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Abstract: SAR (Synthetic Aperture Radar) raw data simulation has a significant role in the evaluation
of newly-proposed methods for the estimation of moving target parameters. The evaluation of
methods in different cases emphasizes the importance of the need to have fast simulators. Using
reverse SAR imaging methods for the raw data simulations has achieved good results in the
simulation of the static targets, but for the simulation of moving targets these methods have a
few shortcomings. In this paper, we propose a method to simulate a speckled scene with moving
targets in the hybrid domain. First, the scene is simulated, including speckle, which is statistically
in accordance with real SAR image behavior. Then, a reverse imaging algorithm (inverse chirp
scaling) was applied on the scene to generate the SAR raw data. The moving target simulation
was also done in the time-domain as the next step. Finally, the results from two prior steps were
superposed to generate the SAR raw data with moving targets. All steps of the proposed method
were evaluated separately. The speckle procedure was evaluated by comparing the speckled SAR
image before the simulation and the image of the SAR simulated raw data. The results show similar
variations in real and imaginary parts of these data. The correlation between the reflectivity map
and the SAR images after the simulation was calculated and the obtained correlation coefficient was
about 0.95 for different images. The final data were further analyzed for the displacement of moving
targets’ positions. The results show similar displacement between moving target SAR raw data with
a background and without a background.

Keywords: SAR; simulation; moving target; speckle; inverse chirp scaling (ICS)

1. Introduction

A SAR system can be used for the imagery of the stationary and moving targets. In past years, SAR
technology was developed for ground moving target indication (GMTI) applications [1–4]. In addition
to the military applications of the SAR moving target data, there is a utilization for civil projects, such
as traffic monitoring and traffic guidance systems.

Since SAR data preserves the phase, it can be used to estimate the parameters of moving
targets. If the SAR raw data contain a moving target, the processed SAR has unfocused and/or
displaced areas [5]. To detect moving targets in single-channel SAR data, researchers have
proposed many methods based on the spectrum filtering algorithm [6,7], shear average algorithm [8],
RDM (reflectivity displacement method) algorithms [9], time-frequency analysis algorithm [5,10],
sub-aperture algorithm [11], keystone transform algorithm [12], wavelet transform algorithm [13,14],
and so on. To evaluate the performance of these methods, the researchers need various SAR raw data
containing moving targets with different velocities in different directions, clutter model types, different
noise models, etc. The cost of the flight tests for the raw data generation is very high and all of these
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conditions cannot be performed in the flight tests. Simulated SAR raw data are not a substitution for
the real SAR data, but it is a complementary tool for the mentioned works.

Up to now, various SAR simulators were implemented. Franceschetti et al. [15] classified the SAR
raw data simulators into two groups: the SAR processing-oriented simulator and the SAR-oriented
simulator. The first group uses the reflectivity function for the raw data generation and the latter group
takes account system parameters in the simulation process. Each of these groups can be developed in
the time or the frequency domain or hybrid time/frequency domain. Allan et al. [16,17] presented a
time domain SAR signal simulator for fixed and moving targets, as well as clutter, and then developed
it in the multichannel SAR system. Geng et al. [18] proposed a frequency spectrum model for the radar
signal to simulate the SAR raw data in the frequency domain (2FD). Dogan et al. [19] simulated an
extended scene and the moving target in the frequency domain separately and then superposed them
in the time domain.

The time domain simulator computes the reflection from individual points or facets in the scene
and provides a realistic simulation. However, the extended scene simulation is time-consuming.
The frequency domain simulation reduces this computational load by some approximations. Hybrid
time/frequency domain simulators attempt to decrease these approximations.

In recent years, the reverse of SAR imaging methods has been used to generate SAR raw data.
In these methods, first, the SAR image is simulated and then the reverse of an imaging algorithm
is applied.

There are several inversion methods for the raw data simulation, such as IOK (inversion of ω–k
algorithm [20,21]), IPFA (inversion of polar format algorithm [22]), ICS (inversion of chirp scaling
algorithm [20,23]), IRD (inverse of range-Doppler algorithm [24]), and inverse-EETF4 (inverse of
extended exact transfer function, 4th-order [25]). The IOK method has an interpolation step that is not
perfectly inverted of the direct method and some errors appear in the final data [26]. IPFA and IRD
methods also contain interpolation processes whose computational load is very high [26]. In addition,
the IRD method has an azimuth frequency dependency problem. The ICS algorithm is faster with
respect to the mentioned algorithms because it removed the interpolation step by some approximations
in its algorithm, such as ignoring the dependence of modified chirp to the range that causes the range
phase error [27].

In the inverse imaging simulation, we require backscattering of artificial targets and the natural
environment. This can be obtain from a focused SAR image or simulated by a reflectivity map.

Speckle and clutter in the SAR data can be a problem in the moving targets parameter
estimation [28]. Chiu et al. [29] studied the effects of the stationary clutter on the moving target
parameters estimation and the results showed errors in target’s azimuth position and radial-velocity
estimation. In the moving target detection applications, the background is assumed as clutter
(unwanted echoes). The speckle can be directly applied to the image, but it does not consider the
filtering properties of the SAR system [30]. Franceschetti et al. [31,32] used a statistical model for
considering speckle in the simulation. Some moving target simulation methods neglected the range
dependence of the signal model for non-stationary targets [33] or the azimuth component of the target
velocity [34]. However, in some cases (such as an airborne case), these assumptions might create errors.

In this paper, we propose a method to simulate a scene that has speckle in the frequency
domain and moving targets in the time-domain, then integrate these simulations in the time domain.
The proposed method presents several advantages. First, it allows simulating speckle at the SAR
raw data level. In addition, since all the moving target detection methods, mentioned before, are
based on the different Doppler characters of the moving target, the proposed method preserves the
phase of the moving targets, which is necessary to evaluate these methods. The rest of the paper is
structured as follows: Section 2 will discuss the methodology of the proposed method, Section 3 shows
the implementation and results, a discussion of the findings is given in Section 4, and conclusions are
drawn in Section 5.
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2. Methodology

Figure 1 presents the SAR data acquisition geometry relevant to this procedure. This SAR system
is a stripmap SAR without any squint (broadside geometry). The system transmits a chirp from the
antenna. The antenna phase center is located at (Xa, Ya, Za) and the target coordinate is (Xt, Yt, Zt).
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Figure 1. The SAR system geometry.

According to Figure 1, the flight direction is denoted as the azimuth direction and the line-of-sight
as the slant range direction. In all of the figures, the flight direction is taken from top to bottom and the
sensor illuminates the scene from the left.

In this paper, we assumed that while the incident angle or incident frequency changed, the SAR
system transfer function (STF) is the same for every SAR resolution cell.

Figure 2 shows the flowchart of the proposed method for the simulation of moving targets in the
background. The flowchart can be summarized with the following steps:

1. Generation of the speckled SAR complex image of the background;
2. SAR raw data simulation of the background in the frequency domain;
3. SAR raw data simulation of the moving targets in the time domain; and
4. Integration of two datasets in the time domain.

2.1. Generation of the Speckled SAR Complex Image of the Background

Noise non-stationary in the scene, and its basic characteristics (variance, probability density
function in some limits) vary from one local fragment of an image to another fragment. Noise-like
speckle can be viewed as a noise with spatial variation. The probability density function of speckle
is related to image forming and the number of looks, and it is not always Gaussian [35]. After an
examination of single-look SAR images by taking fragments (homogeneous regions) of them, Abramov
et al. [36] realized that since both components of complex-valued data of any fragments are Gaussian
with approximately the same variance, their amplitude values obey the Rayleigh distribution [36].

For performing the speckle simulation, first, independent identically-distributed (IID) noise is
calculated via:

f(i, j) = µ+ σ× rand for 1 ≤ i ≤ M and 1 ≤ j ≤ N (1)

where µ is the noise mean, σ is the noise standard deviation, and M and N are the dimensions of
reflectivity map. The reflectivity map can be considered a grayscale image, such as an aerial optical
image in which its grayscale values are normalized and are assumed as the reflectance of the ground
targets. Matrix f is convolved with a mean filter to produce the spatially-correlated Gaussian noise.
An M × N random matrix is generated based on the Rayleigh distribution and, according to the spatial
distribution of Gaussian values, the values of the spatially-correlated Gaussian matrix are replaced by
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Rayleigh-distributed random values. The mentioned steps guarantee the conditions of the speckle in
the real SAR images. Then, the resulting matrix is multiplied on the reflectivity map to generate the
speckled reflectivity map.
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Figure 2. The SAR raw data simulation flowchart. Figure 2. The SAR raw data simulation flowchart.
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2.2. SAR Raw Data Simulation of the Background in the Frequency Domain

To simulate the SAR raw data of background, the ICS algorithm is applied. The steps of the
ICS algorithm are the reverse of the CSA (chirp scaling algorithm [23]. Let us assume we have a
SAR-focused image or a single look complex (SLC) image as follows [27,37]:

S1(Xa, Ys) = A1sinc
(

2L
λR0

(Xa − Xt)
)
⊗azimuth

(
sinc

(
2B
c (Ys + Rs − R0)

)
⊗Range σ(Xa, Ys) exp

(
−j4π fcXa

c

(
Xac−Xt

R0

)))
(2)

where S1(Xa, Ys) is a SAR-focused image, ⊗azimuth is the notation for the convolution along the azimuth
direction, ⊗Range is the notation for the convolution along the range direction, L is the synthetic aperture
length centered at (Xac, Ya, Za), λ is the wavelength of the transmitted signal, R0 is the broadside range
or minimum range to a point target, B is the bandwidth, c is the propagation speed of transmitted
signal, Rs is the broadside slant range to scene center, Ys is range position related to scene center,
σ(Xa, Ys) is the reflectivity map of targets, fc is the radar center frequency, and A1 is related to the
sensor parameters and flight attitude. In the reflectivity map, any target assumed as an ideal point
target and its reflectivity is invariant in the SAR sensor frequency.

Indeed, Equation (2) shows the two sinc functions convolved with the reflectivity map in the
azimuth and the range direction separately. If we assume that the reflectivity map is just a point (a
point target that its backscattering coefficient is 1, σpoint = 1), then we can see that the result of this
equation is a point target image (Spoint target) based on the assumed SAR sensor parameters (Equation
(3)). We can replace two sinc functions with Spoint target as follows:

S1(Xa, Ys) = A1sinc
(

2L
λR0

(Xa − Xt)
)
⊗azimuth

(
sinc

(
2B
c (Ys + Rs − R0)

)
⊗Range σpoint × exp

(
−j4π fcXa

c

(
Xac−Xt

R0

)))
⊗σ(Xa, Ys) = Spoint target ⊗ σ(Xa, Ys)

(3)

According to the above part of the flowchart in Figure 2, the point target was simulated in the time
domain with the considered sensor parameters and was processed with CSA to produce Spoint target.
Then, S1(Xa, Ys) was produced by convolution of the point target image (Spoint target) with the speckled
image of the background. The convolution is done in the frequency domain because of computational
time. 2D FFT of Spoint target and the speckled image were calculated and multiplied together. Then,
S1(Xa, Ys) was obtained by 2D IFFT of the multiplication result.

The first step on the left side of the middle part of the flowchart in Figure 2 is taking the azimuth
FFT of the complex image of the SAR scene (S1(Xa, Ys)). By taking the azimuth FFT, the signal is
transformed to the range Doppler domain.

The next step is azimuth decompression. By completing this step, every pixel is expanded as a
straight line trajectory. This can be done by multiplying a linear phase term (ϕ1) in the range-Doppler
domain. This term is a range dependent azimuth matched filter. This filter consists of the azimuth
modulation and a phase that will be removed in the chirp scaling process. The phase term ϕ1 is as
follows:

ϕ1 =
bm

2
(1 − Ax)

(
RB

Ax
− Rs

)2
− RBKRcAx (4)

where bm is a generalized chirp rate, RB is the broadside range, KRc is the transmitted frequency at

the radar center frequency scaled by a factor ( 2
c ), Ax =

√
1 − K2

X
KRC

, and KX is the frequency domain

component related to Xa.
After range Fourier transformation, the signal is in the 2-D frequency domain. In the next step,

the straight line trajectory must change to the echo curved trajectory that is known as range migration.
This is achieved by a phase term multiplication. The phase term (ϕ2) is a 2-D filter with dependencies
on both azimuth and range and it is defined as follows:

ϕ2 = −Ax∆KR
2

2bm
− (1 − Ax) Rs∆KR (5)
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where ∆KR is the variation of instantaneous transmitted frequency over the transmitted bandwidth
scaled by factor 2

c .
The signal is transformed to the range-Doppler domain, by taking the IFFT of the signal. In the

range-Doppler domain, each target energy expands along a constant range bin and the range curvature
does not depend on the target’s azimuth location [37].

The next step is the chirp scaling process. In this step, the conjugate of the azimuth-dependent
range phase (ϕ3) is multiplied with the signal. This phase term caused any range migration curves
to have their own curvature because of the SAR data acquisition geometry. The phase term ϕ3 is as
follows:

ϕ3 =
bm

2

(
Ys + Rs −

RB

Ax

)2
(6)

Finally, the azimuth IFFT is applied to signal and the SAR raw data results in the time domain.

2.3. SAR Raw Data Simulation of the Moving Targets in the Time Domain

The SAR raw data for the moving targets were simulated in the time domain is based on the
Zaharris simulation method [38]. First, the transmitted signal was assumed as:

Stx(t) = wr(t) cos
(

2πf0 + πKrt2
)

(7)

where t is the fast time, f0 is the carrier frequency, Kr is the FM (frequency modulation) rate,
wr(t) = rect

(
t

Tp

)
is the pulse envelope, and Tp is the chirp pulse duration. After interaction

of the signal with the targets, the received signal from the targets in the baseband is converted to:

Srx(t,η) =
M

∑
m=1

[Fmwr(td)wa(η− ηc) exp(−jϕ1(t,η)) exp(−jϕ2(t,η))] + nm(t,η) (8)

where η is the slow time, Fm is the normalized reflectivity of point target m, td(t,η) = t− 2Rm(t,η)
c is the

subtraction of pulse travel time for each target from the fast time, Rm (Equation (9)) is the instantaneous
slant range of point target m from the antenna phase center, wa(η) (Equation (10)) is the azimuth beam
pattern, ϕ1(t,η) (Equation (11)) and ϕ2(t,η) (Equation (12)) are the first and the second terms of the
phase power series of the received signal (higher terms of phase expansion were assumed to be zero),
and nm(t,η) is the additive white Gaussian noise (AWGN).

Rm(t,η) =

√√√√(Xc + xm(t) + vm
x (t,η) η)2 + V2

(
η− ta −

ym (t)
V

−
vm

y (t,η) η

V

)2

(9)

wa(η) =

(
sinc

(
La

λ
atan

(
V × η

Xc

)))2
(10)

ϕ1(t,η) =
4πfc

c
Rm(t,η) (11)

ϕ2(t,η) = πKr

(
td

2 − tdTp

)
(12)

In Equations (9) and (10), Xc is the center of scene, xm(t) and ym(t) are the instantaneous
coordinates of target m, vm

y and vm
y are the instantaneous velocities of the target m in x- and y-axis, V is

the platform speed, ta is the aperture time, La is the antenna length, and λ is the wavelength of signal.
According to the right side of the middle part of the flowchart in Figure 2, computation of the

azimuth beam pattern (Equation (10)), the instantaneous slant range (Equation (9)) and target return
(Equation (8)) are repeated for each transmitted pulse and each moving target on the scene.
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2.4. Integration of Two Datasets

Finally, the summation of the simulated data of a speckled scene and the simulated data of the
moving targets was calculated. The last calculated matrix was the speckled SAR raw data of a scene
with the moving targets.

3. Implementation and Results

To evaluate the proposed method, a grayscale aerial optical image (Figure 3) was selected as the
reflectivity map and the Envisat ASAR sensor selected as the SAR sensor in this research. The sensor’s
parameters are described in Table 1.
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Figure 3. Reflectivity map in grayscale [39].

Table 1. Parameters of Envisat ASAR sensor.

Parameters Values

Propagation speed 299,792,458 m
s2

carrier frequency 5,331,004,416 Hz
sampling rate 19,207,680 Hz

platform velocity 7500 m
s

PRF 2067.120103315 Hz
pulse duration 2.160594095 × 10−5 s

chirp bandwidth 16,000,000

First, for a given µ = 0 and σ2 = 100, the speckle noise was computed and then was multiplied
by the reflectivity map gray values to produce a speckled reflectivity map as Figure 4. As mentioned
in Section 2.2, a single point target was simulated based on the sensor parameters in the time domain
simulator and was focused with the CS imaging algorithm (Figure 5). The resulted SAR single-point
image was convolved with the speckled reflectivity map to produce the SAR SLC image as depicted
in Figure 6. Then, the ICS algorithm was applied to the SAR image to generate the SAR raw data of
the scene. Figure 7 displays the simulated SAR raw data of the scene. The range-Doppler algorithm
(RDA) [40] and CSA were implemented for evaluating the resulting data.
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The next step is the simulation of the moving targets. The moving targets were simulated in
the time domain. The targets were assumed as the point targets with non-fluctuating RCS. They had
a constant velocity or a constant acceleration in a constant direction. They were positioned on the
reflectivity map (scene) in different directions, with different velocities and accelerations and their
echoes were simulated in the time domain based on Envisat ASAR sensor parameters (Table 1). Seven
different targets were considered. Table 2 and Figure 8 show these moving target parameters and their
location on the reflectivity map, respectively. Figure 9a shows the generated SAR raw data for the
moving targets in the time domain that are focused by the RDA, as shown in Figure 9b. Figure 9b
shows the smear and displacement of targets because of their velocities and accelerations. According
to Table 1, T2 has the range velocity and its location displaced in Figure 9b. T3 and T4 have the
cross-range movements and their images smeared in Figure 9b. The images of T1, T6, and T7 are not
only displaced because of the range velocity, but also smeared because of their cross-range velocity or
range/cross-range accelerations. Finally, superimposition of the simulated SAR raw data of the moving
targets and the simulated SAR raw data of the scene was computed to produce the SAR raw data of
the scene containing the moving target. Figure 10 shows this SAR raw data and its focused image.
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Table 2. Moving target parameter variations in the generated SAR images.

Target Name Range Velocity
( m

s )
Cross-Range
Velocity ( m

s )
Range

Acceleration ( m
s2 )

Cross-Range
Acceleration ( m

s2 )

T1 −2.5 to 0.5 step 0.5 −30 to 30 step 10 0 0
T2 −2 to 1 step 0.5 0 0 0
T3 0 −20 to 10 step 5 0 0
T4 0 1 0 −30 to 30 step 10
T5 0 0 0 0
T6 1 0 −1 to 1 step 0.5 0
T7 1 1 −1.5 to 1.5 step 0.5 −30 to 30 step 10

To evaluate the proposed method, the ICS results from the SAR raw data (Figure 7) focused by
CSA and RDA. These two images are compared with the reflectivity map. To evaluate the accuracy of
the simulated speckle in the images, the histogram of the real and imaginary parts of a homogeneous
area of the SAR images (before and after the simulation) were computed. Figure 11 illustrates the
Gaussian behavior of this phenomenon. The top figures (the histogram of real and imaginary parts of
the SAR image before the simulation) and bottom figures (the histogram of real and imaginary parts
of the SAR image after the simulation) have a Gaussian shape and only their variances are different.
Additionally, the local variance for each 8 × 8 pixel block of the absolute SAR images was computed.
Figure 12 shows that the local variance of the absolute images before and after the simulation has the
Rayleigh distribution behavior.
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To assess the stability of the spatial changes of the SAR images before and after the simulation,
the parameter r was calculated for SAR images via [41]:

r (l, m) =

√
∑l+7

i=l ∑m+7
j=m

(
Iij − Ilm

)2/63

1.483 med
(∣∣∣Dlm

qs

∣∣∣) (13)

where l and m are the coordinates of 8 × 8 block corner, Iij is the value of pixel (i, j) of the block, is the
average value of the block and Dlm

qs is an array of DCT coefficients of the block except corner element.
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In Equation (13), the ratio of two estimations of variance is computed. These two estimations are local
variances in the spatial domain and the DCT domain. Figure 13 shows this parameter histogram for
different cases.
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To analyze the ICS procedure, the correlation coefficients between the SAR images before and
after the simulation (without moving targets) were calculated. Based on the SAR image formation
method for the simulated SAR raw data, the correlation coefficients for the CSA method and the RDA
method were 0.9819 and 0.9719, respectively. This process was repeated for various reflectivity maps
and their correlation coefficients between their two SAR images are about 0.95. These coefficients show
a reliable relationship between SAR images before and after the simulation.

For locating moving targets, a moving target detection method was developed based on [42] to
test the quality of the moving targets after integrating with the background, the process of which is as
follows:

1. Select an image;
2. Compute the azimuth FFT of the image;
3. Separate the positive Doppler data and the negative Doppler data with appropriate band-pass

filters;
4. Compute the azimuth IFFT of two sub-data generated in the previous step to produce two

symmetric sub-image;
5. Compute the intensity differences of these two sub-images; and
6. Use a threshold to detect the moving target or targets.

The results of the implementation of this algorithm are presented in Figure 14a,b for images of
moving targets with abackground and without a background, respectively. Some targets in Figure 14a
were partially detected because of background changes along the smeared target.
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4. Discussion

In this study, we proposed a method to simulate the SAR raw data in the hybrid domain. However,
the phase information remains intact, which can be used to estimate moving target parameters.
Additionally, the speckle was included within the SAR raw data. Thus, it is possible to evaluate how
this problem is handled by moving target detection algorithms.

Both time- and frequency-domain simulators can simulate large backgrounds. According to the
time domain algorithm (Figure 2), there are two loops that must be repeated for each target in the scene
and each transmitted pulse. Assuming a scene comprised of M by N pixels in the range and azimuth
directions, respectively, we have M × N scatterers. Transmitted pulses consist of nt and na pixels in
the time and azimuth directions, respectively, so we have a computational complexity of nt × na per
scatterer, and the total number of multiplications is given by M × N × nt × na for the time-domain
simulation. However, a frequency domain method, like the ICS algorithm, obtains the raw signal
from the image space to the signal space. According to the ICS algorithm (Figure 2), the number of
computations to produce a SAR SLC image from the reflectivity map is 2 × M × N × log2 (M × N) +
M × N and the other steps take 4 × M × N × log2 (M) + 3 × M × N computations. By comparing the
number of computations, the ICS algorithm is very fast with respect to the time domain simulation.
Some researchers simulated moving targets and the background in the time domain. We simulate static
and moving targets separately in the proposed method, so there is no computational load problem with
large backgrounds (static targets) that were simulated in the frequency domain, and we have a few
moving targets (with respect to the scene pixels) that were simulated in the time domain. The problem
of the ICS algorithm used in the proposed method is the fact that it cannot consider the precise system
transfer function [16]. Since the purpose of this method is to produce raw SAR data for evaluating
moving target detection algorithms, it did not matter. however, an accurate model is necessary for
terrestrial remote sensing applications.

In research studies of the simulation of the moving targets in the frequency domain, only a few
special cases are considered, such as a fixed target velocity [19]. Additionally, they have a phase error
because of the approximation in their algorithms [27]. In the proposed method, moving targets are
simulated in the time domain for the preservation of the phase. The phase is responsible for the signal
structure and the phase error causes displacement in target locations. Figure 14 illustrates that there is
no difference in moving target locations between the proposed method and time domain simulation.

For performing the speckle simulation, the speckle properties of Sthe AR raw data simulated by
the proposed method (Figures 11–13) were examined. The result showed similar speckle properties of
the real SAR data as in [36] and the simulation is also faster than the time domain methods.

5. Conclusions

For the importance of the moving target detection in clutter, a new method to simulate moving
targets on the speckled scene is proposed. The proposed method consists of three main parts. The first
part is generating the speckled SAR complex image of the background. The histogram of real and
imaginary parts of a homogeneous area from the speckled SAR images (before and after the simulation)
showed the Gaussian behavior of the speckle and the local absolute variance of the images (before and
after the simulation) showed the Rayleigh distribution behavior. The second part is the SAR raw data
simulation of the background. The SAR simulation of the distributed target in the time domain has a
computational load. Using the frequency domain simulation, like the ICS algorithm, is so fast that we
can simulate a large scene (e.g., 1000 × 1000) in a few seconds.

For various reflectivity maps, the second part was repeated and after focusing the SAR raw data
(by RDA and CSA), their correlation coefficients between their two SAR images (before and after
the simulation) were about 0.95. By considering the speckle in the reflectivity map, the first and the
second part were integrated together and we could produce the SAR raw data with spatially-correlated
speckle. The third part is the SAR raw data simulation for the moving targets in the time domain.
The resulting simulation in the third part was integrated with previous parts. The results showed
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the efficiency of the calculations for the proposed technique. There are no limitations for direction,
velocity, and acceleration in the proposed method, and the results show that there is no change in
the targets’ locations after detection in the two simulated datasets (one simulated by the proposed
method and the other one simulated in the time domain). Moreover, the quality assessment of the
results showed that the generated raw data could meet the radiometric and geometric requirements.
Geometric requirements mean that the location of the moving targets in the scene must be the same in
the time domain simulation and the proposed method. Radiometric requirements mean that the gray
value of the targets of the scene (the reflectivity map), as well as the noise behavior, must bethe same
before and after the simulation. Additionally, various simulations showed that the targets could still
be identified by changing the contribution of the background’s data and moving targets’ data.

Our simulation capabilities, in comparison with other moving target simulations, were
considering a background scene of any size, generating speckled raw data and preserving the phase
for moving target parameters estimation. In future works, one can directly simulate the SAR image
based on various algorithms.
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