded very close parameter
estimates for each biome, and the simulated ET was nearly identical (data not shown). Assuming that

http://daac.ornl.gov
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using data of more sites would make the estimated parameters more convincing, we therefore used
the parameters with all sites for calibration in this study. All results of the model simulation in this
paper were based on the biome-specific parameter sets.

2.5. Model Performance and Sensitivity Analysis

With the calculated biome-specific parameters and soil water content being estimated with the
bucket scheme, we evaluated the model with two independent datasets of ET and GPP. The first
dataset was the in situ measurements at the 63 flux tower sites, and the second was the GPP and ET in
ecosystems in China extracted from published literature (see the details in Section 2.3). The driving
meteorological variables for this first dataset were the in situ measurements at the tower sites and
were the 10-km interpolated products for the second dataset.

The determinant coefficients of the relationship between model and observation (R2) and the
root mean square error (RMSE) were used to quantify the difference between the model predictions
and observations:

RMSE =

√
∑ (Oi −Mi)

2

N
(7)

where Oi and Mi are the observed and modeled values, respectively. N is the total number of
observations at one site.

Sensitivity analysis is a critical step in the identification of the potential parameters and driving
variables that cause model uncertainty. Some advanced methodologies for performing sensitivity
analysis have been developed in recent years [41]. Here, we conducted a conventional one-at-a-time
sensitivity analysis. This method involves varying the model parameters individually while fixing
the remaining parameters [42]. We ran the SWH model by increasing or decreasing each of the
model parameters or driving variables by 10% while fixing the others. The model output sensitivity
(in %) was calculated as the relative differences in mean daily ET between the model runs (run+10% or
run−10%) and the reference run (runbase):

VR+10% = 100× |runbase − run+10%|
runbase

(8)

VR−10% = 100× |runbase − run−10%|
runbase

(9)

The maximum value between VR+10% and VR−10% was regarded as the sensitivity of the modeled
ET to the selected parameter or the driving variable. In the sensitivity analysis, we mainly focused on
the six estimated parameters with large variability among the sites (Table 1). In addition, because the
soil water content was estimated and the NDVI product may have large uncertainty under cloudy
weather conditions, these two driving variables were also included in the sensitivity analysis.

Table 1. Look-up table of model parameters for each biome type. The values in parentheses are
standard deviations.

Biome b2 b3 (s·m−1) a1 g0 (mol·m−2·s−1) εmax (mg CO2 µmol−1 PPFD) d (mm)

Cropland 3.8 (0.7) 643 (234) 7.5 (3.8) 0.028 (0.025) 0.0022 (0.0003) 303 (95)
Forest 3.5 (0.8) 724 (215) 9.0 (5.4) 0.005 (0.004) 0.0011 (0.0003) 244 (110)

Grassland * 3.4 (0.9) 508 (279) 10.3 (4.2) 0.017 (0.021) 0.0012 (0.0005) 188 (95)

* The number of flux sites of savanna, wetland and shrubland is too small to estimate their parameters with
acceptable confidence. Considering these biomes types are physically close to grassland and the values of
optimized parameters are also close, we combines the four biome types and use the same parameter set. PPFD:
photosynthetic photon flux density (µmol·m−2·s−1).
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3. Results

3.1. Parameterization and Model Sensitivity

The optimized parameters for each biome type are presented in Table 1. The slope coefficient
in the Ball–Berry model, a1 (Equation (2)), was estimated as 7.5 to 10.3. The maximum light-use
efficiency, εmax, was estimated as 0.0011 mg·CO2·µmol−1 PPFD for forest and grassland and
0.0022 mg·CO2·µmol−1 PPFD for cropland, indicating that croplands have the maximum light-use
efficiency, possibly twice as high as that of forests and grasslands. However, a large site-to-site
variability of the parameters was detected within each biome type. For example, the magnitude
of variability (standard deviations) of g0 is comparable to the mean values. In comparison,
the within-biome variability was least for εmax, which was relatively conserved across sites.

Sensitivity analysis results indicated that the modeled ET was most sensitive to NDVI;
10% changes in NDVI resulted in approximately 4% changes in ET (Table 2). NDVI was followed by a1

(or εmax, ca. 3%), g0 (1.0% to 1.8%), b2 (0.5% to 2.5%) and b3 (0.5% to 1.3%). The sensitivity to soil water
content and soil depth was minor. Ten percent changes in each of these two parameters introduced
changes of less than 1% in ET (except a 1.7% change for SWC in grassland).

Table 2. Sensitivities of modeled ET to changes (max[VR+10%, VR−10%]) in key variables and
parameters. NDVI: Normalized Dynamic Vegetation Index; SWC: soil water content.

Biome NDVI SWC b2 b3 a1 g0 εmax d

Cropland 3.0 0.4 0.5 0.5 2.2 1.0 2.2 0.2
Forest 5.1 0.5 0.8 1.3 4.2 1.3 4.2 0.2

Grassland 3.6 1.7 2.5 1.1 2.5 1.8 2.5 0.3

Comparing the parameter sensitivities among the vegetation types revealed that the model was
significantly more sensitive to the parameters when estimating rss in grassland than in cropland and
forest (Table 2). For example, the sensitivity of b2 in grassland (2.5%) was three-fold greater than that
in forest (0.8%) and five-fold greater than that in cropland (0.5%). In addition, the model sensitivity
of SWC in grassland (1.7%) was obviously much larger than in forest (0.5%) and cropland (0.4%).
These results imply that the accurate estimation of soil surface resistance is more important for
grassland than for the other two biome types.

3.2. Model Performance

The SWH model performed well for both ET and GPP simulations. Collectively, the SWH model
explained 65% of the variation in eight-day ET and 68% in GPP at the 63 sites (p < 0.01, Figure 2).
By comparison, the MODIS ET algorithm explained 53% of the variations in ET (p < 0.01). In general,
both the SWH model and the MODIS ET algorithm underestimated ET at the sites or in the season
with high ET.

The model performance for ET and GPP prediction for each site and vegetation type is shown
in Table 3. According to the R2 and RMSE of the model-measurement relationship, the SWH
model performance was best in MF (0.82, 0.59 mm·day−1), DBF (0.82, 0.66 mm·day−1) and ENF
(0.81, 0.64 mm·day−1), followed by shrubland (0.80, 0.67 mm·day−1), savanna (0.80, 0.78 mm·day−1),
cropland (0.78, 0.71 mm·day−1) and wetland (0.76, 0.9 mm·day−1). However, the model performance
was inferior in EBF (0.70, 0.75 mm·day−1) and grassland (0.68, 0.83, mm·day−1). This result indicates
that, except for EBF, the model performs better in woody ecosystems than in herbaceous ecosystems.

Compared with the MODIS algorithm, the SWH model yielded a higher R2 at 58 of the 63 sites
and lower RMSE at 36 of the 63 sites. The bulk average R2 of the SWH model for all 63 sites was
0.13 higher (0.77 for SWH and 0.64 for MODIS), and the average RMSE was 0.11 mm·day−1 lower
(0.72 for SWH and 0.83 for MODIS). The performance of the two models was comparable for DBF,
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savanna and shrubland, whereas SWH exhibited superior performance for EBF, wetland and MF
(Figure 3).Remote Sens. 2017, 9, 54  8 of 20 
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and GPP derived from the measurements using eddy covariance (EC) systems.
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Figure 3. Mean difference between the model predictions (including the SWH model and the MODIS
ET algorithm) and observations in terms of (a) the determinant coefficient of the model-observation
relationship (R2); and (b) the root mean square error (RMSE) for each plant functional type.
The numbers in parentheses indicate the number of sites used in this study. The error bars indicate
standard deviations.
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Table 3. Performances of the SWH and MODIS algorithms in ET and GPP prediction. R2_ET, R2_GPP
and R2_MODIS are the R2 of the relationships between ET modeled by SWH, GPP by SWH, MODIS
ET and the observations, respectively. RMSE_ET (mm·day−1), RMSE_GPP (g·C·m−2·day−1) and
RMSE_MODIS (mm·day−1) are the root mean square errors between ET modeled by SWH, GPP by
SWH, MODIS ET and the observations, respectively. PFT, plant functional type.

PFT Site ID R2_ET RMSE_ET R2_GPP RMSE_GPP R2_MODIS RMSE_MODIS

Cropland

NL-Lan 0.82 0.56 0.72 3.40 0.79 0.51
NL-Lut 0.55 1.11 0.50 4.86 0.50 0.79
US-Blo 0.86 0.66 0.49 1.64 0.10 1.46
US-Ne1 0.92 0.51 0.82 3.31 0.82 0.86
US-Ne2 0.85 0.69 0.69 4.35 0.80 0.86
US-Ne3 0.88 0.60 0.83 2.96 0.84 0.63

YC 0.55 0.82 0.65 2.42 0.40 0.88
Average 0.78 0.71 0.67 3.28 0.61 0.85

Grassland

IT-Amp 0.77 0.60 0.41 2.18 0.58 0.68
NL-Ca1 0.88 0.41 0.77 1.47 0.79 0.46
NL-Hor 0.94 1.16 0.91 1.79 0.60 1.55
US-Aud 0.60 0.61 0.55 1.13 0.51 0.58
US-Bo1 0.72 0.83 0.59 4.04 0.62 0.73
US-FPe 0.60 0.81 0.34 1.35 0.32 1.02
US-Goo 0.66 0.98 0.64 2.12 0.50 0.83
US-Var 0.30 0.92 0.35 2.39 0.74 0.59

DX 0.69 1.16 0.86 0.39 0.66 0.99
GCT 0.82 0.91 0.94 0.53 0.76 0.66
NM 0.51 0.69 0.73 1.07 0.41 1.38

Average 0.68 0.83 0.64 1.68 0.59 0.86

Savanna

AU-How 0.67 0.90 0.57 1.79 0.66 0.92
BW-Ghg 0.97 0.88 0.93 1.42 0.74 0.49
BW-Ghm 0.90 0.87 0.62 2.09 0.89 0.72
BW-Ma1 0.79 0.59 0.79 0.79 0.78 1.10
US-Ton 0.69 0.66 0.77 0.89 0.65 0.89
Average 0.80 0.78 0.74 1.40 0.74 0.82

Wetland

CA-Mer 0.87 0.73 0.89 2.28 0.66 1.60
SE-Faj 0.72 0.40 0.48 2.12 0.19 0.73

SD 0.69 1.58 0.90 0.62 0.60 1.17
Average 0.76 0.90 0.76 1.67 0.48 1.17

Shrubland

CA-NS6 0.86 0.73 0.87 1.22 0.78 0.65
CA-NS7 0.81 0.80 0.69 1.60 0.73 1.17
CA-SF3 0.73 0.49 0.84 1.28 0.84 0.86
Average 0.80 0.67 0.80 1.37 0.78 0.89

DBF

IT-Ro1 0.75 0.98 0.66 2.28 0.69 1.05
IT-Ro2 0.83 0.75 0.77 2.35 0.69 0.75
US-Bar 0.91 0.68 0.90 1.28 0.90 0.52
US-Ha1 0.57 0.79 0.86 2.16 0.51 0.71

US-MMS 0.89 0.50 0.78 1.94 0.80 0.72
US-UMB 0.93 0.47 0.94 1.07 0.90 0.52
US-WCr 0.84 0.48 0.87 2.02 0.70 0.67
Average 0.82 0.66 0.83 1.87 0.74 0.71

EBF

AU-Tum 0.85 0.84 0.78 2.43 0.55 1.07
AU-Wac 0.80 0.52 0.47 2.18 0.30 0.90
ID-Pag 0.53 0.58 0.23 2.13 0.08 1.45
IT-Cpz 0.74 1.16 0.48 2.89 0.46 1.08
DHS 0.59 0.67 0.60 1.07 0.43 0.62

Average 0.70 0.75 0.51 2.14 0.36 1.02

ENF

CA-Man 0.83 0.44 0.91 1.12 0.67 0.42
CA-NS1 0.88 0.50 0.85 1.60 0.74 0.37
CA-NS2 0.88 0.51 0.38 2.10 0.69 0.38
CA-NS3 0.80 0.40 0.87 1.04 0.48 0.51
CA-NS4 0.90 0.61 0.90 1.78 0.49 0.38
CA-NS5 0.89 0.34 0.90 1.16 0.84 0.63
CA-Qcu 0.82 0.42 0.84 1.73 0.81 0.43
CA-Qfo 0.84 0.37 0.87 0.87 0.85 0.28
CA-SF1 0.73 0.84 0.84 1.06 0.79 0.88
CA-SF2 0.74 0.82 0.58 2.41 0.81 0.51
DE-Tha 0.75 0.60 0.87 2.73 0.63 0.98
FI-Hyy 0.89 0.32 0.94 1.09 0.88 0.31
NL-Loo 0.63 0.72 0.89 1.83 0.51 0.75
SE-Sk2 0.88 1.58 0.97 2.95 0.81 2.91
SE-Fla 0.69 0.63 0.87 0.96 0.62 0.42

US-Bkg 0.81 1.28 0.48 1.99 0.77 1.22
US-Ho1 0.89 0.47 0.95 1.42 0.80 0.76
US-Me4 0.82 0.48 0.71 1.66 0.81 0.54

QYZ 0.67 0.78 0.52 2.39 0.53 0.77
Average 0.81 0.64 0.80 1.68 0.71 0.71

MF

US-PFa 0.72 0.79 0.71 1.81 0.17 1.19
US-Syv 0.88 0.53 0.92 1.13 0.80 0.49

CBS 0.87 0.46 0.95 1.78 0.68 0.69
Average 0.82 0.59 0.86 1.58 0.55 0.79
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When the interpolated climate data were used as the input variables, the model predictions were
also consistent with the observations (i.e., the annual values of GPP and ET at 43 non-Chinaflux sites
in China published in the literature). The model explained 77% and 84% of the spatial variability of
GPP and ET, respectively (Figure 4). Note that similar to the validation for flux sites at the eight-day
scale, certain underestimations of both GPP and ET were observed for the sites (or years) with high
GPP and ET values. In addition, the regionalized model (i.e., driving with interpolated climate data)
also illustrated good performance at the eight-day timescale. The model explained 62% and 77% of the
variations in ET and GPP, respectively (Figure S2).

Remote Sens. 2017, 9, 54  10 of 20 

 

CA-SF2 0.74  0.82  0.58  2.41  0.81  0.51  
DE-Tha 0.75  0.60  0.87  2.73  0.63  0.98  
FI-Hyy 0.89  0.32  0.94  1.09  0.88  0.31  
NL-Loo 0.63  0.72  0.89  1.83  0.51  0.75  
SE-Sk2 0.88  1.58  0.97  2.95  0.81  2.91  
SE-Fla 0.69  0.63  0.87  0.96  0.62  0.42  

US-Bkg 0.81  1.28  0.48  1.99  0.77  1.22  
US-Ho1 0.89  0.47  0.95  1.42  0.80  0.76  
US-Me4 0.82  0.48  0.71  1.66  0.81  0.54  

QYZ 0.67  0.78  0.52  2.39  0.53  0.77  
Average 0.81  0.64  0.80  1.68  0.71  0.71  

MF 

US-PFa 0.72  0.79  0.71  1.81  0.17  1.19  
US-Syv 0.88  0.53  0.92  1.13  0.80  0.49  

CBS 0.87  0.46  0.95  1.78  0.68  0.69  
Average 0.82  0.59  0.86  1.58  0.55  0.79  

When the interpolated climate data were used as the input variables, the model predictions were 
also consistent with the observations (i.e., the annual values of GPP and ET at 43 non-Chinaflux sites 
in China published in the literature). The model explained 77% and 84% of the spatial variability of 
GPP and ET, respectively (Figure 4). Note that similar to the validation for flux sites at the eight-day 
scale, certain underestimations of both GPP and ET were observed for the sites (or years) with high 
GPP and ET values. In addition, the regionalized model (i.e., driving with interpolated climate data) 
also illustrated good performance at the eight-day timescale. The model explained 62% and 77% of 
the variations in ET and GPP, respectively (Figure S2). 

 
Figure 4. Comparisons of the yearly values of modeled GPP (a); and ET (b) with observations from 
EC systems for ecosystems in China (n = 49). The sites used for model parameterization (Table 1) are 
not included in the illustration. 

3.3. Regional GPP, ET, WUE and E/ET in China 

According to the model simulations performed at the regional scale, GPP and ET exhibit similar 
spatial patterns in China (Figure 5). Ecosystems with high GPP and ET were mainly distributed in 
southern and eastern China, where forest and cropland are the dominant ecosystem types. 

200 400 600 800 1000 1200

200

400

600

800

1000

1200

(b)M
o

d
el

e
d 

E
T

 (
kg

 H
2
O

 m
-2
 y

-1
)

Observed ET (kg H
2
O m -2 y-1)

y = 0.74x + 86.7 R 2 = 0.84

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500 y = 0.78x + 200.6  R 2 = 0.77

M
od

el
ed

 G
P

P
 (

g 
C

O
2
 m

-2
 y

-1
)

Observed GPP (g CO
2
 m -2 y-1)

(a)

Figure 4. Comparisons of the yearly values of modeled GPP (a); and ET (b) with observations from EC
systems for ecosystems in China (n = 49). The sites used for model parameterization (Table 1) are not
included in the illustration.

3.3. Regional GPP, ET, WUE and E/ET in China

According to the model simulations performed at the regional scale, GPP and ET exhibit similar
spatial patterns in China (Figure 5). Ecosystems with high GPP and ET were mainly distributed in
southern and eastern China, where forest and cropland are the dominant ecosystem types. Ecosystems
with low GPP and ET were mainly distributed in northern and western China (including the Tibetan
Plateau), where grassland is the dominant ecosystem type. The average ET of the ecosystems in China
in 2000 to 2010 was 408.7 mm·year−1. Similarly, the mean value of GPP was 809 g·C·m−2·year−1,
WUE was 1.68 g·C·mm−1·H2O and E/ET was 55%. Spatially, WUE was high in the southern and
eastern areas, where forest and cropland are the major ecosystem types, but low in the northern and
western areas, where grassland is the dominant ecosystem type. For E/ET, however, the spatial pattern
was the opposite.
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4. Discussion

4.1. Parameters of the SWH Model

The values of the optimized parameters were consistent with previously-published results.
For example, the slope coefficient in the Ball–Berry model (Equation (2)) was estimated as 7.5 to 10.3,
consistent with the values in Community Land Model(CLM)4.0 [43]. The estimated maximum light-use
efficiency values (0.0011 mg·CO2·µmol−1 PPFD for forest and grassland and 0.0022 mg·CO2·µmol−1

PPFD for cropland) are located in the middle range of εmax variations in the meta-analyses of
Kergoat et al. [44] and Garbulsky et al. [45]. Note that we derived εmax using the NDVI data to
estimate FPAR (Equation (3)). A higher εmax would have been obtained if the Enhanced Vegetation
Index (EVI) had been used to derive this parameter due to the lower magnitude of EVI compared to
NDVI. Our results indicated that the maximum light-use efficiency is two-fold higher in cropland than
in forest and grassland, most likely due to the intensive management of cropland through techniques
such as irrigation and nutrient manipulation.

Our results indicated large site-to-site variability for most of the estimated parameters, which
implies that the use of the look-up table approach for each biome type will introduce uncertainties into
the model. For better region-scale performance of the model, we originally expected to identify some
empirical relationships between the parameters and climate or biotic variables for application to the
estimation of parameters at other sites. Unfortunately, we failed to identify any regression correlation
between the parameters and climatic- or vegetation-related variables. The factors affecting the spatial
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variations in the parameters may be too complex to use a simple regression method to depict the
spatial pattern. Alternatively, the number of sites in this study may not be sufficient to clarify the
mechanism that controls the spatial patterns of the parameters. Data from more sites may clarify the
spatial patterns of the parameters. In contrast to most parameters, the estimated maximum light-use
efficiency, εmax, was relatively constant across sites (Table 2). This finding is consistent with a recent
study by Yuan et al. [46], who reported that the use of a constant εmax introduces only a minor bias in
the estimation of GPP.

The data of observations may introduce some uncertainties for parameterization due to the
effect of gap-filling at some flux sites. However, this uncertainty is minor and has quite little impact
on the estimate of biome-specific parameters. First, the quality of the FLUXNET dataset had been
comprehensively assessed and controlled before release. The very bad data were assigned the value of
−9999, which was excluded for parameterization in our study. Second, we have excluded the sites with
poor calibration performance, which could be possibly due to the uncertainty from observations (see the
Methods). In addition, assuming that the gap-filled observation data exert large uncertainties on model
simulation, one can expect that the model performance would be very poor, and the parameterization
results with data from different groups of sites would be much different and the simulated ET
inconsistent. However, our results indicate that the model illustrated reliable performance, implying
that the estimated parameter sets were reliable. Furthermore, using the data of 32 sites and 64 sites
to estimate the parameters, respectively, we found that the two methods yielded very close values of
biome-specific parameters, and the simulated ETs with the two parameter sets were nearly identical
(data not shown).

4.2. Reliability and Merits of the SWH Model

Compared with the EC observations, the SWH model yielded an average R2 of ca. 0.8 and a
RMSE of ca. 0.7 mm·day−1 at all 63 sites (Table 3). This performance is comparable to the performance
achieved using models driven by climatic and remote sensing data. Mostly, models yielded an R2

close to or less than that of SWH, e.g., 0.71 and 0.68 for the Remote Sensing Penman Monteith (RS-PM)
model and EC-LUE model [30], 0.64 for the modified PM model [47] and 0.75 for the Breathing Earth
System Simulator (BESS) model [48]. In addition, Vinukollu et al. [49] evaluated the performances of
three process-based models, including a single source energy budget model, a Penman-Monteith-based
approach and a Priestley-Taylor-based approach at the global scale. Their intercomparison of model
estimates with 12 EC towers yielded a mean correlation of 0.57. Chen et al. [6] reported mean R2 and
RMSE values of 0.5 to 0.8 and 0.45 to 0.75 mm·day−1, respectively, for eight ET models at 23 EC sites.

Compared with previous model reports, our estimated mean annual ET in China (408.7 mm)
is within the range of the global average, i.e., 310 to 547 mm [5]. This value is slightly higher than
the estimate of Yao et al. [50], who reported a mean annual ET in China of 364.9 mm. Recently,
Chen et al. [6] estimated ET in China using eight ET models; the annual ET ranged from 535 to
852 mm among the models. The variation in these results may be the result of differences among
model structures [6]. In addition, the different sources and spatial resolutions of the input climate data
used in the different models may also underlie this variation [51].

Our estimated E/ET (0.55) is consistent with the estimated global average based on ten process
models, which yielded values ranging from 0.36 to 0.75, with an average of 0.58 [5]. However, a
recent meta-analysis by Schlesinger and Jasechko [52] indicated that global E/ET is 39% (±15% SD),
suggesting that the average E/ET in ecosystems in China, when estimated using the SWH model,
may be higher than the global average. This higher estimate may be partly due to the high proportion
of grassland in China (ca. 40% of the country). In addition, the model’s underestimation of GPP may
also contribute to the higher E/ET.

The SWH model simulated that the ecosystems with high ET were mainly distributed in southern
and eastern China, whereas low-ET ecosystems were mainly distributed in northern and western
China. Similarly, Yao et al. [50] and Chen et al. [6] also reported that ET was highest in the humid
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tropics and sub-tropics, intermediate in temperate regions and lowest in both cold and arid regions.
Water-use efficiency (WUE) exhibited a spatial pattern similar to the patterns observed for GPP and
ET, with high values in the forest ecosystems in southern and eastern China and low values in the
grasslands in northern China. This result is consistent with the results of inter-site comparisons
based on EC measurements [14,53]. This spatial pattern may be primarily due to the lower E/ET in
ecosystems with dense canopies, which may allow these ecosystems to use water more efficiently [54].

As a simplified water-carbon coupling model, the SWH model represents a compromise between
biogeochemical models that involve many detailed processes and conventional remote sensing ET
models that only involve several empirical functions. By using the scheme of the S-W model,
the SWH model estimates the water vapor fluxes in ecosystems with a mechanistic approach. However,
by introducing the stomatal conductance model and the light-use efficiency-based GPP model,
the SWH model largely reduces the processes and parameters required to simulate the photosynthesis
process (Table 4). In addition to ET partitioning, the SWH model also estimates GPP, another key
variable in ecological processes, which helps to address the coupling relationship between carbon and
hydrological processes (e.g., ecosystem WUE) at multiple spatiotemporal scales [54]. The third merit
of the SWH model is that relatively few input variables are required. One remote sensing product
(i.e., NDVI) and six meteorological variables (i.e., air temperature, precipitation, relative humidity,
wind speed, Rn and PAR) are the input driving variables for the model (Figure 1). Most of the variables
are accessible from public data sources, facilitating regional and global applications.

Table 4. List of ET models driven by remote sensing and climate data. Note that the models estimating
ET indirectly with the energy balance approach are not included. PML: Penman—Monteith—Leuning,
PT-Fi: Priestley—Taylor—Fisher. RS-PM: Remote Sensing Penman—Monteith. BESSS: Breathing Earth
System Simulator.

Model Type Complexity ET Partitioning GPP Simulation Reference

PML Empirical low
√

Leuning et al. (2008) [20]
PT-Fi Empirical low

√
Fisher et al. (2008) [3]

Regression model Empirical Low Wang et al. (2010) [55]
Model tree ensemble Empirical high Jung et al. (2010) [2]
Yang’s model Empirical low Yang et al. (2013) [56]
EC-LUE process middle

√
Yuan et al. (2010) [46]

MODIS ET process middle
√

Mu et al. (2011) [17]
RS-PM process low Cleugh et al. (2007) [15]
PM_zhang process low Zhang et al. (2010) [47]
BESS process high

√
Ryu et al. (2011) [48]

SWH process middle
√ √

This study

4.3. Uncertainties of the SWH Model

Our results illustrated different performances across sites and PFTs. Further analysis indicated
that the model performance for ET prediction was significantly correlated with the performance
for GPP prediction (p < 0.01, Figure S3), indicating that accurate estimate of GPP is critical for ET
simulation in the SWH model. In this study, GPP was estimated using a light-use efficiency model.
The remotely-sensed NDVI product was a key driving variable in GPP estimation, which may
introduce large uncertainty in some regions (discussed below). Uncertainties may also be incurred
by the inaccurate estimate of light-use efficiency. Many efforts have been made to solve this issue,
such as improving drought constraint [51], accounting for diffusive radiation [57,58] and updating
the empirical values in the equations of environmental constraints (e.g., Tmin, Topt, Tmax, VPDmax) in
the GPP model [31]. Therefore, improving GPP estimation would be anticipated with the outcome of
these efforts, which thus will be a benefit for improving ET modeling with the SWH model.

Our results illustrated that the model performances were poorer in EBF and grasslands.
Monitoring of tropical forests using shortwave radiation from satellite-based observations is difficult
due to atmospheric effects, particularly severe cloud contamination in tropical regions with EBF
ecosystems [6,51]. Therefore, the lower-quality NDVI product likely underlies the poorer model
performance in EBF (Figure 3). For grasslands, the most sensitive parameters are likely responsible for
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the model uncertainty. As our sensitivity analysis indicated, the model was much more sensitive to the
parameters used to estimate the soil surface resistance in grassland than in cropland and forest (Table 2).
In addition, inaccurate estimates of GPP may be another important source of the poorer estimates of
ET in grassland. For example, we recently compared four widely-used light-use efficiency-based GPP
models. The results indicated that most models yielded poorer estimates of GPP in grassland than
other ecosystem types [31].

The different model performances among biome types may also partly be determined by
the scheme used to estimate ET components. In the community of the two-source ET models,
three different vegetation parameterization schemes are adapted, i.e., layer approach, patch approach
and hybrid approach. The SW model uses the layer approach, and it does not distinguish soil
evaporation from inter-canopy soil surface and under-canopy soil surface. One limitation of the layer
approach is that it suits uniformly-vegetated surfaces better [59]. This may be an additional reason
why the SWH model performed better in biomes with a more uniform vegetation distribution.

Another uncertainty associated with the SWH model is its lack of consideration of intercepted
canopy water evaporation, which may introduce biased estimations of ET in forest ecosystems with
high and frequent rainfall events and, consequently, potentially reduce the model performance at
EBF sites. However, the MODIS algorithm, which estimates wet canopy evaporation independently,
also clearly exhibited poorer predictive ability in EBF (Figure 3). This result suggests that canopy
interception is not an important source of the inconsistencies between the SWH model and observations
at EBF sites.

Soil water content is a necessary driving variable in the SWH model and was estimated using a
one-layer bucket model. We expected that inaccurate estimates of soil water content would introduce
large uncertainty into the modeled ET. However, the sensitivity analysis indicated that the modeled
ET does not depend on soil water as strongly as anticipated. A 10% change in soil water content
introduced a less than 1% change in ET (Table 2). This result is reasonable considering the time step
of the model. It is acknowledged that ET would depend highly on soil water content at diurnal and
daily time scales. At daily and lower time scales, the effect of soil water content is largely through
impacts on plant stomatal conductance. In our study, ET was estimated at an eight-day time step, in
which the effect of soil water content would largely ne via impacts on Leaf Area Index (which can be
quantified with NDVI), instead of stomata. This might be the reason why NDVI is the most sensitive
variable in the model. In addition, soil moisture was only used to estimate the soil surface resistance
of evaporation, rss, in the SWH model (Equation (1)), which makes the ET simulation depend on soil
water content very little.

The SWH model simulates ET, as well as the major components of soil water evaporation and
plant transpiration. However, we failed to quantify the model performance for estimating each
component in this study. We recently analyzed eddy flux tower measurements from three Chinaflux
forest sites at which flux towers were installed both above and below the canopy, allowing us to
partition ET with direct measurements. The results indicated that the model outputs were generally
consistent with the observations [53]. However, due to the scarcity of such observations, and the
possible overestimation of E/ET mentioned above, we acknowledge that further work is needed to
fully evaluate the partitioning performance of the model.

5. Conclusions

The SWH model prediction of ET and GPP agreed well with the observations recorded at global
flux tower sites. In general, the model performance was better for woody ecosystems than for
herbaceous ecosystems. Using interpolated climate data for China as the input climate forcing,
the model simulations were also consistent with the measurements. Based on the simulation, high ET,
GPP, WUE and E/ET values were observed in southern and eastern China, where forest and cropland
are the dominant ecosystem types. The opposite pattern was observed in northern and western
China, where grassland is the dominant ecosystem type. Notably, the model performance was poorer
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for evergreen broadleaf forest and grassland. Uncertainties in the GPP model, the remote sensing
product and key parameters are likely the sources of the biased estimation of ET in those ecosystems.
These aspects should be targeted in future improvements of the model.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/1/54/s1,
Table S1: Site Information for the eddy covariance (EC) flux sites in this study, including plant functional
type (PFT), site identifier (Site ID), latitude (Lat), longitude (Lon), data period, country, and references. Figure S1:
Performances of the SWH model in estimating ET (a,b) and GPP (c,d) at 32 sites, which were used for calibration
(a,c) and the remaining sites for validation (b,d). Figure S2: Comparisons of eight-day ET (a) and GPP (b) derived
from eddy covariance and estimated by the regionalized SWH model, which was driven by the 10-km interpolated
meteorological products. Figure S3: Correlation between the model performance on GPP simulation and ET
simulation. R2_GPP and R2_ET are the determinant coefficient of the relationship between modeled and measured
GPP and ET, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

BESS Breathing Earth System Simulator
Biome-BGC Biome-Biogeochemical
CLM Community Land Model
DBF Deciduous broadleaf forest sites
E Soil evaporation (mm·day−1)
EBF Evergreen broadleaf forest sites
ENF Evergreen needleleaf forest sites
ET Evapotranspiration (mm·day−1)
FPAR Fraction of PAR absorbed by the canopy
GPP Gross primary productivity (g·C·m−2·day−1)
LAI Leaf Area Index
MF Mixed forest sites
NDVI Normalized Difference Vegetation Index
NEE Net ecosystem exchange
ORNL DAAC Oak Ridge National Laboratory Distributed Active Archive Center
PAR Photo-synthetically active radiation (mol·m−2·s−1)
P-M Penman-Monteith
PPFD photosynthetic photon flux density
RS-PM Remote Sensing Penman Monteith
RH Relative humidity (%)
S-W Shuttleworth-Wallace
SWC Soil water content (%)
T Plant transpiration (mm·day−1)
VPD Vapor pressure deficit (kPa)
WS Wind speed (m/s)
WUE Ecosystem water-use efficiency (g·C·kg−1·H2O)
CS Leaf surface CO2 content
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d Effective soil depth
G Soil heat flux (W·m−2)
hs Leaf surface relative humidity
Pn Photosynthetic rate (µmol·m−2·s−1)
raa Aerodynamic resistance between canopy source height and reference level (s·m−1)
rac Bulk boundary layer resistance of the vegetative elements in the canopy (s·m−1)
ras Aerodynamic resistance between the substrate and canopy source height (s·m−1)
Re Ecosystem respiration
Rn Net radiation flux into the complete crop (W·m−2)
Rns Net radiation flux into the substrate (W·m−2)
rsc Bulk stornatal resistance of the canopy (s·m−1)
rss Surface resistance of the substrate (s·m−l)
Ta Average temperature of the surface (◦C)
Tmax The minimum air temperatures (◦C)
Tmin The minimum air temperatures (◦C)
Topt The optimum air temperatures (◦C)
ε Light-use efficiency (µmol·CO2·µmol−1 PPFD)
εmax Apparent quantum yield or maximum light-use efficiency (µmol·CO2·µmol−1 PPFD)
λ Light extinction coefficient

Appendix A. Full Description of the SWH Model

Appendix A.1. General Logic

The SWH model is developed based on the model of Shuttleworth and Wallace (1985), which
estimates the latent heat flux from the soil surface (i.e., E) and from the canopy (i.e., T) as two separate
sources. There are five resistances involved in this model: canopy stomatal resistance (rsc), soil surface
resistance (rss, s·m−1), aerodynamic resistance of the leaf to canopy height (rac, s·m−1), resistance of
the canopy height to reference height (raa, s·m−1) and soil surface to canopy height (ras, s·m−1).

Ecosystem evapotranspiration λET (W·m−2) is calculated as the sum of transpiration (λT) and
soil water evaporation (λE):

λET = λT + λE = CcPMc + CsPMs (A1)

PMC =
∆R + (ρcpD− ∆racRs)/(raa + rac)

∆ + γ(1 +
(

rsc
raa+rac

)
)

(A2)

PMs =
∆R + (ρcpD− ∆rasRs)/(raa + ras)

∆ + γ(1 +
(

rss
raa+ras

)
)

(A3)

where PMc and PMs are terms similar to the Penman–Monteith equation to describe canopy
transpiration and soil evaporation, respectively. Cc and Cs are the canopy resistance coefficient
and soil surface resistance coefficient, respectively. ∆ is the slope of the saturation vapor pressure
versus temperature curve (kPa·K−1). ρ is the density of air (1.293 kg·m−3), and cp is the specific heat
at constant pressure (1012 J·kg−1·K−1). VPD is the vapor pressure deficit (kPa) in the air, and γ is
the psychrometric constant (0.067 kPa·K−1). Calculations of the resistances will be addressed later.
In Equations (A2) and (A3), R and Rs (W·m−2) represent the available energy input above the canopy
and above the soil surface, respectively, and are defined as follows:

R = Rn − G (A4)

Rs = Rns − G (A5)
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where Rn and Rns (W·m−2) are net radiation fluxes reaching the canopy and the substrate (W·m−2),
respectively. G is the soil heat flux (W·m−2). Rns can be estimated using Beer’s law:

Rns = Rnexp(−λLAI) (A6)

where λ is the light-extinction coefficient. In Equation (A1), the two coefficients Cc and Cs are calculated
as follows:

CC =
1

1 + ( ρcρa
ρs(ρc+ρa)

)
(A7)

Cs =
1

1 + ( ρsρa
ρc(ρs+ρa)

)
(A8)

in which ρa, ρc and ρs are calculated as:

ρa = (∆ + γ)raa (A9)

ρc = (∆ + γ)rac + γrsc (A10)

ρs = (∆ + γ)ras + γrss (A11)

Appendix A.2. Calculation of Resistances

We used the same approach as Shuttleworth and Wallace [9] to calculate the three aerodynamic
resistances, i.e., rac, ras and raa. Soil surface resistance rss was estimated as the function of soil water
content [23]:

rss = b1(
SWCs

SWC
)

b2

+ b3 (A12)

where SWC and SWCs are the soil water content and saturated water content in the surface soil
(m3·m−3), and b1 (s·m−1), b2 and b3 (s·m−1) are empirical constants.

The Ball–Berry model [21] is used to calculate the canopy stomatal resistance, rsc:

rsc =
1

g0 +
a1 pnhs

cs

(A13)

where pn is a key driving variable to estimate rsc. We used the gross primary productivity (GPP)
estimated from the measurements of eddy covariance systems in our previous study [14]. For
the purpose of regional scale applications, we re-estimated GPP with a satellite-based light-use
efficiency model:

GPP = ε× PAR× FPAR (A14)

where PAR is the incident photosynthetically-active radiation (µmol·m−2·s−1) and FPAR is the fraction
of PAR being absorbed by the canopy. FPAR is estimated as a function of NDVI (FPAR = 1.24NDVI − 0.168;
Sims et al. [25]). ε is the light use efficiency (µmol CO2 µmol−1 PPFD) and is down-regulated by air
temperature, soil water moisture and the vapor pressure deficit (VPD):

ε = εmax × f (T)× f (VPD) (A15)

f (T) =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)− (T − Topt)
2 (A16)

f (VPD) =
VPDmax −VPD

VPDmax
(A17)
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where εmax is the apparent quantum yield or maximum light-use efficiency and f (T), f (W) and f (VPD)
are the downward regulation scalars for the effects of temperature and VPD on light-use efficiency
of vegetation, respectively. Tmin, Tmax and Topt are the minimum, maximum and optimum air
temperature (◦C) for photosynthetic activity, respectively. If the air temperature falls below Tmin or
increases above Tmax, f (T) is set to zero. In this study, Tmin, Topt and Tmax were set to 0, 20 and 40 ◦C,
respectively. If the estimated f (VPD) was less than zero, f (VPD) was set to zero [27] VPDmax was set
to 3.5 kPa.
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