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Abstract: The urbanization effects on land surface phenology (LSP) have been investigated by many
studies, but few studies have focused on the temporal variations of urbanization effects on LSP.
In this study, we used the Moderate-resolution Imaging Spectroradiometer (MODIS) Enhanced
Vegetation Index (EVI), MODIS Land Surface Temperature (LST) data and China’s Land Use/Cover
Datasets (CLUDs) to investigate the temporal variations of urban heat island intensity (UHII) and
urbanization effects on LSP in Northeast China during 2001–2015. LST and phenology differences
between urban and rural areas represented the urban heat island intensity and urbanization effects
on LSP, respectively. A Mann–Kendall nonparametric test and Sen’s slope were used to evaluate
the trends of urbanization effects on LSP and urban heat island intensity. The results indicated
that the average LSP during 2001–2015 was characterized by high spatial heterogeneity. The start
of the growing season (SOS) in old urban areas had become earlier and earlier compared to rural
areas, and the differences in SOS between urbanized areas and rural areas changed greatly during
2001–2015 (−0.79 days/year, p < 0.01). Meanwhile, the length of the growing season (LOS) in urban
and adjacent areas had become increasingly longer than rural areas, especially in urbanized areas
(0.92 days/year, p < 0.01), but the differences in the end of the growing season (EOS) between urban
and adjacent areas did not change significantly. Next, the UHII increased in spring and autumn
during the whole study period. Moreover, the correlation analysis indicated that the increasing urban
heat island intensity in spring contributed greatly to the increases of urbanization effects on SOS, but
the increasing urban heat island intensity in autumn did not lead to the increases of urbanization
effects on EOS in Northeast China.

Keywords: urbanization; land surface phenology; urban heat island; Northeast China

1. Introduction

Urbanization refers to the historical process of gradual transformation of the traditional
agricultural-based rural society to the non-agricultural-based modern urban society. Urbanization can
be explained from the perspectives of demography, geography, sociology, economics and so on.
From the perspective of demography, the speed of urbanization is accelerating around the world.
For example, the proportion of the urban population in the world was 30% in 1952, 47% in 2001, 50% in
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2007 and 54% in 2014 [1–3]. Meanwhile, urbanization can bring out a series of environmental and
social issues, e.g., land use/land cover changes, urban heat island (UHI), air pollution, hydro-system
changes, and land surface phenology (LSP) changes [3], and this urbanization related nature and
social phenomena have profound impacts on human life. Thus, it is essential to study the magnitude,
temporal variations and mechanisms of the urbanization effects (UEs) on the terrestrial ecosystems [4].

UHI refers to the higher temperature in urban rather than rural places caused by the urbanization.
The urban heat island intensity (UHII) is defined as the temperature differences between urban and
rural areas [5–8]. UHII can be exacerbated by many factors related with the urbanization process,
such as more impervious surface, lower vegetation cover and worse ventilation [3]. Peng et al. analyzed
the UHII in 419 global big cities, and the results showed that the annual daytime UHII and nighttime
UHII were 1.5 ◦C and 1.1 ◦C, respectively [6]. The footprint of UHI not only included the urban areas
but also the suburbs, according to a previous study [5].

UHI can affect the environment in and around the city [1,5,9]. For instance, LSP assesses the
vegetation activity at the ecosystem level. Changes of LSP can influence the water, carbon, energy
cycle [4,10] and even human activities such as the increasing severity of allergies [4,11,12]. LSP is an
indicator of environmental and climate changes. For example, Zhao et al. showed that the spring and
autumn temperature affects the start of the growing season (SOS) and end of the growing season (EOS)
in Northeast China, respectively [13]. Liang et al. showed that the impact of altitude on SOS cannot be
ignored in the cities located in the middle temperate zone of China [14]. Some studies also showed that
sunshine duration and precipitation may play important roles in LSP [13–15]. For example, Liang et al.
indicated that sunshine duration acted more on SOS than precipitation and temperature at Harbin,
Northeast China [14].

Urbanization mainly influences the LSP via UHI. A number of studies investigated the
urbanization effects on land surface phenology (UELSP) using both remote sensing [4,16–19] and
ground observations [1,20–23] in different cities. Some results indicated that the urbanization has
significant effects on LSP, especially in high latitude zones [4,19,21]. For example, Han et al. showed
that the SOS was earlier and EOS was later in urban areas than in rural areas in six cities in the
Yangtze River Delta, China, and the footprint of UHI effects on LSP was 6 km from the urban edge [16].
White et al. showed that the LOS of deciduous broadleaf forest in urban was 7.6 days longer than
rural areas in eastern United States [18]. Zhou et al. showed that the average SOS was 11.9 days
earlier, and EOS was 5.4 days later in urban areas than those in rural areas in 32 major cities of China.
They also indicated that the most significant UELSP were observed in Northeast China [4]. Gazal et al.
showed that SOS was earlier in urban areas than rural areas in a tropical city (Bangkok, Thailand) but
later in two other tropical cities (Korat, Thailand; Dakar, Senegal), and SOS was earlier in urban areas
than in rural areas in three temperate cities (Tokyo, Japan; Jyväskylä, Finland; Bishkek, Kyrgyzstan)
but later in a temperate city (Fairbanks, AL, USA) [21]. However, very few studies investigated the
temporal variations of UELSP in literature.

China has one-fifth of the world’s population and is undergoing an unprecedented urbanization
in the world. It is of great importance to study the urbanization as well as its impacts on terrestrial
ecosystems in China. As the largest old industrial base in China, Northeast China has experienced
rapid urbanization since 2003 due to the policy of revitalizing the old industrial base in China [24].
Therefore, it is essential to study the UEs on terrestrial ecosystems and its temporal variations with
rapid urbanization in recent decades. For the purpose of filling the current research gaps and providing
a better understanding of UEs on terrestrial ecosystem in this area, our study aimed at: (1) examining
the quantitative effects of urbanization on LSP in Northeast China; (2) investigating the temporal
variations of UHII and UELSP during 2001–2015; and (3) exploring the potential relationships between
UELSP and UHII in Northeast China.
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2. Materials and Methods

2.1. Study Area

The three provinces, including Heilongjiang, Jilin and Liaoning, are located at 118◦50′E–135◦09′E,
38◦42′N–53◦35′N [13] in Northeast China. The total area of the three provinces is about 0.787 million km2,
accounting for 8.2% of the country’s total area. Most parts of the study area are in the mid-temperate
zone, except for the northern part of Heilongjiang province (cold temperate zone) and the southwestern
part of Liaoning province (warm temperate zone). The plains with lower altitude primarily situated in
the eastern (Songliao Plain) and western (Sanjiang Plain) parts, mountains at a high altitude mainly
located in the southeastern (Changbai Mountains) and northern (Lesser Khingan Mountains) parts.
The majority of cropland and urban areas are located in Songliao Plain and Sanjiang Plain; the forest
area is mainly located in the Lesser Khingan Mountains and the Changbai Mountains (Figure 1).
With regard to the population, the total population in Northeast China reached 109.8 million in 2013,
and up to 65 million people live in cities [24].
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Figure 1. The location and the CLUD (2015) of the study area.

2.2. Land Cover Data

The China’s Land Use/Cover Datasets (CLUDs) were derived from the Landsat Thematic
Mapper/Enhanced Thematic Mapper (TM/ETM+) and HJ-1A/1B, including 25 classes in total with
5-year intervals from 1990 to 2015. Quality control procedures have been carried out for the datasets,
and the overall accuracy of the 25 classes of CLUDs was up to 90% [25–27]. More details about the
CLUDs can be found in previous studies [25–28].

The CLUDs were merged into six major categories (urban, water body, cropland, forest, grassland
and other) and resampled to a spatial resolution of 1000 m to match the Moderate-resolution Imaging
Spectroradiometer (MODIS) EVI data and MODIS LST data. Then, each category was converted into a
vector file for the purpose of subsetting the MODIS EVI data and later statistical analysis. In this study,
we hypothesized that the CLUDs in the years 2000, 2005, 2010, and 2015 can represent land use/cover
in 2001–2002, 2003–2007, 2008–2012, 2013–2015, respectively [4].
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2.3. MODIS EVI Data

This study used the MOD13A2 EVI data (16 days composite, 1000 m spatial resolution, from
2001 to 2015) to extract the LSP information (SOS, EOS and LOS) in Northeast China. This data was
improved via de-coupling of canopy background signal and reducing the influences of atmospheric and
soil reflectance [29,30]. A lot of studies showed that EVI is better than Normalized Difference Vegetation
Index (NDVI), especially for detecting vegetation variations in urban areas [16,31–33]. This data was
first reprojected and mosaicked using the MODIS Reprojection Tool (MRT) [34]. Then, we removed
cropland since the SOS of cropland was affected by artificial sowing, and the EOS of cropland was
affected by artificial harvesting. Thus, the cropland cannot accurately reflect the environmental and
climate changes. Water body was also removed in this study due to no vegetation covers [9,18,31].

2.4. MODIS LST Data

MODIS LST is ideal data to study the UHI at the regional scale [35–38], and the absolute bias is
less than 1 K [39–41]. We used the MOD11A2 LST data (8-day composite, 1000 m spatial resolution,
from 2001 to 2015) to detect the temporal variations of UHII in the study area. We used the same
method mentioned in the above section to reproject and mosaic the MODIS LST data. We assumed
that the mean of MODIS LST nighttime temperature and MODIS LST daytime temperature can
represent daily average temperature, the mean temperature during March to May can represent
spring temperature, and the mean temperature during September to November can represent autumn
temperature, according to a previous study [10].

2.5. Phenology Metrics

TIMESAT was used to generate the LSP information from MODIS EVI data [42,43]. We used the
Savitzky–Golay filter to smooth the EVI time series data, according to previous study, since it is simple,
reliable and can preserve features of the dataset, such as relative maximum, minimum and width [44].
There are generally two methods to determine the SOS and EOS [4]. The first one is the threshold
method, i.e., SOS and EOS were defined as the dates that the fitted curves rise up to and then fall to
the threshold value, respectively. The second one is the amplitude method, i.e., SOS and EOS were
defined as the date that the fitted curves rise up to and then fall to the proportion of the amplitude,
respectively. The amplitude is defined as the differences between the maximal and minimal EVI in
the same year. In this study, we chose the amplitude method since urban areas have lower vegetation
cover than the surroundings, and the threshold method cannot correctly compute the LSP metrics.
Zhao et al. studied the variation of LSP in Northeast China during 1982–2013 [13] using 30% of the
amplitude, and the results were in agreement with ground observation and previous studies [45–47].
Similarly, we also chose 30% of the amplitude to calculate the LSP parameter (SOS, EOS) for further
analysis in this study.

There may be some outliers resulting from atmospheric contamination or interference from human
activities when extracting the phenology information. We excluded these outliers for the purpose
of reducing the deviation [4]. SOS earlier than day 50 of the year (DOY) or later than 180 DOY was
excluded, and EOS earlier than 240 DOY and later than 330 DOY was removed. LOS was computed as
the differences between EOS and SOS.

2.6. Calculation of UELSP and UHII

First, we removed the cities with urban areas less than 10 km2, since the smaller cities may
have slower urbanization speed and smaller UEs [31]. Then, we chose the urban area of the CLUDs
(in the years 2000, 2005, 2010, and 2015) to take the intersection and defined it as ”old urban area”
(OUA)—that is to say, the OUA was the common part of urban areas over above 4 land cover maps.
We take the union of the urban areas of the CLUDs (in the years 2000, 2005, 2010, and 2015), subtract
the intersection from the union part, and define it as urbanized area. We further generate 3 buffers
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extending 0–2 km, 2–5 km, and 20–25 km from the edge of the union and define the 20–25 km buffer
as rural area according to [4]. In this way, this study focused on 4 stationary areas in and around the
urban area (OUAs, urbanized areas, 0–2 km buffer and 2–5 km buffer) and one stationary area in
a rural area (20–25 km buffer) in Northeast China (Figure 2).
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We used the phenology differences between OUAs or urbanized areas or buffers (0–2 km buffer,
2–5 km buffer) and rural areas (20–25 km buffer) to represent the UELSP as follows [4]:

∆P1 = POUA − Prural (1)

∆P2 = Purbanized area − Prural (2)

∆P3 = P0–2 km buffer − Prural (3)

∆P4 = P2–5 km buffer − Prural (4)

where POUA, Purbanized area, P0-2km buffer, P2-5km buffer and Prural represent the LSP metrics (SOS, EOS,
LOS) in OUAs, urbanized areas, 0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively.
Accordingly, ∆P1, ∆P2, ∆P3 and ∆P4 represent the UELSP in OUAs, urbanized areas, 0–2 km buffer
and 2–5 km buffer, respectively.

Similarly, we used the LST differences between OUAs or urbanized areas, or buffer zones and
rural areas to represent the UHII as follows [4–7]:

∆T1 = TOUA − Trural (5)

∆T2 = Turbanized area − Trural (6)

∆T3 = T0–2 km buffer − Trural (7)
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∆T4 = T2–5 km buffer − Trural (8)

where the TOUA, Turbanized area, T0-2km buffer, T2-5km buffer and Trural represent the LST in OUAs,
urbanized areas, 0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively. Therefore, ∆T1,
∆T2, ∆T3 and ∆T4 represent the UHII in OUAs, urbanized areas, 0–2 km buffer and 2–5 km
buffer, respectively.

3. Results

3.1. Mean Phenology and Mean LST in Northeast China

The spatial distributions of annual mean SOS and EOS during 2001–2015 were characterized by
high spatial heterogeneity (Figure 3a,b). It was clear that both the earliest SOS and latest EOS were
located at the biggest cities such as Harbin, Changchun and Shenyang. The later SOS mainly occurred
in Songnen Plain, Liaohe Plain and Sanjiang Plain, and the earlier SOS mostly appeared in the eastern
part of Liaoning province. The earlier EOS mainly occurred in the Lesser Khingan Mountains and the
northeastern part of the Changbai Mountains, and the later EOS appeared in the southwestern part of
the Changbai Mountains.

The mean SOS, EOS, LOS, spring LST, and autumn LST in the four areas (OUAs, urbanized areas,
0–2 km buffer, 2–5 km buffer) during 2001–2015 were shown in Table 1, where the strongest UHII
and UELSP were found in OUAs. The mean spring LST, autumn LST and EOS decreased with the
increasing distances from OUAs. SOS first increased then decreased, but LOS first decreased and then
rose with increasing distances from OUAs.

In addition, the LST increases with increasing latitude, the warmest province is Liaoning and the
coldest province is Heilongjiang. Meanwhile, in rural areas (20–25 km buffer), the earliest SOS and the
latest EOS is in Liaoning province, the latest SOS and the earliest EOS are in Heilongjiang province,
but the LSP differences between different provinces is not evident.
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Table 1. The mean SOS, EOS, LOS, spring LST and autumn LST in four areas during 2001–2015.

SOS(DOY) EOS(DOY) LOS(DOY) Spring LST (◦C) Autumn LST (◦C)

Entire study area

OUAs 115.61 305.15 189.54 10.87 10.07
urbanized areas 131.03 298.31 167.28 10.08 9.26
0–2 km buffer 135.41 294.23 158.82 9.21 8.48
2–5 km buffer 136.68 291.48 154.8 8.81 7.88

20–25 km buffer 132.41 289.19 156.78 7.99 7.28

Heilongjiang
province

OUAs 115.66 304.35 188.69 8.38 6.91
urbanized area 133.21 296.30 163.09 7.62 6.25
0–2 km buffer 139.11 292.46 153.35 6.81 5.65
2–5 km buffer 139.43 290.52 151.09 6.28 5.28

20–25 km buffer 133.25 287.06 153.81 5.59 4.9

Jilin province

OUAs 114.01 304.5 190.49 10.04 9.03
urbanized areas 130.40 297.00 166.6 9.22 8.18
0–2 km buffer 135.67 291.54 155.87 8.68 7.61
2–5 km buffer 137.15 289.28 152.13 8.45 7.30

20–25 km buffer 132.73 289.3 156.57 8.02 7.26

Liaoning province

OUAs 116.18 305.88 189.7 12.87 12.75
urbanized areas 129.3 300.14 170.84 12.11 11.87
0–2 km buffer 133.72 296.32 162.6 11.49 11.05
2–5 km buffer 134.9 293.49 158.59 11.18 10.59

20–25 km buffer 131.31 291.07 159.76 11.01 10.44

SOS is short for start of the growing season, EOS: end of the growing season, LOS: length of the growing season,
LST: spring land surface temperature, DOY: day of year; OUAs: old urban areas.

3.2. Temporal Variations of UELSP

This study analyzed the temporal variations of UELSP in four areas in Northeast China
during 2001–2015. The ∆SOS decreased in four areas (Figure 4a). The UEs on SOS was evident
in OUAs (Table 1), and there was a significant decreasing trend (−0.30 days/year) during 2001–2015.
The ∆SOS decreased significantly in urbanized area (−0.79 days/year, p < 0.01) and 0–2 km buffer
(−0.35 days/year, p < 0.01). Meanwhile, the ∆SOS decreased in 2–5 km buffer (−0.07 days/year).
The results from the above analysis suggested that the SOS in OUAs had become earlier and earlier
compared to rural areas, and the differences in SOS between urbanized areas and rural areas changed
greatly during 2001–2015.

On the contrary, ∆EOS was always greater than zero in the four areas during 2001–2015, which
suggested that the urbanization can postpone the EOS in and around the urban area. However,
the results of ∆EOS did not increase or decrease significantly in all of the four areas above (Figure 4b):
OUAs (−0.24 days/year), urbanized areas (0.05 days/year), 0–2 km buffer (0.03 days/year), and
2–5 km buffer (0.00 days/year). It suggested that the UEs on EOS did not change during the whole
study period in Northeast China.

It can be seen from Figure 4c that the ∆LOS increased in four areas during 2001–2015. The mean
LOS in OUAs was 32.76 days longer than that in rural areas (Table 1), and the differences between
the OUAs and rural areas increased at the rate of 0.05 days/year. The ∆LOS increased significantly
in urbanized areas (0.92 days/year, p < 0.01) and 0–2 km buffer (0.35 days/year, p < 0.01), but ∆LOS
only increased at the rate of 0.05 days/year in a 2–5 km buffer, which was much lower than those in
urbanized areas and the 0–2 km buffer. These results indicated that the LOS in urban and surrounding
areas became increasingly longer than that in rural areas. Overall, the areas that had the most significant
changes of UEs on SOS and LOS during 2001–2015 were urbanized areas, followed by the 0–2 km
buffer and OUAs in Northeast China.
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3.3. Temporal Variations of UHII

The interannual variations of UHII in Northeast China were also analyzed in this study. As shown
in Figure 5a, the UHII in spring increased significantly in OUAs (0.052 ◦C/year, p < 0.05), urbanized
areas (0.050 ◦C/year, p < 0.05), 0–2 km buffer (0.025 ◦C/year, p < 0.05) but insignificantly in a 2–5 km
buffer (0.010 ◦C/year). It is worth noting that the stronger the UHII, the larger the increasing trends
of UHII during 2001–2015. Meanwhile, the UHII in autumn also increased in the four areas during
2001–2015 (Figure 5b). The ∆T for urbanized areas increased at the rate of 0.038 ◦C/year (p < 0.05),
which was higher than that at the 0–2 km buffer (0.022 ◦C/year, p < 0.05), OUAs (0.016 ◦C/year) and
2–5 km buffer (0.011 ◦C/year).

Overall, the ∆T in spring and autumn were always greater than zero in all four of the areas (in the
spring of 2013, the UHII even reached 3.5 ◦C for OUAs), which suggested that the intensity of UHI
was evident in Northeast China, and the footprint of UHI not only included the urban areas but also
the suburbs during the study period. The most important point is that the UHII increased in both
spring and autumn in four areas during 2001–2015, and the temporal variations of UHII in spring and
autumn are all highly significant in urbanized areas, indicating that the rapid urbanization and land
use/cover change led to the intensification of UHI in Northeast China.
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3.4. Correlations between UHII and UELSP

The correlation analysis between ∆T and ∆P were conducted to investigate the relationships
between the UELSP and UHII in this study. It was clear from Figure 6 that the correlations between
∆SOS and ∆T in spring were all negative in four areas: OUAs (Figure 6a; r = −0.491, p = 0.063),
urbanized areas (Figure 6b; r = −0.659, p < 0.01), 0–2 km buffer (Figure 6c; r = −0.586, p < 0.05) and
2–5 km buffer (Figure 6d; r = −0.449, p = 0.093). There were significant correlations between ∆T and
∆SOS in urbanized areas (p < 0.01) and 0–2 km buffer (p < 0.05), indicating that the SOS became earlier
and earlier with increasing UHII in spring in four areas compared to that in rural areas (20–25 km).

However, there were almost no significant correlations between UHII and the UEs on EOS in
autumn for the four areas above: OUAs (Figure 7a; r = −0.05, p = 0.857), urbanized areas (Figure 7b;
r = 0.228, p = 0.414), 0–2 km buffer (Figure 7c; r = 0.147, p = 0.6) and 2–5 km buffer (Figure 7d; r = 0.12,
p = 0.669). The correlation coefficients between ∆EOS and ∆T in autumn in the four areas only ranged
between −0.05 and 0.228, indicating that the increasing UHII in autumn did not contribute to the
increasing UEs on EOS in Northeast China.
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4. Discussion

4.1. Mean UHII and LSP

We calculated the 15-year averaged phenology metrics (SOS, EOS) in the whole study area and
in the forest area, respectively. In general, the spatial distributions of mean SOS and EOS during
2001–2015 in this study were similar to that of Zhao et al., where the glaobal inventory modelling and
mapping studies (IMMS) NDVI3g data were used to study the variations of LSP in Northeast China
during 1982–2013 [13]. Their results showed that SOS in the plain areas was later than in the mountains,
and EOS in the southern areas were later than that in the north. In addition, the average SOS for the
whole study area during 2001–2015 in our study was mainly between 112 and 161 DOY, the average
SOS of the forest area was primarily between 113 and 151 DOY, EOS was mainly between 273 and
300 DOY, and the EOS in the forest area was primarily between 273 and 299 DOY. These results were
also in line with previous studies [13,45–47] (Table 2), which suggested that the method of extraction
of the phenology metrics in this study was reliable.

Moreover, it was revealed in this study that the UELSP and UHII were evident in OUAs, and
the average differences of SOS, EOS and LOS between OUAs and rural areas were −16.8 days,
15.96 days and 32.76 days, respectively, during the last 15 years. These effects were close to the
study [4] and much larger than some previous studies [16,18,19], which is probably due to the different
species compositions (deciduous forest vs. evergreen forest) and geographic locations. Specifically,
northeast China was mainly covered by deciduous forest, but some cities (e.g., tropical cities of China)
were primarily covered by evergreen vegetation in literature [9], which can lead to the differences in
seasonal variations of the vegetation index and the differences of UELSP. The 15-year averaged UHII
in spring and autumn in OUAs were 2.88 ◦C and 2.79 ◦C (Table 1), respectively. These results were
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higher than previous studies [5,48]. The reason may be due to the different definitions for rural areas,
Zhou et al. showed that the footprint of UHI in China was 2.3 and 3.9 times the urban areas for day
and night, respectively [4]. Accordingly, ignoring the footprint of UHI can lead to underestimating
the UHII. In this study, the rural area (20–25 km buffer) that we chose was farther from the urban
area compared to previous studies [5,48], and it is far away from the UEs [9]. Thus, the method in
this study may provide a more accurate assessment of the UELSP and UHII. In addition, the trends
of LSP and LST, along with the urban-rural gradient, were similar to studies from Han et al., which
studied the LSP and LST in six cities in the Yangtze River Delta, China [16]. Their results showed that
LST decreased with the increasing distances from urban areas, and EOS decreased with increasing
distances from urban areas, but SOS increased first and then decreased along the urban-rural gradient.

Table 2. Mean land surface phenology (LSP) compared with other studies.

This Study Zhao et al. [14] Yu et al. [44] Hou et al. [45] Yu et al. [46]

SOS of entire study area (Jlian day) 112–161 110–150
EOS of entire study area (Jlian day) 273–300 270–320

SOS of forest (Jlian day) 113–151 100–150 110–140 100–140
EOS of forest (Jlian day) 273–299 260–290 260–290 265–300

Time period (year) 2001–2015 1982–2013 2003 2001–2010 2000–2009

4.2. Temporal Variations of UHII and UELSP in Addition to Possible Reasons

The UELSP may change greatly due to rapid urbanization, so this study highlighted the temporal
variations of UELSP and UHII. The UHII in spring and autumn has experienced dramatic changes in
OUAs, urbanized areas and 0–2 km buffer during 2001–2015 in Northeast China (Figure 5), and the UEs
on SOS and LOS has significant temporal variations in urbanized areas and 0–2 km buffer (Figure 3).
It is worth noting that the largest changes of UEs on SOS, LOS, and UHII in autumn are in urbanized
areas, and the temporal variations of UHII in spring, UHII in autumn, and UEs on SOS and LOS in
urbanized areas are all highly significant (Table 3). This might be attributed to the land use/land cover
change. With rapid urbanization, other land cover types may transform into urban areas, such as
cropland and forest. Therefore, more environmental changes may occur in urbanized areas, such as
lower vegetation coverage, higher impervious surface, and denser population. The main factors
influenced the increases of UHII may be the lower vegetation cover and higher impervious surface in
the study area. On one hand, vegetation can reduce the LST to some extent, which has been confirmed
by some studies in literature [49–55]: increasing vegetation cover was regarded as an effective way to
reduce the UHII, since vegetation can release latent heat flux by evapotranspiration. On the other hand,
studies have showed that impervious surface has significant positive correlation with LST [49,56].
Impervious surface can increase the UHII, since it can absorb and store heat during the daytime and
release slowly during the nighttime. Therefore, the UELSP may increase with increasing UHII in urban
areas. In addition, other factors such as species compositions resulted from land cover changes that
may also have direct effects on LSP [9].

Table 3. Linear trends of ∆SOS, ∆EOS, ∆LOS, ∆T in spring and ∆T in autumn in four regions (OUAs,
urbanized areas, 0–2 km buffer, 2–5 km buffer).

∆SOS ∆EOS ∆LOS ∆T in Spring ∆T in Autumn

OUAs −0.363 −0.155 0.208 0.052 * 0.02
urbanized areas −0.829 ** 0.061 0.89 ** 0.047 ** 0.04 **
0–2 km buffer −0.34 ** 0.034 0.374 ** 0.025 * 0.023 *
2–5 km buffer −0.063 0.007 0.07 0.009 0.011

Significance levels: * p < 0.05; ** p < 0.01.
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4.3. Relationships between UHII and UELSP

In this study, there were large correlations between UHII and the UEs on SOS in spring in
four areas: OUAs (r = −0.491, p = 0.063), urbanized areas (r = −0.659, p < 0.01), 0–2 km buffer
(r = −0.586, p < 0.05) and 2–5 km buffer (r = −0.449, p = 0.093) during 2001–2015. The results suggested
that the great changes of UEs on SOS were mainly attributed to the increasing UHII in spring.
However, there were almost no significant correlations between UHII and the UEs on EOS in
autumn. Although the UHII increased in autumn, the impacts of urbanization on EOS did not change
significantly. This phenomenon is similar to previous studies [9,31], and Zhang et al. showed that
there was a significant linear relationship between ∆SOS and ∆LST during January to May, but the
relationship between ∆EOS and ∆LST during September to December was not significant in eastern
North America [31]. Zhou et al. also showed that the cities with earlier SOS were obviously more
than the cities with later EOS in China [9]. The reason for this phenomenon may be that the EOS
was also affected by other important factors such as water and photoperiod [31]. Previous studies
also showed that earlier SOS may trigger earlier EOS because vegetation may reach the carbohydrate
storage capacity with earlier SOS and then lead to earlier EOS [15]. In addition, Northeast China
is located at high latitudes, sunshine duration may play an important role in influencing LSP
(for example, the advanced SOS and delayed EOS) [14]. Overall, EOS has complex correlations
with SOS, temperature, precipitation, sunshine duration and some other factors, and more detailed
studies needed to be carried out in future studies.

4.4. Uncertainty

There were still some uncertainties for analyzing the UELSP in Northeast China in this study.
Firstly, we used the CLUDs in the years 2000, 2005, 2010, and 2015, which represented those in
2001–2002, 2003–2007, 2008–2012, and 2013–2015, respectively. This may lead to some uncertainties
in urban areas, especially in fast-growing cities. In addition, a lot of other factors may influence
the LSP and the phenology results such as species compositions, interference from human activities,
and altitudes. Finally, the reasons that the increasing UHII in autumn did not lead to increases of UEs
on EOS were still not clear. The comprehensive analysis between EOS, SOS, temperature, precipitation,
sunshine duration and other factors should be conducted in detail in future studies.

5. Conclusions

In this study, MODIS LST, MODIS EVI and CLUDs were used to analyze the UHII and UELSP
and the associated temporal variations in Northeast China during 2001–2015. The UHII and UELSP
were investigated by studying the LST and LSP differences between urban and rural areas, respectively.
Correlation analysis was also conducted to reveal the relationships between UHII and UELSP.

The results showed that the UELSP was evident in Northeast China, especially in big cities such
as Harbin, Changchun and Shenyang. The annual mean UHII in OUAs is 2.88 ◦C in spring and
2.79 ◦C in autumn during the whole study period. The differences of annual mean LSP between OUAs
and rural areas were −16.8 days for SOS, 15.96 days for EOS and 32.76 days for LOS, respectively.
The SOS in the four areas above has become earlier and earlier compared to rural areas, especially in
urbanized areas (−0.79 days/year, p < 0.01) during 2001–2015, and the LOS in the four areas above
has become longer and longer compared to rural areas, especially in urbanized areas (0.92 days/year,
p < 0.01), but the UEs on EOS (∆EOS) did not change significantly during the whole study period.
Meanwhile, the UHII in spring and autumn months increased in four areas, especially in OUAs
(0.052 ◦C/year, p < 0.05 in spring, and 0.016 ◦C/year in autumn), urbanized areas (0.050 ◦C/year,
p < 0.05 in spring, and 0.038 ◦C/year, p < 0.05 in autumn), 0–2 km buffer (0.025 ◦C/year, p < 0.05 in
spring, and 0.022 ◦C/year, p < 0.05 in autumn). Finally, the correlation analysis indicated that the
increasing UHII in spring contributed greatly to the changes of UEs on SOS, but the increasing UHII in
autumn did not lead to changes of UEs on EOS in Northeast China.
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Overall, this study provided an important reference for investigating the spatial-temporal trends
of UHII and UEs on the terrestrial ecosystem, but there were still some uncertainties in our research,
and the correlation between EOS and its influencing factors need to be investigated thoroughly in
later studies.
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