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Abstract: Hyperspectral image (HSI) clustering has drawn increasing attention due to its challenging
work with respect to the curse of dimensionality. In this paper, we propose a novel class probability
propagation of supervised information based on sparse subspace clustering (CPPSSC) algorithm
for HSI clustering. Firstly, we estimate the class probability of unlabeled samples by way of partial
known supervised information, which can be addressed by sparse representation-based classification
(SRC). Then, we incorporate the class probability into the traditional sparse subspace clustering (SSC)
model to obtain a more accurate sparse representation coefficient matrix accompanied by obvious
block diagonalization, which will be used to build the similarity matrix. Finally, the cluster results
can be obtained by applying the spectral clustering on similarity matrix. Extensive experiments on
a variety of challenging data sets illustrate that our proposed method is effective.

Keywords: hyperspectral images; class probability; supervised information; sparse subspace
clustering

1. Introduction

Hyperspectral images (HSIs) can provide more detailed information for land-over classification and
clustering with hundreds of spectral bands for each pixel [1–4]. To a certain extent, it is difficult to process
the HSI data, because many hundreds of spectral bands can cause the curse of dimensionality [5,6].
In general, the processing methods proposed by most scholars can be roughly divided into two
categories. The first one is supervised learning for HSIs, which is generally called classification [7–9].
HSI classification is usually limited to the number of labeled samples, since it is time-consuming to
collect large numbers of training samples [10–12]. The second category is unsupervised learning named
clustering, which does not need to label a huge volume of training samples.

To our knowledge, subspace clustering is an important type of technology in signal processing
and pattern recognition. It has been successfully applied to face recognition [13,14] and object
segmentation [15–17], etc. Subspace clustering can extract intrinsic features from the high-dimensional
data embedded in low-dimensional structures. Until now, many subspace clustering methods
have been published. Generalized PCA (GPCA) [18] is a typical subspace clustering method
which transforms the subspace clustering into the problem of how to fit the data with polynomials.
The low-rank representation (LRR) proposed in [19] seeks the lowest-rank representation among all the
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data points reconstructed by a linear combination of other points in the dataset. Then, segment data
points are drawn from a union of multiple subspaces. Moreover, robust latent low-rank representation
for subspace clustering (RobustLatLRR) [20] seamlessly integrates subspace clustering and feature
selection into a unified framework. Peng et al. [21] have proposed construction of the l2-graph for
robust subspace learning and subspace clustering based on a mathematically trackable property of the
projection space, intrasubspace projection dominance (IPD), which can be used to eliminate the effects
of the errors from the projection space rather than from the input space. Then, they proposed a novel
subspace clustering method called a unified framework for representation-based subspace clustering
of out-of-sample and large-scale data, which address the two limitations of some subspace clustering
methods, i.e., time complexities and that they cannot tackle the out-of-sample data used to construct
the similarity graph. Yuan et al. [22] proposed a novel technique named dual-clustering-based HSI
classification by context analysis (DCCA), which selects the most discriminative bands to represent the
original HSI and reduces the redundant information of HSI to achieve the high classification accuracy.
Sparse subspace clustering (SSC) [23] has been presented to cluster data points that lie in a union of
low-dimensional subspaces. It is mainly divided into two steps. The method firstly computes the
sparse representation coefficient matrix from the self-expressiveness model, and secondly applies
spectral clustering on similarity matrix to find the cluster results of the data. Many scholars have made
some improvements on SSC to raise clustering accuracy. Zhang et al. [24] have put forward the spatial
information SSC (SSC-S) and spatial-spectral SSC (S4C) algorithms, which consider the wealthy spatial
information and great spectral correlation of HSIs, and achieve better clustering results. Although
the fact is that the majority of subspace clustering methods perform better in some applications, they
exploit the so-called self-expressive property of the data [23].

Actually, the aforementioned clustering methods have a common obvious disadvantage. They
only use unlabeled samples which have no prior information. Specifically, these methods only
concentrate on unlabeled information and evidently ignore supervised information propagation,
which limits the clustering precision to a large degree. In particular, this is critical for those clustering
methods of exploiting the self-expressive property of the data, such as LRR and SSC. They can obtain
discriminant self-expressive coefficients via limited supervised information, which play a significant
role in exploiting the subspace structure. Moreover, in the process of HSI clustering, with the increase
of spectral bands the clustering accuracy may decrease due to the curse of dimensionality [25,26].
Consequently, it is quite necessary to add labeled information to improve the overall accuracy of
traditional clustering algorithms. Further, recently, semi-supervised learning (SSL) [27] has attracted
great attention over the past decade because of its ability to make use of rich unlabeled samples via
a small amount of labeled samples for effective clustering [28]. For example, Fang et al. [29] have
proposed a robust semi-supervised subspace clustering method based on non-negative low-rank
representation to obtain discriminant LRR coefficients, which address the overall optimum problem by
combining the LRR framework and the gaussian fields and harmonic functions method. Ahn et al. [15]
have proposed an multiple segmentation technique based on constrained spectral clustering via
supervised information, which combines with supervised prior knowledge to build a face and hair
region labeler. Convincingly, Jain [30] has published a book about semi-supervised clustering analysis,
which describes in detail the theoretical knowledge. Benefiting from the development of compressed
sensing [31], semi-supervised sparse representation (S3R) has been proposed in [32], which is based on
an l1 graph to utilize both labeled and unlabeled data for inference on a graph. Yang et al. [33] have
proposed a new semi-supervised low-rank representation (SSLRR) graph, which uses the calculated
LRR coefficients of both labeled and unlabeled samples as the graph weights. It can capture the
structure of data and implement more robust subspace clustering.

As discussed above, essentially, most of those semi-supervised clustering methods can improve
the precision of clustering. However, they fail to take the class structure of data samples into account.
To solve this problem, Shao et al. [28] have presented a probabilistic class structure-regularized
sparse representation graph for semi-supervised hyperspectral image classification, which implies the
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probabilistic relationship between each sample and each class. The supervised information of labeled
instances can be efficiently propagated to the unlabeled samples through class probability [28] and
further facilitates cluster correctness.

In this paper, we are motivated by probabilistic class structure insight [28], and consider the
intrinsic geometric structure between labeled and unlabeled data. We thus propose a novel algorithm
named class probability propagation of supervised information based on sparse subspace clustering
(CPPSSC) algorithm, which combines a little supervised information with the unlabeled data to
acquire the class probability. The proposed method incorporates supervised information into the
SSC framework by exploring class relationship among the data samples, which can obtain the more
accurate sparse coefficient matrix. Such class structure information can help the SSC model to yield
a discriminative block diagonalization. To a certain extent, integrating the class probability into the
sparse representation process can better assign the similar HSI pixels into the same class and concretely
demonstrate a better clustering effect. Benefiting from the breakthroughs in [34,35], the optimization
problem of CPPSSC can be solved by the alternating direction method of multipliers (ADMM) [36],
which can reduce the computation cost. Summarily, the main contribution of this paper is as follows.

Firstly, the label information is explicitly incorporated to guide sparse representation coefficients in
SSC model via estimation of the probabilistic class structure, which implies the probabilistic relationship
between data points with corresponding class. Moreover, this model can be better encouraged to
assign more similar elements into corresponding class. Secondly, such prior information can better
capture the subspace structure of data, which can improve the self-expressiveness property of the
samples and preserve the subspace-sparse representation. In other words, the block diagonalization
via sparse representation tends to be more apparent.

The remainder of this paper is organized as follows. In Section 2, a brief view of the general
SSC algorithm in the HSI field is given. The related work of our algorithm is presented in Section 3.
Experimental results and analysis will be discussed in Section 4. Section 5 concludes this paper and
outlines the future work.

2. The Brief View of General SSC Algorithm in the HSI Field

Sparse subspace clustering (SSC) is a novel framework for data clustering based on spectral
clustering. Generally, high-dimensional data usually lies in a union of low-dimensional subspaces,
which allows sparse representation of high-dimensional data with an appropriate dictionary [37]. The
underlying idea of SSC is the self-expressing property of the data, i.e., each data point in a union
of subspaces can be efficiently represented as a linear combination of other points from the same
subspace [23]. Firstly, let us review the content of SSC algorithm. Let {Sr}n

r=1 be an array of n
linear subspaces of IRD of dimensions {dr}n

r=1. A collection of NN data points Y , [y1, · · · , yNN ] =

[Y1, · · · , Yn]Γ lies in the union of the n subspaces, where Yr ∈ RD×NNr is a matrix that lies in Sr and
Γ ∈ RNN×NN is an unknown permutation matrix. It is worth noting that each data point in a union of
subspaces can be efficiently reconstructed by a combination of other points in the dataset. Therefore,
the SSC model utilizes the self-expressiveness property of the data to build the sparse representation
model as follows:

min
∣∣∣∣∣∣C∣∣∣∣∣∣1 + λ

2

∣∣∣∣∣∣E∣∣∣|2F
s.t.Y = YC + E, CT1 = 1, diag(C) = 0

(1)

where C , [c1 c2 · · · cNN ] ∈ RNN×NN required to be solved is an estimated matrix whose i-th column
corresponds to the sparse representation of yi. diag(C) = 0 ∈ RNN is the vector of the diagonal
elements of C to eliminate the trivial solution of self-expression. E ∈ Rd×NN is the error matrix, and λ

is the tradeoff parameter between the sparse coefficient and noise matrix. After the sparse solution C
is obtained, normalize the columns of C as

ci =
ci

‖ ci ‖ ∞
(2)
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Now we can build the similarity matrix W as Equation (3). W ∈ RNN×NN is a symmetric
nonnegative similarity matrix.

Wij =
∣∣Cij
∣∣+∣∣C∣∣ji (3)

Finally, we apply spectral clustering to the similarity matrix W and get the clustering results of
the data: Y1, Y2, · · ·, Yn.

To our knowledge, each item of hyperspectral imagery data is in 3D. Before performing the
SSC algorithm, each pixel can be treated as a d-dimensional vector where d is the number of spectral
bands [38] and the 3D HSI data Y ∈ RM×N×d must be translated into 2D matrix. In this way, the HSI
data can be denoted by a 2D matrix Y = [y1, y2, · · ·, yMN ]Y ∈ Rd×MN , where M represents the width
of the HSI data and N is on behalf of height of the HSI data. The sparse representation coefficient of
HSIs can be obtained by utilizing Equation (1) of the SSC model. C ∈ RMN×MN is on behalf of sparse
representation coefficient matrix of HSIs data. The SSC algorithm for HSIs data can be generalized in
Algorithm 1.

Algorithm 1. Sparse Subspace Clustering for HSI data

Input:MN pixel points {yi}MN
i=1 of d dimension from n subspaces

Step 1.Calculate sparse coefficient matrix by performing SSC model (1)
on points {yi}MN

i=1 .
Step 2. Normalize the columns of C as ci ← ci

‖ci‖∞
.

Step 3. Build the similarity matrix W according to Equation (3).
Step4. Apply the spectral clustering to the similarity W to obtain
theclustering results.

Output: clusters Y1, Y2, · · · , Yn.

The process of spectral clustering can be summarized as follows. Firstly, we can obtain the
Laplacian matrix L formed by L = D−W where Dii = ∑j Wij is a diagonal matrix. Then, we obtain
the clustering results by applying the K-means algorithm to the normalized rows of a matrix whose
columns are the bottom eigenvectors of the symmetric normalized Laplacian matrix.

3. Class Probability Propagation of Supervised Information Based on Sparse Subspace
Clustering (CPPSSC)

In this section, we firstly describe the procedure of the uniform class probability structure between
the supervised information and unlabeled samples. Naturally, the basic theory for our proposed
model named the class probability propagation of supervised information based on sparse subspace
clustering (CPPSSC) is induced.

3.1. The Procedure of the Uniform Class Probability

For labeled samples of HSIs, the associated samples are distributed in a certain class. Nevertheless,
those unlabeled samples will not possess a specific class. Fortunately, we can estimate the class
probability between each unlabeled sample and each specific class by partial known supervised
information [28], which can be addressed by sparse representation-based classification (SRC) [39].
According to the classic sparse representation theory, ideally, a test sample in the unlabeled samples can
be written as a linear combination of the training samples from the same subspace. Hence, two samples
that have nonzero coefficients in the representation will be in the same class and the coefficients denote
the similarity of the two samples. Inheriting its merits, SRC can be successfully applied to estimate the
class probability.

Firstly, we have total HSI data samples {yi}MN
i=1 , and the initial l training samples of d

dimensionality Yl = [y1, y2, · · · , yl ] ∈ Rd×l attached to n classes {Sr}n
r=1, where l training samples

are from n classes. Let supervised information matrix Ql = [q1, · · · , qn] be an l × n binary matrix
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indicating the membership of each data point to each class. That is, qij = 1 if the i-th label information
of sample belongs to class Sj and qij = 0 otherwise. This is assuming that each data sample lies in
only one class. Hence, we have Ql1 = 1, where 1 is the vector of all ones of appropriate dimension.
Let Yu = [yl+1, yl+2, · · · , yl+u] be test samples, where total data samples are MN = l + u. The
similarity between the test samples yi ∈ Yu and training samples Yl can be solved by the following
l1 minimization

min||a||1
s.t. Yla = yi

(4)

where a ∈ Rl×1 represents the sparse coefficient. Then, the class probability vector of yi can be
calculated by

pi = aTQl (5)

where pi = (pi1, pi2, · · · , pin) ∈ R1×n; the entry pin represents the class probability of data yi belonging
to class Sn. For unlabeled samples, we can acquire the class probability matrix pU ∈ Ru×n via
label propagation of the given samples. For labeled samples, we denote the class probability matrix
pL ∈ Rl×n of training samples. Therefore, the probability of the objective yi and yj being assigned to
the same class can be given by

Pij =

{
1

pi pT
j

i = j
i 6= j

(6)

Finally, we must have normalize class probability P to guarantee P1 = 1.

3.2. Class Probability Propagation of Supervised Information Based on Sparse Subspace Clustering Algorithm

According to Equation (1), by applying traditional SSC theory to the HSI data clustering, we
can obtain the vital character representation known as sparse representation coefficient C, which has
more wealthy information. Moreover, the sparse solution with nonzero entries corresponds to data
points from the same subspace, whose theoretical knowledge is similar to class probability. As the
name suggests, if the data points have a higher class probability, their possibility of belonging to the
same thematic class is larger. In other words, the prior knowledge can be effectively transmitted to
unknown test samples via class probability. All the similar samples are pleasurably assigned into the
same label by larger probabilities among samples, which are the same as nonzero entries of sparse
representation coefficients. Naturally, the combination of sparse representation coefficients and class
probabilities has a theoretical guarantee and can improve the global similarity structure among samples.
Herein, we design a new framework in which the semi-supervised class probability information is
incorporated into the objective function. This combination makes full use of the abundant correlation
of the sparse representation coefficient, which will promote the cluster performance. The concrete joint
formula named the class probability propagation of supervised information based on sparse subspace
clustering (CPPSSC) is written as

min ‖ PC ‖ 1 + λ
2

∣∣∣∣∣∣E∣∣∣|2F
s.t.Y = YC + E, CT1 = 1, diag(C) = 0

(7)

where class probability P can be obtained by Equation (6) and sparse representation C can be estimated
by the alternating direction method of multipliers (ADMM). The element-wise product of similarity
between class probability P and sparse representation coefficient C can boost the globally block
subspace structure, which closely enhances the compactibilities with respect to similar samples.

This new model can be solved using the alternating direction method of multipliers (ADMM) [36].
Then, we can gain the new sparse representation coefficient via the ADMM algorithm. The details
of this technique are given in the next section. The class probability propagation of supervised
information based on sparse subspace clustering (CPPSSC) algorithm is summarized in Algorithm 2.
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Algorithm 2. CPPSSC algorithm for HSIs

Input: The HSIs containing MN pixel points {yi}MN
i=1 of d dimension from n subspaces.

Main algorithm:
(1) Calculate sparse coefficient matrix by performing CPPSSC model (7)on points
{yi}MN

i=1 using ADMM.
(2) Normalize the columns of C as ci ← ci

‖ci‖∞
.

(3) Build the similarity matrix W according to Equation (3).
(4) Apply the spectral clustering to the similarity W to obtain the clusteringresults.

Output: Clusters Y1, Y2, · · · , Yn.

3.3. The CPPSSC Algorithm Solved by ADMM

In this subsection, we briefly introduce how to solve the sparse representation coefficient ofthe
CPPSSC algorithm model in (7) via the ADMM algorithm [36,40]. The CPPSSC model (7) can be
rewritten as

min ‖ PC ‖ 1 + λ
2

∣∣∣∣∣∣Y−YC
∣∣∣|2F

s.t.CT1 = 1, diag(C) = 0
(8)

Then, an auxiliary matrix Z ∈ RMN×MN with the same size as sparse representation C can be
introduced to the model (8), and reshape this formula as

min ‖ PC ‖ 1 + λ
2

∣∣∣∣∣∣Y−YZ
∣∣∣|2F

s.t.ZT1 = 1, Z = C− diag(C)
(9)

Two penalty terms with ZT1 = 1 and Z = C− diag(C) can be incorporated into the model (9),
which is equivalent to the following optimization program:

min
∣∣∣∣∣∣PC

∣∣∣∣∣∣1 + λ
2

∣∣∣∣∣∣Y−YZ
∣∣∣|2F + ρ

2

∣∣∣∣∣∣ZT1− 1
∣∣∣|22 + ρ

2

∣∣∣∣∣∣Z− (C− diag(C))
∣∣∣|2F

s.t.ZT1 = 1, Z = C− diag(C)
(10)

Next, a vector α ∈ RMN and a matrix β ∈ RMN×MN , which are the Lagrange multipliers for the
two equality constraints with ZT1 = 1 and Z = C− diag(C), are added into Lagrange function as

L = min ‖ PC ‖ 1 + λ
2

∣∣∣∣∣∣Y−YZ
∣∣∣|2F + ρ

2

∣∣∣∣∣∣ZT1− 1
∣∣∣|22

+ ρ
2

∣∣∣∣Z− (C− diag(C))
∣∣|2F + α(ZT1− 1) + tr(βT(Z− C + diag(C)))

(11)

where tr() denotes the trace operator of the given matrix.
According to the ADMM optimization program, we update each of Z, C, α and β alternatively

while keeping the other variables fixed.

(1) Update for Z. We update Z by solving the following problem.

Zk+1 = argmin
Z

L(Z, Ck, αk, βk) (12)

Firstly, we calculate the derivation of L with respect to Z and set it to zero to obtain the results.

(λz ×YTY + ρ× 11T + ρ× I)Z = λz ×YTY + ρ× C− β + ρ× 11T − α (13)

(2) Update for C by the following problem.

Ck+1 = argmin
C

L(Zk+1, C, αk, βk) (14)
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We calculate the derivation of L with respect to C and set it to zero to obtain the following formula.

Ck+1 = P(J − diag(J))
J , Γ 1

ρ
(v) = (|v| − 1

ρ )+
sign(v) , v = Z + β

ρ
(15)

The solution of C with one norm can be obtained by the iterative shrinkage algorithm. The
operator ()+ will return its arguments if it is nonnegative and return zero otherwise.

(3) Update for α and β, named Lagrange multipliers, which can be solved by a simple gradient
ascent step.

αk+1 = αk + ρ((Zk+1)
T

1− 1) (16)

βk+1 = βk + ρ(Zk+1 − Ck+1) (17)

These three steps are alternate with iterative operation until it can finish the final convergence or
the largest number of iterations exceeds the predefined values. Generally, the iteration is terminated
when we have ||(Zk)

T
1− 1||∞ ≤ ε, ||Zk − Ck||∞ ≤ ε.

The specifically algorithmic procedure to solving CPPSSC algorithm is shown in Algorithm 3, in
which the more details of iteration stops about ADMM can be referenced to [34–36].

Algorithm 3. ADMM for solving problem (8)

Input: Data samples {yi}MN
i=1 , classprobability matrix P0, parameter λ. Initialization: α = 0,

β = 0, P = P0, λ > 0, ρ > 0, ε = 2× 10−3.
While not converged do

Update Zk by (12).
Update Ck and Pk by (15).
Update αk and βk by (16) and (17) respectively.

Check the convergence condition
∣∣∣∣∣∣Zk1− 1

∣∣∣∣∣∣∞ ≤ ε ,
∣∣∣∣∣∣Zk − Ck

∣∣∣∣∣∣∞ ≤ ε ; if not, set

k← k + 1 .
End while
Output: Zk+1 and Ck+1.

The concrete CPPSSC algorithm for HSI data clustering can be interpreted graphically using
Figure 1.Remote Sens. 2017, 9, 1017  8 of 18 
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Figure 1. Calculate the sparse representation coefficient C with class probability P of our class
probability propagation of supervised information based on sparse subspace clustering (CPPSSC)
algorithm. ADMM: alternating direction method of multipliers.

4. Experiment and Analysis

In this section, we conduct a series of experiments to further assess the cluster effectiveness of
the proposed algorithm for HSIs. To illustrate the better performance of our method, we compared
our method with unsupervised clustering and semi-supervised clustering methods, respectively.
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As initially mentioned, unsupervised clustering methods included SSC [23], SSC-S [24], S4C [24], and
semi-supervised clustering methods such as S3R [32], SSLRR [33], and semi-supervised RobustLatLRR
(SSRLRR) are used as benchmarks. Furthermore, S3R, SSLRR and SSRLRR make full use of 30%
labeled information to obtain sparse and low rank representation coefficients in the experiment. Finally,
they use related sparse representation (SR) and LRR coefficients as the weight of graph and acquire
clustering results by typically normalized cuts [41]. The evaluation indicators used in this paper are
user’s accuracy (UA) [24], overall accuracy (OA) [42], kappa coefficient (kappa) [28], accuracy (AC)
and normalized information metric (NMI) [43], which are very popular clustering indicators.

4.1. Experimental Datasets

Our proposed algorithm is evaluated using two widely used hyperspectral data sets, which are
the Pavia University scene and Indian Pines. The Pavia University scene is acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor, which has the size of 610× 340× 103 with a 1.3 m
geometric resolution and has nine main classes. A typical subset of 170× 160× 103 is selected as our
objective data, with nine classes. The Indian Pines data are gathered by an Airborne Visible InfraRed
Imaging Spectrometer (AVIRIS) sensor with a size of 145× 145× 220 including sixteen classes, with a
subset of 75× 82× 220 including six classes selected as our objective data. The false color composites
and the color maps of ground truth with two scenes are shown in Figures 2 and 3.
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4.2. Experimental Procedure and Analysis

4.2.1. The Quantitative Experimental Results on the Pavia University Scene

First, we conduct our CPPSSC algorithm with 30% supervised information on the Pavia University
scene data set, and the experimental cluster maps compared with these benchmarks are shown in Figure 4.

From the visual effect of Figure 4, we can clearly see that our algorithm, especially for such classes
as the meadows, gravel and trees, demonstrates the better clustering effect and is closer to the true
ground. To a certain extent, these categories obviously achieved fewer misclassifications using our



Remote Sens. 2017, 9, 1017 9 of 18

algorithm. We can verify our observation from the Tables 1 and 2 with quantitative experimental
analysis. The bold numbers are the best clustering results.
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It can be seen from Table 1 that, according to the evaluation indicator with the UAs, the meadows,
gravel and trees in our algorithm can possess the better performance compared with these benchmarks.
The UAs are up to 69.77%, 30.36% and 91.15%, respectively. On the other hand, the quantitative analysis
from Table 1 confirms our visual performance. Moreover, from the UA point of view, the SSC, S4C and
SSRLRR algorithms absolutely misclassify the pixels of gravel, while the SSC-S obtains a poor accuracy
of 1.79%. Apparently, their recognition effect is not satisfied. Fortunately, our CPPSSC superiorly
reaches the best UA with 30.36%, which effectively exceeds the other methods and possesses the more
correct pixels. The main reason is that our algorithm can deliver the supervised information to the
sparse representation process, whose theoretical knowledge is similar to S3R and SSLRR. In addition,
relatively better clustering effects for asphalt and bare soil can also be acquired by our algorithm,
although they are not the best ones. From Table 2, the OA and kappa of our CPPSSC algorithm are the
best compared with the other benchmarks, achieving 62.91% in OA and 0.5330 in kappa. The SSC-S
and S4C combined HSI spectral information with the wealthy spatial correlation, obtaining OAs of
48.35% and 54.87%, respectively, and also obtained kappas of 0.4037 and 0.4625 separately. It can be
seen that they have a limited clustering effect for lacking known supervised information. The SSC
and CPPSSC obtained OAs of 51.37% and 62.91%, and can also obtain kappa coefficients of 0.4353 and
0.5530, respectively. In other words, an CPPSSC algorithm evidently generates sharp growth, with
11.54% of OA, and achieves an improvement of 0.1177 in kappa. Compared with S4C, our CPPSSC
presents an apparent rise in OA with 8.04%, which also obtains Kappa coefficients with the distinct
growth of 0.0905. This comes from the fact that our algorithm successfully utilizes the supervised
information to propagate the probability about whether two samples belong to the same class and
eventually deduce to intrinsic sparse representation coefficients. Although S3R and SSRLRR can obtain
better OAs at 58.14% and 58.19%, and kappas of 0.4707 and 0.4826, respectively, the CPPSSC can obtain
better clustering performance via class probability structure between data samples and classes, which
assists sparse representation coefficients by yielding a more discriminative diagonalization.
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Table 1. The quantitative analysis on the Pavia University scene. UA: user accuracy.

Evaluation UAs (%)

Class
Method

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

Asphalt 30.09 64.76 0 0 0 0 57.59
Meadows 40.02 62.91 61.74 68.97 53.81 69.56 69.77

Gravel 0 1.79 0 30.36 30.36 0 30.36
Trees 89.82 67.70 68.14 30.09 30.09 36.73 91.15

Painted metal sheets 48.02 36.20 27.90 69.86 69.56 69.86 58.71
Bare soil 93.18 31.82 63.64 34.47 29.92 64.77 92.05
Bitumen 0 32.06 98.95 48.78 29.97 29.97 29.97

Self-blocking bricks 64.14 39.79 61.24 67.05 69.72 65.29 62.75
Shadows 92.95 67.22 99.17 1.66 0.41 0.41 29.88

Table 2. The overall accuracy analysis on the Pavia University scene. OA: overall accuracy.

Evaluation
Algorithm

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

Oas(%) 51.37 48.35 54.87 58.14 53.15 58.19 62.91
Kappas 0.4353 0.4037 0.4625 0.4707 0.3972 0.4826 0.5530

We also conduct experiment on the Pavia University scene by our CPPSSC algorithm by changing
supervised information by 5%, 10%, 15%, 15%, 20% and 25%, compared with default 30% supervised
information. The variation tendencies of OA s and kappas are shown in Figure 5.

To our best knowledge, the clustering effect will be better when the supervised information
accounts for a large proportion. It can be seen clearly from Figure 5 that OA and kappa with
30% supervised information are the best compared with the other different levels of supervised
information. However, the clustering results still keep fairly stable when the supervised information
accounts for a proportion of 10%, which shows the low dependence of the supervised information.
They also depends on other parameters such as λ. The case demonstrates that our algorithm does
not rely too much on supervised information. Besides, for the meadows, gravel and trees, the
classification precision also can reach better clustering validity with UAs when the known class
probability information can be integrated into the traditional SSC algorithm.Remote Sens. 2017, 9, 1017  11 of 18 
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the meadows, gravel and trees. They are shown with the gradual growth of supervised information.

4.2.2. The Block Diagonal Structure of Sparse Coefficients

We also conduct the experiments to confirm the block diagonal structure of sparse representation
coefficient with our algorithm, and the results are listed in Figure 6.
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255. Consequently, the sparse coefficient matrix is a binary matrix.

From Figure 6, we can see that the block diagonal structure of sparse coefficient with our CPPSSC
algorithm is obviously better than with SSC and S4C, which is in favor of self-expressiveness to
boost the final clustering results. As illustrated in Figure 6, the white spaces indicating nonzero
coefficients are the block sparse coefficients among data samples. In Figure 6a, it is difficult to
form block diagonalization facing HSI data with the samples with nonzero coefficients. Although
Figure 6b can show block diagonalization to a certain extent, an imperfection is that the nonzero sparse
coefficients occupy a large proportion in the overall sparse coefficient matrix, which is contrary to
sparse representation theory. In terms of Figure 6c, the block diagonalizations via our CPPSSC method
are quite obvious compared with the other two methods; the reason is that the probabilistic class
structure estimated the similarity between each sample and each class is incorporated into the sparse
representation coefficients. Moreover, the global nonzero coefficients structure can be enhanced, which
facilitate block diagonalization of sparse coefficients.

4.2.3. The Quantitative Experimental Results on the Indian Pines

Then, we conduct our CPPSSC algorithm with supervised information of 30% on the Indian Pines
data set, and the experimental effect is shown in Figure 7.Remote Sens. 2017, 9, 1017  12 of 18 
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Figure 7 shows the visual cluster maps with all kinds of clustering technologies. We can see
that the visual cluster effect of the soybean-notill and woods with our CPPSSC is closer to that of the
original cluster map. The quantitative data analysis is given in Tables 3 and 4.

Table 3. The quantitative analysis on Indian Pines.

Evaluation UAs (%)

Class
Method

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

Alfalfa 30.43 30.43 30.43 45.65 10.87 0 0
Corn-notill 48.96 51.35 47.13 54.06 70.62 47.37 49.20
Grass-trees 45.45 98.84 91.68 29.98 65.57 69.63 47.58

Soybean-notill 30.05 49.86 31.01 43.31 30.05 30.05 81.01
Soybean-mintill 62.50 39.96 59.79 60.53 35.59 67.24 57.76

Woods 0 44.44 31.31 100 0 98.99 90.91

Table 4. The overall accuracy analysis on Indian Pines.

Evaluation
Algorithm

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

OAs(%) 49.11 52.13 54.02 52.74 47.47 55.33 58.14
Kappas 0.3464 0.4154 0.3962 39.31 0.2996 0.3979 0.4643

Table 3 shows the UA of every land over class, which can distinguish the clustering performance
of every method. Evidently, the clustering expression of soybean-notill and woods is able to present
better clustering performance via our CPPSSC, with higher UAs of 81.01% and 90.91%, respectively,
reducing the misclassification. Moreover, in terms of soybean-notill, the other benchmark techniques
achieve a poor UA of 30%, which is less than half that of our method. In the cluster map, the majority
of soybean-notill class has been misclassified into grass-trees in SSC. At the same time, the UA of
soybean-notill with the SSC-S method achieves better performance than that of SSC algorithm, with a
growth of 19.81%, because of adding the spatial information into HSI clustering. However, the speed
of the growth is limited. For our CPPSSC algorithm, the sparse representation can take full advantage
of the known information to extract the internal essence on HSI data, which achieves the qualitative
upgrade of the soybean-notill clustering. The cluster precision of the woods via our algorithm is higher,
up to 90.91%. Compared with S4C, it perfectly achieves the best clustering results for the woods class,
with an improvement of almost 60% in UA. Actually, the reason for improvements in our algorithm is
that signals with high correlation are preferentially selected in the sparse representation process via
the spread of supervised information. The UAs of the woods in the SSC-S and S4C, are 44.44% and
31.31%, respectively, which are far lower results than ours. The UA of woods in CPPSSC is lower than
in S3R and SSRLRR, which indirectly proves significance of supervised information for clustering.

In Table 4, with overall precision analysis on Indian Pines, the OA and kappa values by our
algorithm are the best results (presented with bold), with an OA of 58.14% and a kappa of 0.4643.
The SSC-S and S4C can obtain better cluster performance with OA precision, which is 52.13% and
54.02%. It is a fact that the two algorithms can acquire smooth growth compared with the SSC algorithm
because of adding the wealthy spatial correlation of HSIs, obtaining improvements of 3.02% and 4.91%
in OA, respectively. However, the promotion of the two methods has some limitations. This is because
they do not utilize the known supervised information but only utilize the unknown samples to fetch
information. Fortunately, our CPPSSC algorithm can rationally make full use of supervised information
to spread to unknown data. Hence, our method can achieve preferable clustering precision and is more
effective compared with traditional SSC algorithm, achieving an improvement of 9.03% in OA and
a growth of 0.1179 in kappa. In terms of S4C, our CPPSSC algorithm can obtain evident OA growth
with 4.12%, and also obtain the kappa growth of 0.0741 by the effective class probability model. With



Remote Sens. 2017, 9, 1017 13 of 18

respect to S3R, SSLRR and SSRLRR algorithms, our CPPSSC performs better than these three methods.
The reason is that our algorithm utilizes a small amount of labeled samples to generate class probability
among samples, and exploits class structure information via sparse representation classification.

For our CPPSSC algorithm, we also carry out a series of experiments on Indian Pines with added
supervised information of 5%, 10%, 15%, 20%, 25% and 30%. The experimental results are shown in
Figure 8.
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In Figure 8, the clustering precision of OA and kappa firstly shows a descending trend since
the supervised information is not utilized by sparse representation process at the beginning, and
then ascends because of gradually added supervised information, and it propagates to the unknown
samples. In other words, we only take full advantage of the testing samples via the spare process and
the reduction in the available data. Hence, the variation tendency is shown to be descending in the
beginning. With the increase in supervised information, quality information can be propagated to
unknown samples via class probability, and then the overall clustering accuracy will be improved.
The clustering precision of Indian Pines can be best reached using 30% supervised information, with
58.14% in OA and 0.4643 in kappa. Likewise, the clustering accuracy with UA of the soybean-notill
and woods can be closer to ground truth when we add the supervised information with 30% into
unknown HSI sample clustering.

4.2.4. The Clustering Performance Evaluated by AC and NMI on Two Data Sets

In general, the accuracy (AC) and normalized information metric (NMI) [43] are used to evaluate
the performance of clustering method. Consequently, we have conducted experiments on the Pavia
University scene and Indian Pines to verify the effectiveness of CPPSSC. The performance of the
benchmarks and CPPSSC methods are listed in Table 5.

Table 5. The accuracy (AC) and normalized information metric (NMI) of clustering performance on
two datasets.

Data Set Evaluation
Algorithm

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

Pavia University
scene

AC (%) 88.89% 86.25% 87.28% 86.12% 89.53% 87.62% 91.89%
NMI (%) 77.74% 74.41% 76.94% 75.37% 79.09% 75.16% 84.32%

Indian Pines
AC (%) 58.46% 56.99% 63.76% 59.19% 58.76% 58.89% 68.23%
NMI (%) 50.76% 51.02% 53.23% 52.09% 38.74% 38.82% 55.68%
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To our knowledge, both the AC and NMI range from 0 to 1 and a higher value indicates a better
result. From Table 5, we can see that CPPSSC achieves an 3% AC gain and 6.58% NMI gain on Pavia
University scene over the SSC. Besides, it is better than the other semi-supervised clustering methods.
Moreover, the CPPSSC also achieves the best clustering performance over the other benchmarks on
Indian Pines. The reason might be the effectiveness of the proposed class probability, which explores
the relationships between the samples and class and further adds valid similarity information to SSC.

4.2.5. The Parameters Analysis in the CPPSSC Algorithm on Two Data Sets

There are two main parameters in the CPPSSC algorithm, they are λ and γ. λ is the tradeoff
parameter between the sparsity of the coefficient and the magnitude of noise. It can be decided by the
following formula.

λ = γ/µ (18)

µ , min
i

max
j 6=i

∣∣∣∣yi
Tyj

∣∣∣∣ (19)

The λ is actually decided by γ since µ is fixed for a certain data set. Indeed, we only need to
fine-tune γ, and find the optimum values with OA and Kappa, which can be shown with a curve in
Figure 9.
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The clustering precision change curves of the OA and kappa with various values of γ are shown
in Figure 9. From this figure, it can be seen that the γ is independent on the dataset to some extent.
The optimizational values of the two data sets are located on γ = 20, which are perfectly shown on the
two datasets. The OA and kappa values are respectively 0.6291 and 0.5530 on the Pavia University
scene when γ = 20. In addition, the optimizational values of the OA and kappa are also achieved
as0.6107 and 0.4936 when γ = 20 on the Indian Pines data set. It can be seen that our CPPSSC can
achieve a better clustering accuracy with γ = 20, and makes sense for HSI clustering.

To show the computation complexity of these clustering methods, we also perform the
experiments on two data sets. The computational time of different clustering methods (seconds)
is shown in Table 6.

From Table 6, we can see that SSC is fast in the Pavia University scene and Indian Pines, and
CPPSSC spends the more time than SSC and SSC-S but less than the other clustering methods. The main
reason is that CPPSSC has to spend a little time to estimate the class probability distribution of
unlabeled samples.
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Table 6. The computational time of different clustering methods (seconds).

SSC SSC-S S4C S3R SSLRR SSRLRR CPPSSC

Pavia University scene 436.80 577.85 2493.73 268.32 3677.74 2140.79 751.93
Indian Pines 161.87 431.74 687.20 387.16 1469.02 2103.37 562.09

4.3. Discussion

From the experimental results, we can see that, compared with the unsupervised and
semi-supervised methods, our algorithm is informative and discriminative. The reason is that firstly,
SRC can obtain a good estimation of the underlying class structure of test samples by utilizing a small
amount of labeled samples. This is named probabilistic class structure. Then, the class probability
is incorporated into the sparse representation coefficient to strength the global similarity structure
among all the samples and preserve the subspace-sparse representation by facilitating the block
diagonalization of sparse coefficients.

The computational complexity of the CPPSSC algorithm depends on updating Ck and Pk in
Algorithm 3. Specifically, the computation complexity of it is about O(n2), where n is the number
of data samples. The computation complexity of updating Zk, αk, and βk is O(n). In summary, the
computational complexity of CPPSSC algorithm is O(τn2), where τ is the number of iterations.

To obtain the uniform class probability between each unlabeled sample and each specific class
addressed by SRC, we prefer to use the l1 norm instead of the l2 norm to deal with ||P||, although the
l1 norm has been proven unimportant to classification in theory [44] and practice [45]. The reasons
can be summarized as follows. First, in SRC, Wright et al. verified that the SRC coefficients solved by
l2 minimization are much less sparse than by l1 minimization. We hope to obtain the much sparser
representation of self-expressiveness of data. Second, since both the SRC and SSC are based on the
l1 norm, this leads to a combined norm that also has the structure of the l1 norm. It will facilitate
the block diagonal structure of sparse coefficients. The third reason to use the l1 norm is the greatly
theoretical guarantees for correctness of SSC, which can be applicable to detect subspace even when
subspaces are overlapping [46].

A number of supervised classification methods have been suggested. Compared with supervised
classification methods, the advantage of semi-unsupervised methods for HSIs can be summarized
as follows. First, the supervised classification needs a great deal of labeled samples to improve the
classifier performance [47]. However HSI classification often faces the issue of limited number of
labeled data, which are often costly, effortful, and time-consuming [28]. On the other hand, we can
obtain a large number of unlabeled data effortlessly. Semi-supervised learning (SSL), which can
utilize both small amount of labeled instances and abundant as well as unlabeled samples, has been
proposed to deal with this issue [48]. Second, in essence, semi-supervised clustering such as using
the CPPSSC method adds the constraints of a small amount of labeled information to the objective
function for assigning similar samples into corresponding class. These constraints are used to estimate
the similarity between data points and thereby enhance the clustering performance [49]. Consequently,
the semi-supervised clustering algorithms are becoming more popular because of the abundance of
unlabeled data and the high cost of obtaining labeled data.

What should be denoted is that, to be honest, we cannot guarantee that all the UAs of
corresponding classes via the CPPSSC algorithm are the best because of the different data structures of
each class. The main reason is that CPPSSC algorithm has difficulty in estimate class probability of
every data point because of the redundant information of complex HSI bands.

5. Conclusions

In this paper, we have briefly reviewed the classical unsupervised SSC algorithm to HSI clusters
by considering every land over class as a subspace. Owing to the hard cluster effect of directly using
unsupervised SSC, we proposed a novel class probability propagation via a supervised information
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algorithm called CPPSSC for HSI clustering, which mainly takes full advantage of rationally known
supervised information. In terms of the SSC-S, S4C algorithms, they only concentrate on the spectral
and spatial correlation of HSIs and neglect to add the known information. It is hard to extract the valid
sparse representation and guarantee the sparse coefficient block diagonalization structure properly.
Our CPPSSC algorithm can make progress on this point by mixing with class probability. Compared
with S3R, SSLRR and SSRLRR algorithms, the CPPSSC can capture global similarity structure and
work well over the state-of-the-art methods.

The presented CPPSSC algorithm still has room for improvement. For instance, because of
the redundant information of complex HSI bands, we will develop a structured class probability
model, which may better present the correlation between each sample and each class with redundant
information of complex HSI bands and fully explore the structure relationships among samples in the
future work.
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