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Abstract: Narrowband-to-broadband conversion is a critical procedure for mapping land-surface
broadband albedo using multi-spectral narrowband remote-sensing observations. Due to the
significant difference in optical characteristics between soil and vegetation, NTB conversion is
influenced by the variation in vegetation coverage on different surface types. To reduce this influence,
this paper applies an approach that couples NTB coefficient with the NDVI. Multi-staged NDVI
dependent NTB coefficient look-up tables (LUT) for Moderate Resolution Imaging Spectroradiometer
(MODIS), Polarization and Directionality of Earth’s Reflectance (POLDER) and Advanced Very High
Resolution Radiometer (AVHRR) were calculated using 6000 spectra samples collected from two
typical spectral databases. Sensitivity analysis shows that NTB conversion is affected more by the
NDVI for sensors with fewer band numbers, such as POLDER and AVHRR. Analysis of the validation
results based on simulations, in situ measurements and global albedo products indicates that by
using the multi-staged NDVI dependent NTB method, the conversion accuracies of these two sensors
could be improved by 2%–13% on different NDVI classes compared with the general method. This
improvement could be as high as 15%, on average, and 35% on dense vegetative surface compared
with the global broadband albedo product of POLDER. This paper shows that it is necessary to
consider surface reflectance characteristics associated with the NDVI on albedo-NTB conversion for
remote sensors with fewer than five bands.

Keywords: narrowband to broadband; conversion coefficient; albedo; NDVI

1. Introduction

Land-surface broadband albedo is a critical parameter in the energy budget, the climate model,
the evapotranspiration estimation and in global change, and it is quantified as the fraction of solar
radiation reflected by the earth’s land surface [1–5]. Thus, albedo is relative to land-surface reflectance,
which can be described using the Bidirectional Reflectance Distribution Function (BRDF) [6]. When
integrating directional reflectance to hemispherical albedo, satellite remote sensing provides the most
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practical way to consistently map land-surface albedo. Recent middle- and low-resolution remote
sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS) [7], Polarization and
Directionality of Earth’s Reflectance (POLDER) [8], and Advanced Very High Resolution Radiometer
(AVHRR) [9], provide important data from which to produce global land-surface albedo using the
BRDF model [10–12].

However, these satellite sensors do not always have a consistent spectral band and sometimes
have several limited narrowband wavelengths. To obtain shortwave band-length albedo, conversion
coefficients are usually used for inverting narrowband albedo to broadband albedo, which is a crucial
step in the land-surface albedo estimation using remote-sensing images [13].

Early research to derive the conversion coefficients for AVHRR and Landsat were mainly
dependent on field or top-of-atmosphere (TOA) measurements [14–17]. Model simulation is preferable
for calculating conversion coefficients because ground measurements are expensive under different
atmospheric and surface conditions [18]. Thus, conversion coefficients for most sensor systems, such as
MODIS, Multi-angle Imaging SpectroRadiometer (MISR), Medium Resolution Imaging Spectrometer
(MERIS), POLDER, and Visible/Infrared Imager/Radiometer Suite (VIIRS), are all based on similar
simulation methods [19–23]. The basic method establishes the multiple linear regression relationship
between narrowband and broadband albedos, which is influenced by both the surface reflectance
characteristic and atmospheric condition.

Land-surface albedos from various remote sensors were simulated under a series of different
atmospheric conditions, and the conversion coefficients were calculated and validated [18,24].
The influence of the surface reflectance characteristic is challenging to determine because individual
land-surface type regressions have significantly different characteristics [25]. Thus, NTB regression
should be divided into a series of sets for different surface types. Some global albedo products, such as
MODIS, POLDER and CYCLPES, have divided their conversion coefficients into snow and snow-free,
two types to emphasize the unusual reflective characteristic of snow surfaces [10,11,26]. However,
NTB conversion on snow-free ground is also strongly dependent on the surface types due to the
great difference in optical reflectance between soil and vegetation. Land-surface classification is a
straightforward method by which to distinguish surface types, but the variability of land cover due to
vegetation phenology makes it difficult to capture the surface type instantaneously [27]. Furthermore,
the land surface reflectance, which plays a very significant role in the NTB conversion, has been proven
to be related to the Normalized Difference Vegetation Index (NDVI). Furthermore, the NDVI-based
disaggregation technique has been evaluated to be a more effective strategy than the land cover
based technique or the crop type based technique in the research field of BRDF-adjustment [28–30].
Thus, NDVI is considered the most suitable parameter for analyzing and solving the impact of the
surface reflectance characteristic to NTB conversion [31]. A previous study used NDVI as a variable
to build quadratic polynomials to calculate the red and infrared bands’ conversion coefficients [32].
This method is a desirable solution for sensor with only these two bands such as AVHRR, but may not
be suitable for other sensors with more than these two bands. In general, NTB coefficient regression is
more robust when information from multiple bands are used compared with the same calculation using
two or fewer bands. Thus, for sensors with more than red and infrared bands, using such quadratic
polynomials to calculate the conversion coefficients will reduce the information from multiple bands,
which will introduce more uncertainties. Moreover, the accuracy of such method may be unstable,
because the NDVI error can be directly propagated into the calculated conversion coefficients by the
quadratic polynomials.

In this study, we used a NDVI dependent disaggregation look up table method to generate the
multi-staged NTB coefficients of different NDVI classes of MODIS, POLDER and AVHRR broadband
albedo estimation, whose band numbers were 7, 5 and 2, respectively. This method considers both
the multiple band information and land-surface type, so that all of the sensors’ band information can
be used to understand the different land-surface reflectance characteristics. Furthermore, the indirect
approach to couple NTB coefficient with NDVI can avoid the direct error-propagation. A sensitivity
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analysis was performed to assess the effect of NDVI on NTB conversion and its relationship with the
sensor’s placement and number of wavebands. The result is significant for determined whether a
remote sensor is necessary to consider the different surface reflectance characteristics during its NTB
conversion approach.

In this paper, we first address the theoretical basis of the multi-staged NDVI dependent NTB
method in Section 2, followed by the description of data in Section 3. Further, we provide the NTB
coefficients derived by the new method, and their sensitivity analyses and accuracy evaluations
results in Section 4. Then we discuss the results in detail in Section 5. Finally, we present a summary
in Section 6.

2. Methods

2.1. Basic Theory of Albedo

Surface broadband albedo a(θi; Λ) is simply defined as the ratio of the upwelling irradiance
Fu(θi; Λ) to the downward irradiance Fd(θi; Λ) at the solar zenith angle θi:

a(θi; Λ) =
Fu(θi; Λ)

Fd(θi; Λ)
=

∫ λ2
λ1

Fd(θi; λ)a(θi; λ)dλ∫ λ2
λ1

Fd(θi; λ)dλ
(1)

where Fd(θi; λ) and a(θi; λ) are the solar downward spectral energy flux and surface spectral albedo
at wavelength λ, respectively, and Λ is the waveband range from the lower limits λ1 to the upper
limits λ2. As observed from Equation (1), the surface broadband albedo is determined by both
the surface reflection characteristics and atmospheric status. To focus on the effect of the surface
reflection characteristics in NTB conversion, a surface broadband inherent albedo was adopted, which
is independent of the atmospheric conditions and defined as the ratio of surface upwelling irradiance
to an undamped downward irradiance [19]:

aI(θi; Λ) =

∫ λ2
λ1

FO(θi; λ)aI(θi; λ)dλ∫ λ2
λ1

FO(θi; λ)dλ
(2)

as FO(θi; λ) is the extraterrestrial solar downward irradiance at TOA.

2.2. Multi-Staged NDVI Dependent NTB Coefficient

For multispectral remote-sensing systems, the continuous spectral albedo a(θi; λ) is difficult to
observe directly. Indeed, they usually obtain the albedos in a limited number of wavebands within
narrow wavelength ranges, which is called narrowband albedo. According to the energy rule, the
shortwave broadband albedo can be expressed as linear integrated by narrowband albedos with NTB
coefficients. Thus, Equation (1) can be simplified as following:

a(θi; Λ) =
N

∑
k=1

cka(θi; Λnar
k ) (3)

where ck and Λnar
k are the conversion coefficient and narrowband range of the k band, and N is the

band amount of the multispectral sensor.
Ideally, the narrowband and broadband albedo should be calculated using the spectral albedo

with high quality and good representativeness to the globally various land covers. However, the
available ground measured spectral albedo are very scarce due to the difficulty and complexity of the
measurement. Thus, there are two alternative choices: using the radiation transfer model simulated
spectral albedo or taking the ground measured spectral nadir reflectance as the spectral albedo with
the assumption of Lambertian. For the simulations, it is still a challenge to obtain sufficient and



Remote Sens. 2017, 9, 93 4 of 18

high-quality spectral albedo, as the adequate and accurate configurations of the model parameters
are not easy to achieve to represent the complex and various land covers. However, for the second
choice, a large quantity of reflectance spectra can be collected globally to meet the requirement of the
sufficient repressiveness of various land surfaces. Furthermore, the surface inherent spectral albedo in
Equation (2) is similar to the representative surface spectral nadir reflectance with a less uncertainty
expect in the surface with dominating 3-D structures [24]. Thus, using the measured reflectance is
regarded as an acceptable compromise between the representativeness and data quality. Under the
Lambertian assumption, the surface inherent narrowband albedo aI(θi; Λnar

k ) can be expressed as:

aI(θi; Λnar
k ) =

∫ λ2
λ1

FO(θi; λ)ρS(θi; λ) fres(λ)dλ∫ λ2
λ1

FO(θi; λ) fres(λ)dλ
(4)

where the solar downward TOA irradiance FO(θi; λ) was simulated by using four extraterrestrial
radiation solar spectrums (ChKur, CebKur, NewKur and ThKur) of MODTRAN over seven solar
zenith angles (0, 10, 20, 30, 40, 50 and 60), the surface spectral nadir reflectance ρS(θi; λ) were collected
from spectra library [33,34], the fres(λ) was the spectral response function. Table 1 and Figure 1 present
the MODIS, POLDER and AVHRR spectral response functions. The shortwave inherent broadband
albedo was simulated as following:

aI(θi; Λ) =

∫ λ2
λ1

FO(θi; λ)ρS(θi; λ)dλ∫ λ2
λ1

FO(θi; λ)dλ
(5)

where the λ1 is 350 µm and λ2 is 2500 µm.
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Figure 1. Spectral response functions of MODIS, POLDER and AVHRR: (a) in visible and shortwave 
near infrared; and (b) in shortwave infrared. 

Table 1. Wavelength ranges Moderate Resolution Imaging Spectroradiometer (MODIS), Polarization 
and Directionality of Earth’s Reflectance (POLDER) and Advanced Very High Resolution 
Radiometer (AVHRR).  

Sensor 
Wavelength Range (μm)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

MODIS 0.62–0.67 0.84–0.87 0.46–0.48 0.54–0.56 1.23–1.25 1.63–1.65 2.11–2.15 
POLDER 0.47–0.51 0.54–0.59 0.64–0.70 0.72–0.80 0.82–0.90 - - 

AVHRR-14 0.57–0.71 0.72–1.01 - - - - - 

Figure 1. Spectral response functions of MODIS, POLDER and AVHRR: (a) in visible and shortwave
near infrared; and (b) in shortwave infrared.

Table 1. Wavelength ranges Moderate Resolution Imaging Spectroradiometer (MODIS), Polarization
and Directionality of Earth’s Reflectance (POLDER) and Advanced Very High Resolution
Radiometer (AVHRR).

Sensor
Wavelength Range (µm)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

MODIS 0.62–0.67 0.84–0.87 0.46–0.48 0.54–0.56 1.23–1.25 1.63–1.65 2.11–2.15
POLDER 0.47–0.51 0.54–0.59 0.64–0.70 0.72–0.80 0.82–0.90 - -

AVHRR-14 0.57–0.71 0.72–1.01 - - - - -
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The conversion coefficient ck is correlated with the surface reflectance characteristic, which varies
greatly over different land surfaces. Various parameters, such as the surface coverage type, fractional
vegetation cover, and leaf area index (LAI), could be used to classify the conversion coefficient.
However, in this paper, the NDVI is employed as the classification indicator because it can be obtained
directly from the reflectivity observations of multi-spectral remote sensing systems.

The NDVI was defined as the fraction of band math:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(6)

where ρNIR is the near-infrared reflectance and ρRED is the red reflectance.
NDVI was segmented into 10 classes with equal interval of 0.1 representing the different snow-free

reflectance characteristics of surfaces and limited from 0 to 1 due to the snow-free NDVI is always
positive. For each region, the least squares solution was conducted to get the conversion coefficient ck:

ck = [aI(θi; Λnar
k )T · aI(θi; Λnar

k )]
−1

· aI(θi; Λnar
k )T · aI(θi; Λ) (7)

Then, the NTB coefficients of different NDVI classes were integrated into look-up tables (LUT)
which were stratified into ten layers by interval of 0.1.

2.3. The Coefficients Evaluation Method

To validate the Multi-staged NDVI dependent NTB coefficient, we evaluated and compared
the conversion error between the presented method and general method in both simulated and in
situ measured validation data. The general method is to derive the NTB coefficient without the
consideration of different reflectance characteristics of surface.

The Bias, root-mean-square error (RMSE) and correlation coefficient (R) are selected to show the
NTB coefficient accuracy, uncertainty and goodness-of-fit in the scatter plots, which are formulized as
the following forms:

Bias =
n

∑
i=1

(aCi (Λ)− ai(Λ))/n (8)

RMSE =

√√√√√ n
∑

i=1
(aCi (Λ)− ai(Λ))

2

n
(9)

R =

n
∑

i=1
(aCi (Λ)− aCi (Λ))(ai(Λ)− ai(Λ))√

n
∑

i=1
(aCi (Λ)− aCi (Λ))

2
(ai(Λ)− ai(Λ))

2
(10)

where aCi (Λ) is the converted broadband albedo and ai(Λ) is the simulated or in situ measured
broadband albedo. In order to show the distribution of conversion error over different NDVIs, a mean
relative error (MRE) histogram is taken, which is expressed as following:

MRE =

100
n
∑

i=1
(aCi (Λ)− ai(Λ))/ai(Λ)

n
(11)

3. Data

3.1. Spectra Reflectance Data Set

A total of 7400 reflectance spectra, including 96 soil types (3200 samples) and 28 vegetation
types (4200 samples), were collected from the ICRAF-ISRIC Global Soil Spectral Library and the
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Ground Object SPEctral Library (GOSPEL), as shown in Figure 2. The soil spectra were from 58
countries spanning five continents and measured at the World Agroforestry Center’s Soil and Plant
Spectral Diagnostic Laboratory [33]. The GOSPEL spectral library is established by Institute of Remote
Sensing and Digital Earth, Northeast Institute of Geography and Agroecology, Northwest Institute of
Eco-Environment and Resources Chinese Academy of Sciences, and Beijing Normal University [34].
This spectra library consists of Chinese typical visible near infrared spectra of vegetation, soil, rock,
water, manual object, snow and ice in the scales of component, canopy, and pixel of remote sensing
image. The vegetation spectra selected in this paper were measured from most field areas of China
at different phenology phases in a canopy scale. Compared with the simulated spectral data used in
many previous studies, the measured data are more representative and physical. We selected 6000
spectral samples to calculate the multi-staged NDVI dependent NTB coefficients. The number of
spectra samples in each NDVI interval is sufficient (at least 90) to ensure the reasonability of the NTB
coefficients on all NDVI classes. The remaining 1400 samples were used to validate the multi-staged
NDVI dependent NTB method in the simulation experiment.
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3.2. Validation Data Sets

A total of 1400 samples of spectra, independent of the spectra used to generate the coefficient LUTs,
were collected to validate the accuracy of the LUTs in a simulated strategy. These spectra were used to
simulate the narrowband and broadband albedos on different NDVI classes. The narrowband albedos
were converted to broadband albedos using the coefficients of the multi-staged NDVI dependent NTB
method and the general method. Then, the spectra-simulated broadband albedos were used as the
true values to validate the accuracy of the converted broadband albedos.

The simulated validation strategy uses the theoretical true albedo value and can guarantee
that the only difference in the comparison analysis is the conversion coefficient. However, many
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other uncertainties remain, such as atmospheric effects, algorithm errors, measuring errors and so
on, affecting the actual production of global albedos. These uncertainties cannot be reflected in the
simulated experiment. Therefore, the performance of the conversion coefficient must be assessed by
using actual measurements and albedo products. Thus, in situ albedo measurements and global albedo
products of MODIS and POLDER were collected in a validation attempt.

The in situ albedos were measured using the flux towers of the FLUXNET, which is a
global network for providing observations of exchanges between terrestrial ecosystems and the
atmosphere [35]. Tower-based albedos at 26 flux sites, ranging from one-year measurement periods,
were acquired from the FLUXNET (free download from http://fluxnet.fluxdata.org). These albedo
observations covered a broad range of climate models, spanning from low latitude to high latitude,
and ecosystem types, including croplands (CRO), woody savannas (WSA), evergreen broadleaf forests
(EBF), evergreen needle leaf forests (ENF), open shrub lands (OSH), deciduous broadleaf forests (DBF)
and grasslands (GRA), all of which are shown in Table 2. The representativeness of the selected
flux sites have been evaluated in the previous researches of Román et al. [36] and Cescatti et al. [37].
Tower-based daily surface-measured albedos were derived by calculating the mean of available
cloud-free data within a 30-min window centered at a local solar noon.

Table 2. Tower-based albedos acquired from the net-wide FLUXNET database.

Site ID Country Ecosystem Type Latitude Longitude Time Period

AU TUM Australia EBF −35.66 148.15 2009
AU WAC Australia EBF −37.43 145.19 2006
CA SF3 Canada ENF 54.09 −106.01 2006
DE GEB Germany CRO 51.10 10.91 2006
DE HAI Germany DBF 51.08 10.45 2006
DE KLI Germany CRO 50.89 13.52 2006

DE THA Germany ENF 50.96 13.57 2006
DE WET Germany ENF 50.45 11.46 2006
NL CA1 Netherlands GRA 51.97 4.93 2006
NL LOO Netherlands ENF 52.17 5.74 2006
US ARM USA CRO 36.61 −97.49 2010
US AUD USA GRA 31.59 −110.51 2010
US BKG USA GRA 44.35 −96.84 2009
US BO1 USA CRO 40.01 −88.29 2006
US FMF USA ENF 35.14 −111.73 2010
US FPE USA GRA 48.31 −105.10 2006
US FUF USA ENF 35.09 −111.76 2010
US IB1 USA CRO 41.86 −88.22 2009
US IB2 USA GRA 41.84 −88.24 2009
US IVO USA OSH 68.49 −155.75 2006

US MMS USA DBF 39.32 −86.41 2010
US MOZ USA DBF 38.74 −92.20 2010
US NE1 USA CRO 41.17 −96.48 2009
US NE3 USA CRO 41.18 −96.44 2009
US SRM USA WSA 31.82 −110.87 2010
US WCR USA DBF 45.81 −90.08 2006

The MODIS global 500 m albedo product MCD43A3 (free download from https://ladsweb.
nascom.nasa.gov/data) was generated by the MODIS Land Science Team and operationally produced
every eight days over a 16-day temporal window. The POLDER Land-surface level 3 global albedo
product (free download from http://postel.mediasfrance.org) was provided by the Centre National
d’Études Spatiales research team. It has a spatial resolution of 6 km and a temporal resolution of
10 days. Both of these two global albedo products were calculated using the kernel-driven BRDF
model, which depends on the weighted sum of kernel functions [10]. The two narrowband albedo
products were converted to broadband albedo products using the coefficients of the multi-staged
NDVI dependent NTB method and the general method. To determine which coefficient in the LUTs
should be used at a specific location and time, the corresponding global NDVI products of MODIS
(MYD13A1) and POLDER were also used in this paper. The MODIS aerosol product MOD04_L2 were

http://fluxnet.fluxdata.org
https://ladsweb.nascom.nasa.gov/data
https://ladsweb.nascom.nasa.gov/data
http://postel.mediasfrance.org
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collected to calculate the ratio of diffuse sky-light through a look up table, which was pre-calculated
with the 6S code, and using an open-source procedure provided by Feng Gao (free download from ftp:
//rsftp.eeos.umb.edu/data01/Website/actual_albedo.tar) [38]. The blue-sky albedos were computed
by interpolating between black-sky and white-sky albedos using the calculated ratio of diffuse skylight.
Then, the blue-sky narrowband albedo were converted to blue-sky broadband albedo.

The in situ albedo measurements were used to assess the accuracy of the converted surface
broadband albedos. In addition, the accuracy of the global broadband albedo products of MODIS
and POLDER, which were converted using their operational conversion coefficients [19,20], were also
assessed. The detailed comparison of these three conversion results is described in Section 4.4. Because
the AVHRR research team does not provide global albedo products, the validation of the coefficient
LUT for AVHRR was implemented only in the simulation strategy.

4. Results

4.1. Multi-Staged NDVI Dependent NTB Coefficient Look-Up Tables

The multi-staged NDVI dependent NTB coefficient LUTs of MODIS, POLDER and AVHRR are
shown in Tables 3–5. Table 6 shows the NTB coefficients computed by the same 6000 spectral samples
using the general method (without consideration of the NDVI-based land-surface division).

Table 3. Coefficient look up table (LUT) for converting MODIS’ surface-inherent narrowband albedos
to broadband albedos.

NDVI CBand 1 CBand 2 CBand 3 CBand 4 CBand 5 CBand 6 CBand 7

[0, 0.1] 0.2236 0.1939 0.2263 0.0377 0.1667 0.0025 0.0862
[0.1, 0.2] 0.1993 0.2177 0.2365 0.0305 0.1607 0.0036 0.0884
[0.2, 0.3] 0.1761 0.2369 0.2395 0.0358 0.1467 0.0148 0.0853
[0.3, 0.4] 0.1314 0.2290 0.2060 0.1248 0.1107 0.0870 0.0498
[0.4, 0.5] 0.1568 0.2411 0.0960 0.1421 0.1038 0.0997 0.0358
[0.5, 0.6] 0.1801 0.2215 0.1271 0.1480 0.1349 0.0654 0.0301
[0.6, 0.7] 0.1847 0.2331 0.2440 0.0388 0.1529 0.0253 0.0564
[0.7, 0.8] 0.4157 0.1889 0.1705 −0.0079 0.2184 −0.0392 0.0501
[0.8, 0.9] 0.0010 0.1644 0.1675 0.1964 0.2938 −0.1049 0.0545
[0.9, 1] −0.3988 0.1866 0.6457 0.4086 0.1495 0.0898 −0.0517

Table 4. Coefficient LUT for converting POLDER’s surface-inherent narrowband albedos to
broadband albedos.

NDVI CBand 1 CBnad 2 CBand 3 CBand 4 CBand 5

[0, 0.1] 0.2704 −0.0205 −0.2681 0.4663 0.4529
[0.1, 0.2] 0.0854 −0.0802 0.3263 −0.6402 1.1241
[0.2, 0.3] −0.3470 0.8552 0.0700 −1.3890 1.6378
[0.3, 0.4] −0.3802 0.1487 0.6281 0.0094 0.3673
[0.4, 0.5] −0.2308 −0.1167 0.7470 0.4362 −0.0095
[0.5, 0.6] −0.2165 0.0772 0.6562 0.1205 0.2430
[0.6, 0.7] −0.6200 0.0566 0.8666 0.3103 0.0949
[0.7, 0.8] 0.7551 0.0545 0.1528 −0.3427 0.6456
[0.8, 0.9] −0.1410 0.1533 0.5649 0.0059 0.3451
[0.9, 1] −0.4292 0.1599 1.3717 0.3709 −0.0225

ftp://rsftp.eeos.umb.edu/data01/Website/actual_albedo.tar
ftp://rsftp.eeos.umb.edu/data01/Website/actual_albedo.tar
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Table 5. Coefficient LUT for converting AVHRR’s surface-inherent narrowband albedos to
broadband albedos.

NDVI CBand 1 CBnad2

[0, 0.1] −0.1045 0.8657
[0.1, 0.2] −0.0263 0.7888
[0.2, 0.3] −0.0389 0.8242
[0.3, 0.4] 0.6216 0.3387
[0.4, 0.5] 0.5775 0.3699
[0.5, 0.6] 0.3827 0.4208
[0.6, 0.7] 0.7127 0.3395
[0.7, 0.8] 0.4855 0.3812
[0.8, 0.9] 0.7131 0.3597
[0.9, 1] 0.5443 0.3577

Table 6. Coefficients computed using the general method of converting surface-inherent narrowband
albedos to broadband albedos.

Sensor CBand 1 CBand 2 CBand 3 CBand 4 CBand 5 CBand 6 CBand 7

MODIS 0.1861 0.1933 0.2074 0.0722 0.2254 −0.0558 0.1036
POLDER 0.3535 −0.2369 0.5212 −0.3960 0.7396 - -
AVHRR 0.5225 0.3801 - - - - -

Table 7 shows the fitting residuals of the NTB coefficient LUTs for the three sensors. The terms
Median, correlation coefficient (R), and RMSE represent the average residual, and the minimum (Min)
and maximum (Max) represent the worst situations, respectively. It is clear that MODIS had the
smallest fitting residual with an RMSE of 0.0015. For POLDER and AVHRR, the RMSE increased
to 0.0055 and 0.0068, respectively, and the values of the Min and the Max were larger than that of
MODIS. This is mainly because these two sensors do not have as many bands as MODIS has. Despite
the different fitting results from the three sensors, the overall residuals of the multi-staged NDVI
dependent NTB method were low. Table 8 summarizes the fitting residuals of the coefficients computed
using the general method for the three sensors. When we compare Table 7 with Table 8, we find that
the fitting residuals of the multi-staged NDVI dependent NTB method were much smaller than those
from the general method for all three sensors and evaluation terms.

Table 7. Fitting residuals from the NTB coefficient look-up tables for MODIS, POLDER and AVHRR.

Sensor Min Median Max R RMSE

MODIS −0.0106 −4.46 × 10−5 0.0101 0.9993 0.0015
POLDER −0.0338 0.0003 0.0297 0.9975 0.0055
AVHRR −0.0394 0.0003 0.0387 0.9707 0.0068

Table 8. Fitting residuals from the coefficients computed using the general method for MODIS,
POLDER and AVHRR.

Sensor Min Median Max R RMSE

MODIS −0.0196 −1.20 × 10−4 0.0111 0.9987 0.0018
POLDER −0.0583 0.0010 0.0463 0.9789 0.0078
AVHRR −0.0589 −0.0003 0.0748 0.9567 0.0100

4.2. Sensitivity Analysis of NDVI on NTB Conversion

Given a series of narrowband and broadband albedos, the conversion coefficients are usually
calculated using multiple linear regression; thus, the result depends on the linear features and
relationships of input albedos. Theoretically, if the corresponding narrowband and broadband albedos
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have similar linear relationship, the regression result will be quite stable. However, the large difference
in optical reflectance characteristics between vegetation and soil causes the linear relationship of
narrowband and broadband albedos to vary significantly over different NDVIs. Here we take the red
waveband and near-infrared (NIR) waveband for example, because these two narrowband are directly
linked to the NDVI. A low NDVI represented soil land-dominated land-surface type, middle NDVI
represented soil and vegetation mixed land-surface type and high NDVI represented dense vegetation.

The Figure 3a–c shows the linear relationship between the red waveband, NIR waveband and
shortwave broadband albedos through the NDVI of 0.1, 0.3 and 0.9. From the Figure 3a we can find
that, when the NDVI was equal to 0.1, values of the red and NIR narrowband albedo were quite
close due to the characteristic of soil reflectance, so the slope of the linear relationship between these
two narrowband was nearly to 1. However, as the NDVI increased, the slope appeared to increase
sharply (to be 5.91 in NDVI of 0.9) because the characteristics of vegetation reflectance lead to much
lower red waveband albedos and higher NIR waveband albedos. Furthermore, the same variation
trend occurred between the red narrowband and shortwave broadband as showed in Figure 3b.
For the NIR narrowband and shortwave broadband, it varied when the NDVI increased to 0.9. This is
mainly because the NIR narrowband albedo increases when the NDVI becomes larger, meanwhile the
shortwave broadband albedo decreases as the canopy absorbs more radiation energy compared with
the soil. We can confirm in Figure 3a–c that: (1) the linear feature and relationships between the red
narrowband, NIR narrowband and shortwave broadband albedos in each NDVI class were consistent
and stable; (2) these linear feature and relationships varied sharply though different NDVI classes; and
(3) these variations were limited and linked to the reflectance characteristic of soil and vegetation.
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Figure 3. (a) The linear relationship between red and NIR narrowband albedos; (b) the linear
relationship between red narrowband albedo and shortwave broadband albedo; (c) the linear
relationship of NIR narrowband albedo and shortwave broadband albedo; (d) the fitting error bar
of unique fitting planes of NDVI classes of 0.1, 0.3 and 0.9; and (e) the fitting error bar of universal
fitting plane.

To illustrate how these variations impact the NTB conversion, we specified the red waveband
albedo as x coordinate axis, the NIR waveband albedo as y coordinate axis, and the shortwave
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broadband albedo as z coordinate axis to transform these samples into three-dimensional linear space,
as shown in Figure 3d,e. It should be noted that to retrieve the NTB coefficient of the corresponding
narrowband and broadband albedos is equal to find the most suitable fitting plane to fit the points in
the multidimensional linear space with lowest error.

It can be seen from Figure 3d that the distributions of the points from different NDVI classes were
greatly discrete, which indicated each NDVI class should have its unique fitting plane. When using
these unique fitting planes to fit the points of corresponding NDVI class, the error bars were very
small. The other way to solve this problem was to build a universal fitting plane for all the points
(like most previous NTB conversion researches have done). We calculated the universal fitting plane
(z = 0.52x + 0.38y) of all these input samples, and we found it is quite similar to the unique fitting
plane of NDVI = 0.9 (z = 0.5x + 0.37y). As a result, the fitting error bars tended to be much larger in
the NDVI classes of 0.1 and 0.3 when using this universal fitting plane to fit the points (showed in the
Figure 3e). It is worthy to note that the universal fitting plane is not always close to unique fitting
plane of NDVI = 0.9. In fact, it is dependent on the number and proportion of the samples in different
NDVI classes. If the bare soil dominated the largest proportion of all the samples, the universal fitting
plane will be more close to the unique fitting plane of NDVI = 0.1. However, no matter which specific
NDVI class it is close to, the fitting error of the other NDVI classes will certainly become larger.

In the previous analysis, we only considered the red and NIR waveband, which is consistent with
AVHRR but not for the other remote sensors. To illustrate quantitatively the sensitivity of NDVI-to-NTB
conversion, sensitivity analyses of proposed Multi-staged NDVI dependent NTB coefficient LUTs of
MODIS, POLDER and AVHRR were implemented using the simulated validation data set. The basic
assumption of this sensitivity analysis is that, for one sensor, if its NTB conversion is not sensitive
to NDVI, the coefficient of any NDVI class will yield stable and constant fitting error through all the
10 NDVI scenes. On the contrary, if one sensor’s NTB conversion is sensitive to NDVI, the fitting error
of one NDVI class will fluctuate over different NDVI ground scenes.

We used the NTB coefficient of each NDVI class to convert the broadband albedo of each NDVI
scene, and the conversion performance of all the 100 situations were described in Figure 4 by the
evaluating index of MRE. For MODIS, the sensitivity of NDVI-to-NTB was very low, the MRE of most
situations (65%) were less than 5%, and the largest MRE was only 30% for three situations. However,
for POLDER and AVHRR, the NTB coefficient of each NDVI class tended to be only suitable for
its corresponding NDVI scene (showed by the pixels in the 45◦ diagonal), and the MRE increased
obviously (from the minimum value of 10% to the maximum value of 135%) when the NDVI of scene
changed. This finding indicated that the sensibility of the NDVI-to-NTB conversion was related to
the placement and number of sensor waveband. The more bands one sensor has, the more effective
elements will be involved in its NTB conversion procedure. As a result, the impact of NDVI will be
reduced, which is consistent with Adams et al. [39].Remote Sens. 2017, 9, 93  12 of 18 
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4.3. Accuracy Evaluation Based on Simulation Data

We compared NTB conversion results of the multi-staged NDVI dependent NTB method (shown
in Figure 5a–c) and the general method (shown in Figure 5d–f) using the same validation spectra data
set against the sensitivity analysis experiment. The best conversion performance occurred in MODIS,
the Bias and RMSE of these two methods were both very small. In the case of POLDER, the accuracy
decreased compared with MODIS. RMSE of the general method increased to 0.0106, and R decreased
to 0.9891. When using the multi-staged NDVI dependent NTB method, RMSE reduced by 0.004, and R
improved by 0.005. With the lowest conversion accuracy, the converted albedos form general method
of AVHRR had noticeable deviation, which showed obviously underestimation with the simulated
albedos below 0.25 but sharply overestimation with the simulated albedos above 0.4. By using the
multi-staged NDVI dependent NTB method, this deviation can be reduced effectively: the RMSE was
reduced from 0.01496 to 0.0092, and the R was increased from 0.9804 to 0.9918.
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Figure 5. Comparison between overall simulation conversion results of the multi-staged NDVI
dependent NTB method and the general method: (a–c) the results of MODIS, POLDER and AVHRR,
respectively, using the multi-staged NDVI dependent NTB method; and (d–f) the results of MODIS,
POLDER and AVHRR, respectively, using the general method.

Figure 6 shows the detailed comparison of conversion results of the multi-staged NDVI dependent
NTB method with the general method though different NDVI classes. For MODIS, these two methods
had comparable performance in most NDVI classes except when the NDVI was >0.9, in which MRE
of the multi-staged NDVI dependent NTB method was 2.5% lower than that of general method.
In the case of the other two sensors, the MRE of the multi-staged NDVI dependent NTB method was
obviously decreased compared to the general method. This decrease mainly appeared in NDVI classes
of 0.3, 0.4, 0.5, 0.7 and 1 with a value of 3% to 6% for POLDER. However, it tended to be more obvious
in NDVI classes of 0.1, 0.3, 0.5 and 1 with a value of 3% to 13% for AVHRR.
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4.4. Accuracy Evaluation Using Global Albedo Products and In Situ Measurements

Figure 7 shows the in situ measured broadband albedo and the converted broadband albedos of
MODIS global narrowband albedo product by using the multi-staged NDVI dependent NTB method,
the general method and its operational coefficient. One can notice from Figure 7a that all the three
methods showed comparative agreement with ground observations with low overall MRE of ±2%.
Figure 7b indicates that the MRE of the multi-staged NDVI dependent NTB method was slightly lower
than that of the other two methods over NDVIs of 0.1, 0.4, 0.6, 0.8 and 1, but the result showed the
opposite for the remaining five NDVIs (0.2, 0.3, 0.5, 0.7 and 0.9). Despite the small differences in
conversion results, the accuracies of these three methods were very similar with the very close Bias,
RMSE and R, as shown in Figure 7c–e.Remote Sens. 2017, 9, 93  14 of 18 
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Figure 7. (a) Comparison of the conversion results of MODIS using the multi-staged NDVI dependent
NTB method, the general method and its operational coefficient with the in situ measurements;
(b) comparison of the distributions of MRE on the NDVI of these three methods for MODIS; and (c–e)
scatter plots of the conversion results of the multi-staged NDVI dependent NTB method, general NTB
method and MODIS operational NTB coefficient, respectively.
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For POLDER, as shown in Figure 8a, the conversion result of the multi-staged NDVI dependent
NTB method was significantly better than that of the other two methods, especially for the
soil-vegetation-mixed surface type (0.4 < NDVI < 0.7) and dense vegetation surface type (NDVI > 0.7),
in which the converted albedos of those two methods showed obvious overestimation. Using the
multi-staged NDVI dependent NTB method, the overall MRE was reduced by 7% and 15% compared
with the general method and the operational coefficient of POLDER. Furthermore, it can be seen from
Figure 8b, these improvements could be as high as 18% and 35% for surface types with an NDVI of 0.7.
It should also noticed from Figure 8c–e that the Bias and RMSE of the multi-staged NDVI dependent
NTB method decreased by 0.01 and 0.004 compared with general NTB method, and these values could
be 0.023 and 0.013 against the POLDER operational NTB coefficient.
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5. Discussion

We have proposed the multi-staged NDVI dependent NTB coefficient for MODIS, POLDER and
AVHRR to better address conversion performances on different surface types. The accuracy evaluation
results indicated that, by using the multi-staged NDVI dependent NTB method, the conversion
accuracies of the three sensors were improved in comparison with the general method and the
operational coefficients of global albedo products, but the improvements are related with the placement
and number of sensor waveband and the spatial resolution of global albedo product. For MODIS,
the results of these two methods were not much different. On the one hand, as demonstrated in
Section 4.2, the sensitivity of the NDVI to NTB conversion of MODIS is very low. On the other hand,
the seven bands (wavelength spanning from 0.47 µm to 2.15 µm) and 500 m spatial resolution of
MODIS are adequate to capture the surface reflectance variations of different ground scenes at the
tower-based flux site observation scale. Therefore, one can confirm that the impact of NDVI-to-NTB
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conversion is low for sensors like MODIS and VIIRS whose waveband number is more than 7, and
the universal NTB coefficients derived by general method are suggested to be adequate for these
sensors. However, for POLDER and AVHRR, the improvement tends to be much more significant
while their fitting accuracy of the general method appeared to decrease sharply. It is therefore indicated
that five or two bands (wavelength ranging from 0.47 µm to 1 µm) are insufficient for ignoring the
influence caused by the different surface reflectance characteristics in NTB conversion. The NDVI can
impact the NTB conversion significantly (by 2% to 35% improvement of conversion accuracy) for the
sensors like POLDER and AVHRR whose waveband number is less than 5. Thus, it is necessary to
adopt the proposed multi-staged NDVI dependent NTB coefficient LUTs for POLDER and AVHRR.
Furthermore, with the advance of satellite observation technologies, high resolution multispectral
remote-sensing systems such as QuickBird, IKONOS, SPOT, ALOS, FORMOSAT, HJ and GF have
become one of the main trends in the development of remote sensing. These sensors usually have
only four wavebands. Therefore, the proposed multi-staged NDVI dependent NTB method has great
potential in the application of these high resolution remote sensors.

It should be noted that this study selected NDVI to stratify the coefficient LUTs, which might be
not sensitive to some surface types due to its saturation effect. However, this problem does not greatly
affect the albedo’s NTB conversion because the variation of the surface spectral characteristics is small
when the NDVI was greater than 0.7. Other indices, such as the LAI or reflectance combination of other
wavebands, could also be used with this method, as long as they are easy to calculate and beneficial
for identifying accurately the different surface types.

This paper was based on the land surface Lambertian assumption, the effect of the angular
anisotropy of land surface reflectance were not addressed in detail. This is mainly because the high
quality surface spectral albedo or BRDF data of multiple land cover types are difficult to obtain,
and the available spectral albedo data are insufficient to derive representative NTB coefficient with
reliable accuracy. Therefore, our further research will focus on finding how the BRDF affects the NTB
conversion, and with the accumulation of spectral albedo based on the in situ measurement as well as
the radiation transfer modelling, the comprehensive and quantitative research of the NTB conversion
will be performed in the future. The other assumption used in this paper was the vacuum atmosphere
condition. Although the effect of the atmosphere condition on the NTB conversion was relatively
slight in the total shortwave [18], it is also a research aspect in the future.

6. Conclusions

In this paper, using multiple linear regression of simulated narrowband and broadband albedos
under various NDVI stratified surface types, multi-staged NDVI dependent NTB coefficient LUTs
were developed for three sensors with different band numbers: MODIS, POLDER and AVHRR.
The conversion accuracy of the multi-staged NDVI dependent NTB method was validated by
evaluating the agreements between the converted surface broadband albedos using simulations
and in situ measurements. This validation was also implemented for the conversion coefficients of
general methods. Comparative analyses of the validation results of multi-staged NDVI dependent
and general NTB methods revealed that the NDVI is sensitive to land-surface albedo NTB conversion,
especially for sensors with fewer bands, such as POLDER and AVHRR. The conversion accuracies
of these two sensors were effectively improved using the new method proposed in this paper that
couples the NTB coefficients with the NDVI.

In the future, investigations should be conducted to extend the application of the multi-staged
NDVI dependent NTB method to global mainstream remote-sensing sensors with four or five bands.
Additionally, future studies should optimize the coefficient LUTs by taking into account the effects of
the bidirectional reflectance characteristic using simultaneous in situ measurements of multi-angle
reflectance spectra and broadband albedos. Finally, a comprehensive validation should be given for
the albedo’s NTB coefficient.
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