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Abstract: The photochemical reflectance index (PRI) is a proxy for light use efficiency (LUE), and is
used in remote sensing to measure plant stress and photosynthetic downregulation in plant canopies.
It is known to depend on local light conditions within a canopy indicating non-photosynthetic
quenching of incident radiation. Additionally, when measured from a distance, canopy PRI
depends on shadow fraction—the fraction of shaded foliage in the instantaneous field of view
of the sensor—due to observation geometry. Our aim is to quantify the extent to which sunlit fraction
alone can describe variations in PRI so that it would be possible to correct for its variation and
identify other possible factors affecting the PRI–sunlit fraction relationship. We used a high spatial
and spectral resolution Aisa Eagle airborne imaging spectrometer above a boreal Scots pine site in
Finland (Hyytiälä forest research station, 61◦50′N, 24◦17′E), with the sensor looking in nadir and
tilted (off-nadir) directions. The spectral resolution of the data was 4.6 nm, and the spatial resolution
was 0.6 m. We compared the PRI for three different scatter angles (β = 19◦, 55◦ and 76◦, defined
as the angle between sensor and solar directions) at the forest stand level, and observed a small
(0.006) but statistically significant (p < 0.01) difference in stand PRI. We found that stand mean PRI
was not a direct function of sunlit fraction. However, for each scatter angle separately, we found
a clear non-linear relationship between PRI and sunlit fraction. The relationship was systematic and
had a similar shape for all of the scatter angles. As the PRI–sunlit fraction curves for the different
scatter angles were shifted with respect to each other, no universal curve could be found causing
the observed independence of canopy PRI from the average sunlit fraction of each view direction.
We found the shifts of the curves to be related to a leaf structural effect on canopy scattering: the ratio
of needle spectral reflectance to transmittance. We demonstrate that modeling PRI–sunlit fraction
relationships using high spatial resolution imaging spectroscopy data is suitable and needed in order
to quantify PRI variations over forest canopies.

Keywords: multi-angular airborne imaging spectroscopy; photochemical reflectance index;
shadow fraction; sunlit fraction; Scots pine; hyperspectral imaging; spectral information divergence

1. Introduction

Boreal forest covers a large part of the northern hemisphere, stretching from Canada over to
Northern Europe and Siberia. With nearly 12.2 million km2, boreal forests are one third of the global
forest cover [1]. Boreal forests play a crucial role in the global carbon sequestration cycle, containing
almost 30% of the world’s carbon stock. Thus, assessing forest productivity [2–4] is important for
monitoring change in forest carbon stock. The cost-effective acquisition of spatial data on large
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forest areas can only be achieved using remote sensing instruments. Fortunately, with the advent
of recent satellite instruments with higher spatial and spectral resolution, such as Sentinel 2 [5] and
the upcoming ESA’s FLEX mission [6], the quantification of biochemical processes can be currently
achieved on a large scale.

Photosynthetic light use efficiency (LUE), the efficiency at which the plant converts light into
fixed carbon, is one of the indicators used in the field of remote sensing of vegetation productivity [7].
LUE is defined as the ratio of gross primary production (GPP) to photosynthetically active radiation
absorbed by vegetation (APAR) [7–9]. The LUE of plants can show significant variation at all scales,
with structural scales ranging from within-leaf to ecosystems, and temporal scales ranging from
near-instantaneous to annual, due to plant seasonal cycles [10,11].

The LUE of plants is driven on a daily basis by changes in light, water, and temperature.
Under excessive incident radiation, plants activate their defense mechanisms, de-epoxidate their
xanthophyll cycle pigments, and downregulate photosynthesis. Excess light is then discarded as
heat [12]. Measuring photosynthetic activity using remote sensing has significantly increased in
popularity over the last two decades. At the moment, one of the most promising proxies for measuring
LUE remotely is the xanthophyll-sensitive photochemical reflectance index (PRI) [13], one of the few
vegetation indices that have proven to be effective in estimating LUE and pigment composition at both
the leaf and canopy scales [13,14]. PRI is a narrow-band spectral index used to detect light-induced
change in the epoxidation state of the xanthophyll cycle [15], and is used as a proxy for vegetation stress
detection on a diurnal timescale [13]. PRI is defined as: PRI = r531−r570

r531+r570
where rλ is the reflectance factor

at the wavelength λ in nanometers of either a plant leaf or canopy. The downregulation associated with
a change in the epoxidation state of xanthophylls is visible at 531 nm. The 570 nm-band is insensitive
to short-term changes in the xanthophyll cycle, and is used as a reference. The usability of PRI has been
extensively validated at the leaf level [16]. PRI theoretically ranges from −1 to 1, with high PRI values
indicating a lack of downregulation [17]. Under natural conditions, the range of PRI is substantially
reduced, with most values being between −0.2 and 0.2 [18,19].

Contrary to the scale of a leaf, at canopy level, PRI is ambiguously related to LUE. It is affected by
factors such as understory reflection, viewing direction, and different illumination conditions [19–21].
Barton and North [18] showed that LUE derived from canopy PRI values can vary significantly due
to variations in the observation angle, soil background, and leaf area index (LAI). The narrow crown
dimensions of trees in boreal forests create strong shadows and allow for easy penetration of understory
reflectance [22–24]. In addition to changes in the xanthophyll cycle, morphological changes in plants
during the seasonal cycle, water stress, drought, and air temperature all have direct effects on the leaf
PRI–LUE relationship [25,26].

The crowns of single trees, especially in high northern latitudes where the solar angle is low,
are always partly shaded due to neighboring crowns. Additionally, leaves inside a crown can be
shaded by other leaves in the same crown. The amount of shading in a pixel can be quantified using
the sunlit fraction (αS), which is defined as the fraction of sunlit leaves in the field of view of the sensor.
Alternatively, the shadow fraction 1− αS can be used [20]. The brightest backscattering direction,
known as the hot spot, is where no internally shaded elements are visible to the sensor, and hence
αS = 1. In other directions, αS < 1. Clearly, sunlit fraction is one of the key drivers of scattering
directionality, and thus is a central variable in investigating multi-angular imaging spectroscopy data.

Conventionally, optical remote sensing target reflectance measurements are measured from
the vertically downward looking angle, nadir. However, measurements of 3D structures such
as vegetation can provide interesting information when made from an oblique angle [22].
Multi-angular measurements have shown to be beneficial in detecting a PRI–LUE relationship with
a spectrophotometer [27,28]. A similar investigation on the variability of the PRI with shadow
fractions can be performed using airborne high spatial resolution data [20,29]. Combining these
two approaches, multi-angular high spatial resolution imaging spectroscopy data will thus enable the
explicit investigation of the role of sunlit fractions on the measured signal. It includes two independent
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sources of variation in αS. First, at sufficiently high spatial resolution, each view angle enables studying
the variation of canopy appearance with sunlit fraction (sunlit and shaded crown sides) at a fixed
observation geometry (illumination and view directions). Second, pixels with similar sunlit fractions
can be extracted from data recorded at different view angles, thus quantifying the effect of observation
geometry on the relationships of interest.

Through the novel combination of angular and high spatial resolution spectroscopy, we aim
to quantify the extent to which sunlit fraction alone can describe variations in PRI. To achieve this,
we first determined top of canopy (TOC) spectral reflectance variation and the canopy PRI–canopy
sunlit fraction relationship. The unique dataset allowed us to identify other possible factors affecting
the relationship in a boreal forest stand.

2. Materials and Methods

2.1. Study Site

The study area is located near the Hyytiälä forest field station in central Finland (61◦50′N, 24◦17′E)
managed by the University of Helsinki. The area is covered primarily with managed boreal forest,
wetlands, and agricultural plots. The forest is dominated by three tree species: evergreen deciduous
Norway spruce (Picea abies (L) Karst) and Scots pine (Pinus sylvestris L), and deciduous silver birch
(Betula pendula). Most of the tree stands in this area are mixed. The forest understory consists
of bryophyte, shrubs, and lichen species. The growing season lasts from May until late August.
The terrain is hilly, and has an average ground elevation of 160 m.

The airborne flight campaign was flown in the morning of 3 July 2015 between 10:29 and
10:57 AM (GMT+3) under clear sky conditions. The average solar zenith angle during the flights
was 48◦. The flying altitude was approximately 980 m above ground level with a planned airspeed
of 70 knots. According to Hyytiälä SMEAR TOC measurements, the average wind speed during
the measurements was 5 m·s−1. The flight directions were co-aligned with the solar principal
plane to minimize bidirectional reflectance function (BRDF) effects. All three flight lines were flown
consecutively in northeast and southwest directions.

We obtained imagery with an Aisa Eagle II hyperspectral scanner (AHS) (Specim-Spectral
Imaging Ltd., Oulu, Finland) mounted on a tilting platform at the rear end of a Short SC.7 Skyvan
research aircraft (Figure 1). AISA Eagle II AHS is a pushbroom scanner that is sensitive in the
400–970 nm spectral region. The nominal spectral resolution of the sensor is 3.3 nm at full width
half maximum (FWHM) and nominal channel width is 1.2 nm. Spectral binning was used during
the campaign to increase the signal level at low light conditions (low sun), leading to 128 contiguous
spectral bands with a decreased spectral resolution of 4.7 nm. The AHS has a field of view (FOV) of
37.7◦ divided between 1024 pixels.

We changed the sensor angle during the flight using a spindle motor-operated platform. We used
an Oxford RT3100 IMU for post-correction of progressive and angular movements. The IMU and
AHS data were temporally co-registered using a synchronization signal in the hardware. We flew the
first and second flight line with the sensor tilted approximately 30◦ off-nadir, whereas line three was
measured close to the nadir direction. The area covered by all three flight lines was approximately
8.5 km long and 614 m wide.

We used the view and solar directions to calculate the average scatter angle β for each line,
which was defined as the angle between the directions from target to sun, and target to sensor (thus,
for exact backscatter, hot spot, β = 0).
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Figure 1. Hyperspectral AISA Eagle II sensor and IMU system on a tilting platform looking in the 
nadir direction through the cargo bay entrance at the rear of the aircraft. The cables connecting the 
instruments have been removed for better visibility. We configured the sensor to scan with a 60 Hz 
framerate. The chosen configuration resulted in square pixels of approximately 60 cm for nadir view; 
in off-nadir directions, the pixels were slightly elongated (Table 1). Full technical characteristics of the 
sensor are given in Table 2.  

Table 1. Scene and data acquisition parameters. 

 l1 l2 l3 
Time of acquisition (GMT+3) 03-07-2015 10:32  10:41 10:52 

Scatter angle (ߚ) 55° 19° 76° 
Sensor heading (clockwise from N) 291° 141° 293° 

Solar angle (zenith, azimuth) 48°, 122° 48°, 125° 47°, 128° 
Spatial sampling interval  0.6 × 0.7 m2 0.6 × 0.7 m2 0.6 × 0.6 m2 

Sensor view angle 28° 29° 8° 

Table 2. Sensor specifications and configuration during acquisitions. 

Sensor Parameter Specification
Spectrograph High efficiency transmissive imaging 
Spectral range 400–970 nm 

Number of spectral bands 128 
Spectral bandwidth 4.7 nm 

Framerate 60 Hz 
Field of view (FOV) 37.7° 
Across-track pixels 1024 

IMU Oxford RT3000 

2.2. Image Data Calibration and Processing  

We calibrated the raw AHS images using the Caligeo pre-processing tool (version 4.9.7, Specim 
OY, Oulu, Finland) to convert digital numbers (DN) to at-sensor radiance values. The radiometric 
calibration settings were derived from laboratory measurements by the instrument manufacturer in 
spring 2015.  

Figure 1. Hyperspectral AISA Eagle II sensor and IMU system on a tilting platform looking in the
nadir direction through the cargo bay entrance at the rear of the aircraft. The cables connecting the
instruments have been removed for better visibility. We configured the sensor to scan with a 60 Hz
framerate. The chosen configuration resulted in square pixels of approximately 60 cm for nadir view;
in off-nadir directions, the pixels were slightly elongated (Table 1). Full technical characteristics of the
sensor are given in Table 2.

Table 1. Scene and data acquisition parameters.

l1 l2 l3

Time of acquisition (GMT+3) 03-07-2015 10:32 10:41 10:52
Scatter angle (β) 76◦ 19◦ 55◦

Sensor heading (clockwise from N) 291◦ 141◦ 293◦

Solar angle (zenith, azimuth) 48◦, 122◦ 48◦, 125◦ 47◦, 128◦

Spatial sampling interval 0.6 × 0.7 m2 0.6 × 0.7 m2 0.6 × 0.6 m2

Sensor view angle 28◦ 29◦ 8◦

Table 2. Sensor specifications and configuration during acquisitions.

Sensor Parameter Specification

Spectrograph High efficiency transmissive imaging
Spectral range 400–970 nm

Number of spectral bands 128
Spectral bandwidth 4.7 nm

Framerate 60 Hz
Field of view (FOV) 37.7◦

Across-track pixels 1024
IMU Oxford RT3000

2.2. Image Data Calibration and Processing

We calibrated the raw AHS images using the Caligeo pre-processing tool (version 4.9.7, Specim OY,
Oulu, Finland) to convert digital numbers (DN) to at-sensor radiance values. The radiometric
calibration settings were derived from laboratory measurements by the instrument manufacturer
in spring 2015.

We used the atmospheric correction software ATCOR-4.7 (ReSe applications Schläpfer,
Wil, Switzerland) to convert at-sensor radiances to TOC hemispherical-directional reflectance factors
(HDRFs). The atmospheric condition was described with the maritime aerosol model (based on
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a seven-day air pressure trajectory coming from the Atlantic ocean). Aerosol optical thickness (AOT)
was retrieved from the AERONET sun photometer measurement at the Hyytiälä site for the time of
image acquisition. The measured AOT value of 0.06 at 500 nm corresponds to a visibility value of
120 km in Atcor (Daniel Schläpfer, pers. comm.). Water vapor column height was calculated from the
840 nm absorption feature, and pixel adjacency correction distance was set to 0.10 km.

Georegistration and orthorectification were done with the Parge image rectification tool,
version 3.1 (ReSe applications Schläpfer, Wil, Switzerland). We used a digital elevation model with
2 m spatial resolution provided by Finnish National Land Survey. We selected 15 road intersections as
ground control points from atmospherically corrected AHS images, and aerial photographs with 0.5 m
spatial resolution (Finnish National Land Survey) to determine the boresight angles describing the
alignment between the IMU axes and the optical axis of the sensor.

For orthorectification of the atmospherically-corrected TOC reflectance images, we downloaded
a 3D LiDAR point cloud dataset from the National land survey of Finland (2010, Paikkatietoikkuna)
with a point density of 0.5 points per m2. We used the LAStools package (version: 140615,
Rapidlasso GmbH, Gilching, Germany) to separate ground and canopy returns. Canopy returns
were filtered for outliers (more than 30 m above ground) and gridded to 10 m to create a digital
surface model (DSM). Spikes in the DSM were removed using a focal statistics filter in Arcmap 10
(Esri, Redlands, CA, USA), where a 3 × 3 grid was used to calculate the mean cell value within its
direct neighboring cells. This smoothing process was performed twice to smooth the spikes between
tree canopy pixels. We used the resulting DSM, which was assumed to correspond to the TOC surface,
and IMU data, to georectify the AHS data with nearest neighbor resampling onto a 0.6 m pixel grid in
the WGS1984 UTM zone 35 coordinate system. The final orthorectified AHS images had a geometric
accuracy of approximately 2 m.

2.3. Study Plot

We manually selected the study plot (Figure 2a) using raster maps of biomass by tree species (Pine:
Figure 2b and broadleaf: Figure 2c) from the National Forest Inventory for 2013 (MS-NFI, © Natural
Resources Institute Finland, Helsinki, Finland, 2015). We selected a visually homogeneous polygon in
the AHS imagery where we had a Scots pine biomass fraction of at least 50%; no spruce was present
in the study plot. Scots pine and silver birch can easily be visually distinguished from Figure 2a,
as broadleaf trees have a considerably higher near infrared (NIR) reflectance than Scots pine, and hence
look red in the false color figure. The study plot covered 1.2 hectares, and included approximately
35,690 AHS pixels. During field measurements in 2011, the plot had been classified as a young mesic
pure Scots pine stand with 84% canopy cover and effective LAI = 2.7 (Figure 2a). The study site had
not been subjected to any harvesting or other abrupt changes. Considering the slow growth of forests
in this region, the measured LAI value can be used to characterize the plot with reasonable accuracy
still in 2015.
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Figure 2. (a) A false color (red: 858 nm, green: 649 nm, blue: 547 nm) image of the selected Scots pine
plot marked by the red border; (b) Scots pine biomass fraction map; (c) Broadleaf biomass fraction map.
The red dot marks the field plot measured in 2011.

We then masked out all non-vegetative pixels, such as bare soil, in ENVI (Harris Geospatial
Solutions, Broomfield, CO, USA) using a normalized difference vegetation index (NDVI) threshold of
0.8 (Table 3). This threshold successfully retained most of the vegetative pixels while removing only
clearly non-vegetated ones. The number of pixels masked out was less than 8% in the nadir direction,
and less than 1% for the off-nadir directions (Table 3).

Table 3. Number of pixels with values observed from three different viewing angles. Total number of
pixels in the polygon was 35,691 for β = 19, 35,693 for β = 55, and 35,690 for β = 76.

Scatter Angle Vegetated Pixels Masked-Out Non-Vegetated Pixels

19◦ 33,303 2388
55◦ 35,391 302
76◦ 35,647 43

2.4. Spectral Similarity Metrics

To test the spectral similarity between Scots pine canopy sunlit fraction pixels observed from
different view angles, we used the spectral information divergence measure (SID) [30]. SID is the
discrepancy of the probability distribution between two spectral vectors. Van der Meer [31] has tested
several common spectral similarity algorithms using synthetic and measured Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) data. They concluded that SID is more effective in mapping and
detecting targets, and is less sensitive to spectral noise compared with other tested spectral metrics.

2.5. Calculation of Canopy PRI

We calculated the Scots pine canopy PRI for each scatter angle using the spectral central
wavelengths at 533 nm and 569 nm closest to the PRI wavelengths 531 nm and 570 nm. We used
a standard t-test to determine whether the mean PRI for each flight line was statistically significantly
different to each other.

2.6. Scots Pine Canopy Sunlit Fraction Retrieval

First, we fitted the equation:
BRF(λ)

ω(λ)
= p BRF(λ) + ρ (1)

to the AHS data with band centers between 711 nm to 787 nm, where ρ and p are two constants [32,33]
known as the directional escape and recollision probabilities, respectively. For the leaf albedo ω(λ),
we used the synthetic leaf reference albedo ωref(λ) calculated with the PROSPECT-4 leaf optical
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properties model [34], with the parameters set to the optimal values for the method as prescribed by
Knyazikhin et al. [32,33]: leaf dry matter content Cdry = 0.002 g · cm−2, chlorophyll a and b content
Ca+b = 16 µg·cm−2, leaf water content Cw = 0.005 cm−1. The parameter ρ is related to the sunlit
fraction αS described by Hernández-Clemente et al. [35]:

αS(ρ) = 4 cos θSρ (2)

where θs is the solar zenith angle. However, the sunlit fraction depends on the scale of the scattering
element (e.g., shoot, needle, or a within-needle structure [36]) that the single-scattering albedo ω

belongs to. The transformed albedos of green foliage of different structural levels ωi(λ) follow
a simple scaling rule:

ω1 =
(1− p2, 1− 2 p2,1)ω2

1− p2,1 ω2

or
ω1

ω2
= ω1 p2,1 + (1− p2,1) (3)

where the recollision probability p2,1 quantifies the probability of the event that a photon scattered
by the object V2 residing in V1 (e.g., needle in the shoot) will interact within V1 again (e.g., hit
another needle within the same shoot) (Equation (2) by Knyazikhin et al. in [33], originally derived
by Smolander and Stenberg [37]). More generally, Equation (3) can be used to connect any two
leaf albedos [32]. We used the Scots pine needle albedo ωScots pine(λ) measured in Hyytiälä [36]
transformed to correct for gap fractions and specular reflectance. By setting ω2 ≡ ωScots pine and
ω1 ≡ ωref in Equation (3), and applying a linear regression, we found that ωScots pine(λ) is related to
ωref(λ) as:

ωScots pine(λ)

ωref(λ)
= 0.352 ωScots pine(λ) + 0.648 (4)

or, pref,Scots pine = 0.352.
As both ω1 and ω2 in Equation (3) can be used to form a relationship with BRDF identical to

Equation (1), we obtain the following scaling equations for the parameters p and ρ:

BRF
ω2

= [p2,1 + p1 + p2,1 p1]BRF + [1− p2,1]ρ1 (5)

Now, we can write ρref =
(

1− pref,Scots pine

)
ρScots pine = 0.648ρScots pine. Hence, we could convert

the sunlit fraction obtained with the reference albedo in Equation (2), αS,ref = αS(ρref) to the fraction
of sunlit Scots pine needles αS,Scots pine = αS

(
ρScots pine

)
, hereafter denoted as αS, by dividing αS,ref

by 0.648.
We used the IDL programming language and ENVI (Harris Geospatial Solutions, USA) software

to fit Equation (1) to AHS data and to create αS maps for all three flight lines. In the place of BRDF,
we used the AHS-measured HDRF values. In the red edge spectral region, and especially on a clear
day, the difference between HDRF and BRDF is very small.

Under the assumption of the sunlit fraction αS being the main driver of the spectral shape of
BRDF, we extracted Scots pine canopy BRDF in seven αS ranges and evaluated the similarity of
the BRDFs using the SID algorithm. We inspected sunlit fraction histograms to find the smallest
sunlit fraction value ranges with more than 80 pixels for each view angle. We selected the following
intervals: 0.06 < αS < 0.08, 0.26 < αS < 0.29, 0.35 < αS < 0.36, 0.43 < αS < 0.45, 0.56 < αS < 0.60,
0.71 < αS < 0.73, 0.82 < αS < 0.86. (Table 4). We averaged the spectra in each interval to obtain
16 Scots pine canopy reflectance spectra, specific to each view angle and αS interval. Note that the data
for each αS interval were not always available due to the natural range of αS (Table 4).



Remote Sens. 2017, 9, 1005 8 of 17

Table 4. Number of pixels for seven sunlit fraction (αS) subsets (in columns) for the three scatter angles
β used in the study.

β 0.06–0.08 0.26–0.29 0.35–0.36 0.43–0.45 0.56–0.60 0.71–0.73 0.82–0.86

19◦ 0 106 347 1346 4837 413 86
55◦ 88 3827 1327 1160 103 17 0
76◦ 89 5411 1051 97 0 0 0

2.7. Dependence of PRI on Sunlit Fraction

The dependence of the remotely measured PRI on the sunlit fraction αS (assuming all other factors,
including leaf optical properties, constant) is given by Equation (9) by Barton and North [18] as:

PRI = PRIlea f −
1
2

ln
[

φ570E531

φ531 E570

]
= PRIlea f −

1
2

ln
[

φ570

φ531

]
− 1

2
ln
[

E531

E570

]
, (6)

where φλ is the spectral irradiance on leaf surface at the wavelength λ, and Eλ is the TOC spectral
irradiance on a horizontal surface. We can divide the spectral irradiance into the diffuse and direct
components denoted with the superscripts dif and dir, respectively, i.e., Eλ = Edi f

λ + Edir
λ . We used the

approximation of the direct and diffuse irradiances on needle surfaces proposed by Mõttus et al. [29]
(Equation (11)):

φλ = Vdi f Edi f
λ + αS

Edir
λ P(ϑ0)

cos ϑ0
, (7)

where P(ϑ0) is the ratio of average projected area of the element in the direction given by the solar
zenith angle ϑ0, and Vdi f is the average fraction of diffuse sky radiation reaching the visible leaves.
For broadleaves, P(ϑ) = 1

2 G(ϑ); for an isotropic distribution of leaf (or needle) normals, P ≡ 1
4 . Hence,

we get:

PRI = PRIlea f −
1
2

ln
[

E531

E570

]
− 1

2
ln

Vdi f Edi f
570 + 2αS

P(ϑ0)Edir
570

cos ϑ0

Vdi f Edi f
531 + 2αS

P(ϑ0)Edir
531

cos ϑ0



= PRIlea f −
1
2

ln
[

E531

E570

]
− 1

2
ln

Edi f
570

Edi f
531

− 1
2

ln


1 + αS

P(ϑ0)Edir
570

Vdi f Edi f
570 cos ϑ0

1 + αS
P(ϑ0)Edir

531

Vdi f Edi f
531 cos ϑ0

 (8)

According to Equation (8), the remotely measured PRI thus consists of a part determined by leaf
optical properties and incident illumination conditions:

PRI0 = PRIlea f −
1
2

ln
[

E531

E570

]
− 1

2
ln

Edi f
570

Edi f
531

, (9)

and a part depending on αS. For completely shaded leaves (αS = 0), PRI = PRI0. The range of PRI
variation with αS is thus determined as:

PRI0 − PRI1 =
1
2

ln

1 + P(ϑ0)
Vdi f

F570
cos ϑ0

1 + P(ϑ0)
Vdi f

F531
cos ϑ0

, (10)

where PRI1 is the value of PRI at αS = 1. Mõttus et al. [29] assumed Vdi f = 0.5, as this parameter
cannot be measured directly. Hence, we bundled the various coefficients into parameters that we
retrieved from remotely sensed data.
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We used the non-linear regression line fitting function prediction in the R statistical software
environment (version 1.0.136), to make a prediction between the Scots pine canopy sunlit fraction and
the Scots pine canopy PRI for each scatter angle. We used the equation:

PRI(PRI0, Q570, Q531, αS) = PRI0 −
1
2

ln
1 + 0.2αSQ570

1 + 0.2αSQ531
, (11)

where PRI0 is the value of PRI at αS = 0; and Q531 and Q570 are curve parameters that depend on the
irradiance ratios, Vdi f , and the solar angle.

3. Results

The average Scots pine TOC reflectance was approximately the same for the scatter angles β = 55◦

and 90◦, with significantly higher values produced across the spectrum at β = 19◦, the direction closest
to hot spot (Figure 3a). This trend is mirrored in the fraction of sunlit needles for the three view angles
(Figure 3b): the average sunlit fraction decreased as the scatter angle increased, but the difference in αS
(0.04) between scatter angles 55◦ and 76◦ was smaller than between 19◦ and 55◦ (0.21), although all αS
differences in scatter angles were significant (p << 0.01). Mean PRI, on the other hand, did not change
monotonically with the scatter angle β (Figure 3c). The smallest PRI value of −0.052 was measured for
near-nadir direction (β = 55◦) with near-similar values of −0.049 and −0.046 for the scatter angles
β = 19◦ and β = 76◦, respectively. Despite the overlapping ranges in Figure 3c, t-tests indicated
a significant difference (p < 0.01) between the PRI values for three lines. The range of the within-view
angle in PRI varied with the scatter angle from 0.117 at β = 19◦, to 0.169 at β = 55◦, and 0.163 at
β = 76◦. The standard deviation in PRI was 0.011 at β = 19◦, 0.162 at β = 55◦, and 0.158 at β = 76◦.
A true color image of the focus area highlights the spatial variation in Scots pine canopy brightness for
all three scatter angles (Figure 4). The spatial variation in PRI (Figure 5) and sunlit fraction (Figure 6)
were also visually compared for all three scatter angles.

Figure 3. Average Scots pine top of canopy (TOC) spectral reflectance (a), Scots pine canopy sunlit
fraction (b) and Scots pine canopy photochemical reflectance index (PRI) (c) for three scatter angles
(β = 19◦, 55◦ and 76◦).

Figure 4. True color images of the focus area (red rectangle in Figure 2) inside the test polygon showing
spatial variation in Scots pine canopy brightness for different scatter angles (β = 19◦ (a); β = 55◦ (b);
β = 76◦ (c)). Purple pixels were masked out; normalized difference vegetation index (NDVI) < 0.8.
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Figure 5. Spatial variation of the canopy PRI for β = 19◦ (a); β = 55◦ (b); and β = 76◦ (c). Purple pixels
were masked out (NDVI < 0.8). The color scale is the same for all three rasters.
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Figure 6. Spatial variation of the canopy sunlit fraction for β = 19◦ (a), β = 55◦ (b), β = 76◦ (c). Purple
pixels were masked out (NDVI < 0.8). The color scale is the same for all three rasters.

The scatter angle closest to the hot spot (β = 19◦) produced higher average TOC HDRF values than
scatter angles 55◦ and 76◦ in the visible region (400–700 nm), but less reflectance in the near-infrared
region (700–870 nm) (Figure 7) for any fixed interval of the sunlit fraction αS. To investigate this,
we divided the average TOC HDRF reflectance at the oblique angles (β = 19◦ and 76◦) by the reflectance
close to nadir (β = 55◦). We observed a general decrease in the HDRF (19◦)/HDRF (55◦) ratio with
αS, with especially strong dependence in the visible wavelengths. The ratio HDRF (76◦)/HDRF (55◦)
remained more constant and was close to unity across the whole measured spectrum (Figure 8). In both
cases (HDRF (19◦)/HDRF (55◦) and HDRF (76◦)/HDRF (55◦)), the highest HDRF ratio values were
obtained for αS between 0.43 and 0.45.

Remote Sens. 2017, 9, 1005  10 of 17 

 

 
(a) (b) (c) 

Figure 5. Spatial variation of the canopy PRI for ߚ =	19° (a); ߚ =	55° (b); and ߚ = 76° (c). Purple pixels 
were masked out (NDVI < 0.8). The color scale is the same for all three rasters.  

 
(a) (b) (c) 

Figure 6. Spatial variation of the canopy sunlit fraction for ߚ =	19° (a), ߚ =	55° (b), ߚ =	76° (c). Purple 
pixels were masked out (NDVI < 0.8). The color scale is the same for all three rasters. 

The scatter angle closest to the hot spot (β = 19°) produced higher average TOC HDRF values 
than scatter angles 55° and 76° in the visible region (400–700 nm), but less reflectance in the near-
infrared region (700–870 nm) (Figure 7) for any fixed interval of the sunlit fraction ߙௌ. To investigate 
this, we divided the average TOC HDRF reflectance at the oblique angles (ߚ = 19° and 76°) by the 
reflectance close to nadir (ߚ = 55°). We observed a general decrease in the HDRF (19°)/HDRF (55°) 
ratio with ߙௌ , with especially strong dependence in the visible wavelengths. The ratio HDRF 
(76°)/HDRF (55°) remained more constant and was close to unity across the whole measured 
spectrum (Figure 8). In both cases (HDRF (19°)/HDRF (55°) and HDRF (76°)/HDRF (55°)), the highest 
HDRF ratio values were obtained for ܵߙ between 0.43 and 0.45. 

 
(a) (b) (c) 

Figure 7. Average Scots pine canopy TOC reflectance for sunlit fraction 0.26–0.29 (a); 0.35–0.36 (b); 
and 0.43–0.45 (c). 

400 500 600 700 800

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Wavelength (nm)

H
D

R
F

19
55
76

400 500 600 700 800

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Wavelength (nm)

H
D

R
F

19
55
76

400 500 600 700 800

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Wavelength (nm)

H
D

R
F

19
55
76

Figure 7. Average Scots pine canopy TOC reflectance for sunlit fraction 0.26–0.29 (a); 0.35–0.36 (b);
and 0.43–0.45 (c).
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Figure 8. Ratio of Scots pine TOC spectral reflectance between sunlit fractions for three scatter angles
(β = 19◦, 55◦, and 76◦).

We compared spectral divergence for all αS sunlit fraction ranges given in Table 4. The largest
SID (0.019) for within flight line was observed when the distance between two sunlit fraction
ranges αS = 0.06–0.08 vs. αS = 0.43–0.45 (Figure 9). We observed this pattern for each flight line,
with somewhat smaller average SID values across the whole range of αS observed for β = 19◦ (Figure 9).
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Figure 9. Spectral divergence values between sunlit fraction ranges for fixed scatter angles.

We also compared the SID of HDRFs for all sunlit fraction intervals in Table 4 between the three
scatter angles. We observed the largest spectral divergence (SID = 0.037) between β = 19◦ and 76◦
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for αS = 0.26–0.29 (Table 5). The smallest SID (0.001) was observed between β = 55◦ and 76◦. Scatter
angles 55◦ and 76◦ produced the lowest SID values for all of the sunlit fraction ranges, with 0.003 the
highest SID value for αS = 0.43–0.45. In contrast, the lowest SID value for 19◦ vs. 55◦ and 19◦ vs. 76◦

were 0.017 and 0.033, respectively. The SID values for all of the sunlit fractions were the smallest for
55◦ vs. 76◦.

Table 5. Scots pine canopy hemispherical-directional reflectance factor (HDRF) spectral divergence
(SID) for different ranges of sunlit fraction.

αS β = 19◦ vs. β = 55◦ β = 19◦ vs. β = 76◦ β = 55◦ vs. β = 76◦

0.06–0.08 – – 0.001
0.26–0.29 0.024 0.037 0.003
0.35–0.36 0.022 0.037 0.003
0.43–0.45 0.017 0.033 0.003
0.560.60 0.020 – –

The parameters of the non-linear regression model (Figure 10) of PRI as a function of sunlit
fraction are given in Table 6. The dependence of PRI on sunlit fraction becomes stronger as the scatter
angle increases. This dependence is visible when all of the data is combined, and results in a steeper
curve for small sunlit fraction values (0 < αS < 0.2) (Figure 10d). A comparison of the four fitted lines
in Figure 11 shows that the curves for the three scatter angles are quasi-parallel, and are intersected by
the curve fitted to all data.
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Figure 10. Non-linear fit of PRI as a function of the sunlit fraction αS for β = 19◦ (a); β = 55◦

(b); β = 76◦ (c); and all data (d). Lines are least squares fits of Equation (11).
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Table 6. Non-linear fit (Equation (11)) parameter estimates for β = 19◦, β = 55◦, β = 76◦ and all
data combined.

Parameter fi = 19◦ fi = 55◦ fi = 76◦ Combined

PRI0 0.042 −0.01 0.017 0.255
Q570 25.6 20.0 36.6 549.3
Q531 19.7 17.1 29.8 291.5
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4. Discussion

Kuusk et al. [38] have measured canopy reflectance in Järvselja at two wavelengths (660 nm and
850 nm) at a solar zenith angle of 52◦ at 660 nm, and a solar zenith angle of 46◦ at 850 nm. In the
660 nm wavelength band, they reported HDRF values of 0.03, 0.02, and 0.02 for β = 19◦, β = 55◦,
and β = 76◦, respectively. Our values, measured in Hyytiälä, were 0.03, 0.02, and 0.02, respectively.
In the 850 nm wavelength band, the HDRF values in Järvselja were 0.18, 0.15, and 0.12 [38] for scatter
angles of 19◦, 55◦, and 76◦, respectively. The corresponding values obtained by us in Hyytiälä were
0.27, 0.19, and 0.19. The values are remarkably similar in the red band. The difference in canopy
HDRF in the NIR region (850 nm) is likely due to different canopy structures and illumination angles.
The dark spot (lowest HDRF) observed by Kuusk et al. [38] was approximately 25◦ off-nadir, which
is close to the observation geometry used in the study: with good approximation, we can consider
β = 76◦ to represent the dark spot of the canopy.

We found a strong non-linear relationship between canopy PRI and sunlit fraction for each view
angle separately. The relationships could be modeled with the equations provided by Mõttus et al. [29].
Our empirical findings support that the observed fraction of canopy shadow in the field of view
of the sensor is an important driver for spectral BRDF. Further, the dependence between sunlit
(or shadow) fraction and PRI is strongly non-linear, and the linear model that has been used by many
authors [20,27,39] should be used with care. However, αS is not the only, or not necessarily even the key
driver in scattering directionality. The observed maximum spectral divergence among the vegetated
pixels caused by αS for any fixed scatter angle was 0.02 (Figure 9). At a constant αS, we observed much
larger spectral divergence values (Table 5). While the two darkest view angles (β = 76◦ and β = 55◦)
were relatively similar (maximum divergence 0.03), the angle closest to the hot spot (β = 19◦) differed
from the other two, with maximum SID values close to 0.04.

The relationship between αS and the PRI was the strongest at αS < 0.2, and flattened out when
sunlit fraction increased. The mean αS values for the three view angles were close to or above this
threshold. Despite the strong relationship between αS and the PRI for each view angle separately,
the stand mean PRI did not change systematically with the scatter angle. As the PRI—αS curves for the
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three view angles were quasi-parallel with similar parameters (Table 6), the location of αS on the flat
part of the curve made the PRI sensitive to other potential interfering factors. The difference between
the curves for the three view angles, caused by an unspecified factor, was systematic and apparently
independent from αS (Figure 11). When we combined all of the PRI and sunlit fraction values for all of
the scatter angles (Figure 11), the curve was not parallel to the other curves. Further, the curve did not
approach a meaningful PRI0 value at αS → 0. Unrealistic values were also retrieved for other model
parameters (Table 6). These results indicate the existence of another factor besides αS that depends on
scatter angle and affects PRI systematically and across all αS values.

When canopy reflectance would be averaged over all vegetation pixels (e.g., to simulate the signal
of a medium spatial resolution sensor over a closed canopy), this unspecified factor would dominate
over αS by eliminating the dependence of PRI on the sunlit fraction αS. Although the masks that were
used to exclude non-vegetated pixels were different for each scatter angle, not applying a mask (i.e.,
a true simulation of large-footprint sensor) would not alter the dependence of PRI on β in Figure 3
(data not shown). The masks did not differentiate between the tree species growing in the test site.
According to the raster maps from the National Forest Inventory, a small fraction of birch trees were
expected at the site. However, based on visual inspection of the AHS images (Figure 2), the presence
of broadleaf was small, and the effect on the PRI–shadow fraction analysis can be neglected.

When we compared the ratio of Scots pine TOC reflectance between the direction closest to hot
spot (β = 19◦) and nadir (β = 55◦) for different sunlit fractions, we observed a high value, especially
in the blue region (Figure 8). We hypothesize that this is caused by needle wax [40]. In the visible
wavelengths where leaf pigments are highly absorbing, leaf scattering is dominated by specular
reflectance at the surface [41]. Specular reflectance, directed mostly in backward directions, increases
strongly with decreasing wavelength in the visible spectral region. To test this, we plotted the ratio
of Scots pine needle reflectance to transmittance measured in Hyytiälä in 2013 [42], and observed
a pattern similar with our observed ratio between TOC reflectance for two scatter angles (Figure 12).

The variation in leaf reflectance to transmittance ratio in Figure 12 explains the unexpectedly
large PRI close to hot spot well. When calculated from laboratory-measured needle transmittance,
Scots pine needle PRI in midsummer 2012 was −0.008; when calculated from reflectance, PRI was
0.014. In the hot spot direction, canopy reflectance in the visible part of the spectrum (where multiple
scattering can be ignored to a reasonable accuracy) is contributed by reflectance only, while in the
dark spot, both needle reflectance and transmittance contribute. The two measurements (laboratory
measurements of needle spectra and AHS data) cannot be compared directly, as laboratory-measured
data are directional–hemispherical, and airborne data hemispherical–directional. However, the two
curves show similar features: a local minimum at 550 nm and a local maximum close to 680 nm.
The importance of specular scattering in Scots pine canopies is not unexpected. In the laboratory,
Mõttus and Rautiainen [43] have shown that shoot scattering directionality needs to be accounted
for when interpreting multi-angular PRI measurements, and that the directionality is likely caused
by specular scattering. Obviously, this statement is not only valid for the relatively exotic airborne
multi-angular imaging spectroscopy data, but also whenever angular information is applied on spectral
remote sensing data, e.g., fitting BRDF models or correcting for angular effects in instruments with
wide swaths, and analysis of tower-based PRI measurements. Moreover, the specific structural effects
described here need to be accounted for when comparing nadir measurements made at different solar
angles, such as for example when analyzing the time series of data from a single location measured
from a sun-synchronous satellite.

We have demonstrated the applicability of a simple PRI—αS model for constant view geometry
and the dependence of this relationship on the scattering directionality of leaves (needles). This model
can be used to eliminate the non-physiological effects in the measured PRI signal, and connect observed
PRI variations with shadow fraction—either in multi-angular or high spatial resolution data—to
variations in photosynthetic activity. More work is required to quantify these relationships and relate
stand scattering characteristics with atmospheric variables and leaf structural information. Without



Remote Sens. 2017, 9, 1005 15 of 17

a physical model, canopy level spectral information cannot be robustly linked to the physiological
processes taking place in leaves.Remote Sens. 2017, 9, 1005  15 of 17 
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dashed lines), plotted together with the ratio of Scots pine needle reflectance to transmittance 
measured in situ [40] (solid line). 

5. Conclusions 

We were able to model the PRI–sunlit fraction relationship measured from multi-angular 
imaging spectroscopy data. The relationship is strongly non-linear, and PRI is less sensitive to sunlit 
fraction when sunlit crown pixels dominate the sensor’s field of view. Furthermore, the relationship 
depends on observation angle, likely because of specular reflectance from needle surfaces. 
Consequently, mean TOC PRI was not monotonically linked with scatter angle and sunlit fraction, 
despite a strong monotonic dependence of PRI on sunlit (or shadow) fraction for each scatter angle 
separately. In other words, we found that (a lack of) TOC dependence of PRI on sunlit fraction 
obtained from multi-angular measurements need not indicate (a lack of) a dependence of TOC PRI 
on sunlit fraction under fixed observation geometry. Identification of the two causal mechanisms of 
non-physiological PRI dependence on sunlit fraction presented in the current manuscript contributes 
towards the development of robust algorithms for scaling canopy PRI to leaf level for the monitoring 
of forest productivity. 
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5. Conclusions

We were able to model the PRI–sunlit fraction relationship measured from multi-angular imaging
spectroscopy data. The relationship is strongly non-linear, and PRI is less sensitive to sunlit fraction
when sunlit crown pixels dominate the sensor’s field of view. Furthermore, the relationship depends
on observation angle, likely because of specular reflectance from needle surfaces. Consequently,
mean TOC PRI was not monotonically linked with scatter angle and sunlit fraction, despite a strong
monotonic dependence of PRI on sunlit (or shadow) fraction for each scatter angle separately.
In other words, we found that (a lack of) TOC dependence of PRI on sunlit fraction obtained
from multi-angular measurements need not indicate (a lack of) a dependence of TOC PRI on
sunlit fraction under fixed observation geometry. Identification of the two causal mechanisms of
non-physiological PRI dependence on sunlit fraction presented in the current manuscript contributes
towards the development of robust algorithms for scaling canopy PRI to leaf level for the monitoring
of forest productivity.

Acknowledgments: This study and its publication were funded by the Academy of Finland (grants 266152,
272989 and 303633). We are grateful to Lauri Korhonen (University of Eastern Finland) for providing the field
data of the test stand and to MSc Viljami Perheentupa for valuable technical assistance and comments.

Author Contributions: Matti Mõttus and Rocío Hernández-Clemente conceived and designed the experiments;
Vincent Markiet preprocessed and analyzed the data; Vincent Markiet and Matti Mõttus wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest
area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20.
[CrossRef]

2. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.;
Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333,
988–993. [CrossRef] [PubMed]

3. Gibbs, H.K.; Brown, S.; Niles, J.; Foley, J. Monitoring and estimating tropical forest carbon stocks: Making
REDD a reality. Environ. Res. Lett. 2007, 2. [CrossRef]

http://dx.doi.org/10.1016/j.foreco.2015.06.014
http://dx.doi.org/10.1126/science.1201609
http://www.ncbi.nlm.nih.gov/pubmed/21764754
http://dx.doi.org/10.1088/1748-9326/2/4/045023


Remote Sens. 2017, 9, 1005 16 of 17

4. Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping
and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag.
2009, 4. [CrossRef] [PubMed]

5. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.;
Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services.
Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

6. Drusch, M.; Moreno, J.; Del Bello, U.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.;
Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 1273–1284. [CrossRef]

7. Gitelson, A.A.; Gamon, J.A. The need for a common basis for defining light-use efficiency: Implications for
productivity estimation. Remote Sens. Environ. 2015, 156, 196–201. [CrossRef]

8. Monteith, J.L.; Moss, C.J. Climate and the Efficiency of Crop Production in Britain [and Discussion].
Philos. Trans. R. Soc. London B 1977, 281, 277–294. [CrossRef]

9. Delucia, E.H.; Gomez-Casanovas, N.; Greenberg, J.A.; Hudiburg, T.W.; Kantola, I.B.; Long, S.P.; Miller, A.D.;
Ort, D.R.; Parton, W.J. The theoretical limit to plant productivity. Environ. Sci. Technol. 2014, 48, 9471–9477.
[CrossRef] [PubMed]

10. Gamon, J.A.; Field, C.B.; Fredeen, A.L.; Thayer, S. Assessing photosynthetic downregulation in sunflower
stands with an optically-based model. Photosynth. Res. 2001, 67, 113–125. [CrossRef] [PubMed]

11. Hilker, T.; Hall, F.G.; Tucker, C.J.; Coops, N.C.; Black, T.A.; Nichol, C.J.; Sellers, P.J.; Barr, A.; Hollinger, D.Y.;
Munger, J.W. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data:
II Model implementation and validation. Remote Sens. Environ. 2012, 121, 287–300. [CrossRef]

12. Demmig-Adams, B.; Adams, W.W. The role of xanthophyll cycle carotenoids in the protection of
photosynthesis. Trends Plant Sci. 1996, 1, 21–26. [CrossRef]

13. Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in
photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]

14. Wong, C.Y.S.; Gamon, J.A. Three causes of variation in the photochemical reflectance index (PRI) in evergreen
conifers. New Phytol. 2015, 206, 187–195. [CrossRef] [PubMed]

15. Peguero-Pina, J.J.; Morales, F.; Flexas, J.; Gil-Pelegrín, E.; Moya, I. Photochemistry, remotely sensed
physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera
under intense drought. Oecologia 2008, 156. [CrossRef] [PubMed]

16. Gitelson, A.A.; Gamon, J.A.; Solovchenko, A.E. Multiple drivers of seasonal change in PRI: Implications for
photosynthesis 1. Remote Sens. Environ. 2017, 191, 110–116. [CrossRef]

17. Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral
reflectance. New Phytol. 1995, 131. [CrossRef]

18. Barton, C.V.M.; North, P.R.J. Remote sensing of canopy light use efficiency using the photochemical
reflectance index. Model and sensitivity analysis. Remote Sens. Environ. 2001, 78, 264–273. [CrossRef]

19. Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing
structural effects on PRI for stress detection in conifer forests. Remote Sens. Environ. 2011, 115, 2360–2375.
[CrossRef]

20. Takala, T.L.H.; Mõttus, M. Spatial variation of canopy PRI with shadow fraction caused by leaf-level
irradiation conditions. Remote Sens. Environ. 2016, 182, 99–112. [CrossRef]

21. Schickling, A.; Matveeva, M.; Damm, A.; Schween, J.H.; Wahner, A.; Graf, A.; Crewell, S.; Rascher, U.
Combining sun-induced chlorophyll fluorescence and photochemical reflectance index improves diurnal
modeling of gross primary productivity. Remote Sens. 2016, 8. [CrossRef]

22. Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular
satellite data. Remote Sens. Environ. 2005, 97, 447–457. [CrossRef]

23. Chen, J.M.; Leblanc, S.G. Multiple-scattering scheme useful for geometric optical modeling. IEEE Trans.
Geosci. Remote Sens. 2001, 39, 1061–1071. [CrossRef]

24. Nichol, C.J.; Lloyd, J.; Shibistova, O.; Arneth, A.; Röser, C.; Knohl, A.; Matsubara, S.; Grace, J. Remote sensing
of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus Ser. B 2002, 54, 677–687. [CrossRef]

25. Filella, I.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.F.; Peñuelas, J. PRI assessment of
long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the
xanthophyll cycle. Int. J. Remote Sens. 2009, 30, 4443–4455. [CrossRef]

http://dx.doi.org/10.1186/1750-0680-4-2
http://www.ncbi.nlm.nih.gov/pubmed/19320965
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.1109/TGRS.2016.2621820
http://dx.doi.org/10.1016/j.rse.2014.09.017
http://dx.doi.org/10.1098/rstb.1977.0140
http://dx.doi.org/10.1021/es502348e
http://www.ncbi.nlm.nih.gov/pubmed/25069060
http://dx.doi.org/10.1023/A:1010677605091
http://www.ncbi.nlm.nih.gov/pubmed/16228321
http://dx.doi.org/10.1016/j.rse.2012.02.008
http://dx.doi.org/10.1016/S1360-1385(96)80019-7
http://dx.doi.org/10.1016/0034-4257(92)90059-S
http://dx.doi.org/10.1111/nph.13159
http://www.ncbi.nlm.nih.gov/pubmed/25408288
http://dx.doi.org/10.1007/s00442-007-0957-y
http://www.ncbi.nlm.nih.gov/pubmed/18224338
http://dx.doi.org/10.1016/j.rse.2016.12.014
http://dx.doi.org/10.1111/j.1469-8137.1995.tb03064.x
http://dx.doi.org/10.1016/S0034-4257(01)00224-3
http://dx.doi.org/10.1016/j.rse.2011.04.036
http://dx.doi.org/10.1016/j.rse.2016.04.028
http://dx.doi.org/10.3390/rs8070574
http://dx.doi.org/10.1016/j.rse.2005.05.003
http://dx.doi.org/10.1109/36.921424
http://dx.doi.org/10.3402/tellusb.v54i5.16710
http://dx.doi.org/10.1080/01431160802575661


Remote Sens. 2017, 9, 1005 17 of 17

26. Nakaji, T.; Ide, R.; Takagi, K.; Kosugi, Y.; Ohkubo, S.; Nasahara, K.N.; Saigusa, N.; Oguma, H. Utility
of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan.
Agric. For. Meteorol. 2008, 148, 776–787. [CrossRef]

27. Hall, F.G.; Hilker, T.; Coops, N.C.; Lyapustin, A.; Huemmrich, K.F.; Middleton, E.; Margolis, H.; Drolet, G.;
Black, T.A. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy
shadow fraction. Remote Sens. Environ. 2008, 112, 3201–3211. [CrossRef]

28. Hilker, T.; Coops, N.C.; Hall, F.G.; Black, T.A.; Wulder, M.A.; Nesic, Z.; Krishnan, P. Separating physiologically
and directionally induced changes in PRI using BRDF models. Remote Sens. Environ. 2008, 112, 2777–2788.
[CrossRef]

29. Mõttus, M.; Takala, T.L.H.; Stenberg, P.; Knyazikhin, Y.; Yang, B.; Nilson, T. Diffuse sky radiation influences
the relationship between canopy PRI and shadow fraction. ISPRS J. Photogramm. Remote Sens. 2015, 105,
54–60. [CrossRef]

30. Chang, C. An information-theoretic approach to spectral variability, similarity, and discrimination for
hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [CrossRef]

31. Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery.
Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [CrossRef]

32. Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.;
Latorre Carmona, P.; Kaufmann, R.K.; Lewis, P.; et al. Hyperspectral remote sensing of foliar nitrogen
content. Proc. Natl. Acad. Sci. USA 2013, 110, E185–E192. [CrossRef] [PubMed]

33. Knyazikhin, Y.; Schull, M.A.; Xu, L.; Myneni, R.B.; Samanta, A. Canopy spectral invariants. Part 1: A new
concept in remote sensing of vegetation. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 727–735. [CrossRef]

34. Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.;
Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [CrossRef]

35. Hernández-Clemente, R.; Kolari, P.; Porcar-Castell, A.; Korhonen, L.; Mõttus, M. Tracking the Seasonal
Dynamics of Boreal Forest Photosynthesis Using EO-1 Hyperion Reflectance: Sensitivity to Structural and
Illumination Effects. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5105–5116. [CrossRef]

36. Lewis, P.; Disney, M. Spectral invariants and scattering across multiple scales from within-leaf to canopy.
Remote Sens. Environ. 2007, 109, 196–206. [CrossRef]

37. Smolander, S.; Stenberg, P. A method to account for shoot scale clumping in coniferous canopy reflectance
models. Remote Sens. Environ. 2003, 88, 363–373. [CrossRef]

38. Kuusk, A.; Kuusk, J.; Lang, M. Measured spectral bidirectional reflection properties of three mature
hemiboreal forests. Agric. For. Meteorol. 2014, 185, 14–19. [CrossRef]

39. Soudani, K.; Hmimina, G.; Dufrêne, E.; Berveiller, D.; Delpierre, N.; Ourcival, J.-M.; Rambal, S.; Joffre, R.
Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen
broadleaf forests. Remote Sens. Environ. 2014, 144, 73–84. [CrossRef]

40. Nilson, T.; Ross, J. Modeling Radiative Transfer through Forest Canopies: Implications for Canopy
Photosynthesis and Remote Sensing. In The Use of Remote Sensing in the Modeling of Forest Productivity;
Shimoda, H., Gholz, H.L., Nakane, K., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 23–60.
ISBN 978-94-011-5446-8.

41. Grant, L. Diffuse and specular characteristics of leaf reflectance. Remote Sens. Environ. 1987, 22, 309–322.
[CrossRef]

42. Lukeš, P.; Stenberg, P.; Rautiainen, M.; Mõttus, M.; Vanhatalo, K.M. Optical properties of leaves and needles
for boreal tree species in Europe. Remote Sens. Lett. 2013, 4, 667–676. [CrossRef]

43. Mõttus, M.; Rautiainen, M. Scaling PRI between coniferous canopy structures. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2013, 6, 708–714. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agrformet.2007.11.006
http://dx.doi.org/10.1016/j.rse.2008.03.015
http://dx.doi.org/10.1016/j.rse.2008.01.011
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.012
http://dx.doi.org/10.1109/18.857802
http://dx.doi.org/10.1016/j.jag.2005.06.001
http://dx.doi.org/10.1073/pnas.1210196109
http://www.ncbi.nlm.nih.gov/pubmed/23213258
http://dx.doi.org/10.1016/j.jqsrt.2010.06.014
http://dx.doi.org/10.1016/j.rse.2008.02.012
http://dx.doi.org/10.1109/TGRS.2016.2554466
http://dx.doi.org/10.1016/j.rse.2006.12.015
http://dx.doi.org/10.1016/j.rse.2003.06.003
http://dx.doi.org/10.1016/j.agrformet.2013.10.011
http://dx.doi.org/10.1016/j.rse.2014.01.017
http://dx.doi.org/10.1016/0034-4257(87)90064-2
http://dx.doi.org/10.1080/2150704X.2013.782112
http://dx.doi.org/10.1109/JSTARS.2013.2253307
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Image Data Calibration and Processing 
	Study Plot 
	Spectral Similarity Metrics 
	Calculation of Canopy PRI 
	Scots Pine Canopy Sunlit Fraction Retrieval 
	Dependence of PRI on Sunlit Fraction 

	Results 
	Discussion 
	Conclusions 

