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Abstract: The chlorophyll-a (Chla) products of seven processors developed for the Medium
Resolution Imaging Spectrometer (MERIS) sensor were evaluated. The seven processors, based
on a neural network and band height, were assessed over an optically complex water body with Chla
concentrations of 8.10–187.40 mg·m−3 using 10-year MERIS archival data. These processors were
adopted for the Ocean and Land Color Instrument (OLCI) sensor. Results indicated that the four
processors of band height (i.e., the Maximum Chlorophyll Index (MCI_L1); and Fluorescence Line
Height (FLH_L1)); neural network (i.e., Eutrophic Lake (EUL); and Case 2 Regional (C2R)) possessed
reasonable retrieval accuracy with root mean square error (R2) in the range of 0.42–0.65. However,
these processors underestimated the retrieved Chla > 100 mg·m−3, reflecting the limitation of the
band height processors to eliminate the influence of non-phytoplankton matter and highlighting the
need to train the neural network for highly turbid waters. MCI_L1 outperformed other processors
during the calibration and validation stages (R2 = 0.65, Root mean square error (RMSE) = 22.18
mg·m−3, the mean absolute relative error (MARE) = 36.88%). In contrast, the results from the
Boreal Lake (BOL) and Free University of Berlin (FUB) processors demonstrated their inadequacy
to accurately retrieve Chla concentration > 50 mg·m−3, mainly due to the limitation of the training
datasets that resulted in a high MARE for BOL (56.20%) and FUB (57.00%). Mapping the spatial
distribution of Chla concentrations across Lake Kasumigaura using the seven processors showed that
all processors—except for the BOL and FUB—were able to accurately capture the Chla distribution
for moderate and high Chla concentrations. In addition, MCI_L1 and C2R processors were evaluated
over 10-years of monthly measured Chla as they demonstrated the best retrieval accuracy from both
groups (i.e., band height and neural network, respectively). The retrieved Chla of MCI_L1 was more
accurate at tracking seasonal and annual variation in Chla than C2R, with only slight overestimation
occurring during the springtime.
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1. Introduction

The concentration of water constituents can fluctuate significantly over a short time period,
making it necessary to continuously monitor bodies of water [1]. Unlike in situ campaigns that
provide point measurements, remote sensing techniques can detect the spatial and temporal variation
in water bodies [2–4]. Water leaving reflectance, particularly in the visible and near infrared (NIR)
region of the electromagnetic spectrum, provides quantitative and qualitative information of water
constituents [5]. In clear waters, the optical properties are mainly governed by phytoplankton; the blue
and green spectral region are commonly used to retrieve chlorophyll-a (Chla), the primary pigment
of phytoplankton used to carry out photosynthesis [6,7]. Chla retrieval in turbid waters shifts from
the blue and green to the red and NIR spectral region to avoid high absorption of colored dissolved
organic matter (CDOM) and non-algal particles (NAP) [8–10].

Monitoring the water quality of oceans from space started in 1978 with the use of the Coastal
Zone Color Scanner (CZCS) sensor [11–14]. Since then, several other ocean color sensors such as
the Sea-viewing Wide Field-of-view (SeaWiFS), Moderate Resolution Imaging Spectroradiometer
(MODIS), and Medium Resolution Imaging Spectrometer (MERIS) have been employed to monitor
water quality of the open ocean as well as inland lakes [15,16]. The MERIS sensor and its follow-up
mission (i.e., Ocean and Land Color Instrument sensor (OLCI)) contain some unique bands (i.e., 620-
and 709-nm bands) that have not been incorporated in other ocean color sensors [13,17,18]. Kutser
et al. [19] demonstrated the importance of the 620-nm band to distinguish the cyanobacterial blooms
from other algae blooms. Furthermore, the floating brown algae Sargassum was first detected from
space using the 709-nm band [20].

Several algorithms based on band height have been developed for the MERIS sensor; namely,
the fluorescence line height (FLH) [21], the maximum chlorophyll index (MCI) [22,23], and the
maximum peak height (MPH) [24]. The regression approach (e.g., linear) is required to establish
a relationship between the Chla indices (i.e., FLH and MCI) and measured Chla. The derived
relationships are limited to the characteristics of the incorporated dataset and are sensitive to seasonal
or regional variations [18,25]. The neural network can provide an alternative solution to overcome
the complexity of turbid water bodies with the ability to include optical and physical information
of the remote sensing process (e.g., inherent and apparent optical properties) during the training
stage [26], particularly when simulated reflectance is used to train the neural network. Simulated
reflectance spectra are created through a relationship between the water leaving reflectance, inherent
optical properties, and the concentration of water quality constituents [27]. Four algorithms based on
the neural network have been developed for the MERIS sensor to retrieve water leaving reflectance
as well as the water constituents’ concentrations from MERIS L1b data. The four algorithms are
Eutrophic Lake (EUL) [28], Boreal Lake (BOL) [28], Case 2 Regional (C2R) [29] and the Free University
of Berlin (FUB) [30]. Numerous studies that adopted these neural network algorithms only performed
atmospheric correction for the MERIS L1B data without performing an evaluation for the Chla
produced from these algorithms [16,17,31–33].

Researchers have compared the Chla retrieval accuracy of the above-mentioned algorithms over
different lakes in Europe and Canada. Ruiz-Verdú et al. [34] performed an evaluation for EUL, BOL,
and C2R using 11 lakes in Finland, Germany, and Spain. Odermatt et al. [35] compared EUL, C2R and
FUB for Greifensee Lake in Switzerland. The algorithms that were compared within the two studies
were both based on the neural network and their results revealed that the EUL processor was the most
accurate algorithm. Inter-comparison between the band height and neural network algorithms showed
that the band height algorithms outperformed the neural network as reported by Binding et al. [36]
and Lankester et al. [37].

Although there have been comparisons of the retrieval accuracy for some of these algorithms,
there has been no previous study that has conducted an inter-comparison of these seven algorithms.
In addition, the upper limit of Chla concentrations during the above-mentioned studies were less
than 70 mg·m−3 [35–37], which does not represent highly turbid water bodies. The aim of the
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current study was to investigate the performance of the seven algorithms over a complex water body
(i.e., Lake Kasumigaura), which is characterized by a trophic environment covering broad statuses
(i.e., mesotrophic to hypertrophic). The evaluation was conducted over a MERIS lifetime between 2002
and 2012. Consequently, the objectives of the study were to: (1) evaluate the performance of the MERIS
seven algorithms using a synchronized dataset between in situ measurements and 10-years of MERIS
data; and (2) assess the retrieval accuracy of the seven algorithms to capture the spatial and temporal
variation of Chla concentrations.

2. Methods

2.1. In Situ Measurements

Lake Kasumigaura (36◦2’57”N; 140◦22’45”E), the second largest lake in Japan, is a shallow water
body with an average depth of 4 m and surface area of 220 km2 (Figure 1). A total of 56 rivers
flow and carry large amounts of nutrients into the lake, leading to rapid deterioration of its water
quality [38]. Since 1977, the National Institute for Environmental Studies (NIES) has performed monthly
measurements (i.e., 12 campaigns a year) to collect water samples from ten sites (Figure 1) within
its periphery. Water samples were collected in a column water sampler 2-m in length at the water
surface. Chla was measured using the absorption spectrum method. Water samples were filtered
through pre-combusted glass fiber filters. The pigments were extracted by soaking the filter with
the material retained in 10 mL methanol for 12 h at 3 ◦C before being centrifuged to clarify the
solution. The absorption coefficients at 630-, 645-, 665-, and 750-nm were measured to obtain the Chla
concentration as follows:

Chla
(

mg m−3
)
=

(11.6× a665 − 1.31× a645 − 0.14× a630)

V × l
× v (1)

where a630, a645, and a665 refer to the absorption coefficients at 630-, 645- and 665-nm subtracted
from the absorption coefficients at 750-nm [39,40]. Monthly in situ measurements were continuously
archived online and freely available through the database of Lake Kasumigaura [39]. The current
study conducted a comprehensive evaluation of seven processors developed for the MERIS sensor,
as discussed later in Section 2.2. The corresponding water quality parameters during 2002–2012
(i.e., MERIS sensor lifetime) are summarized in Table 1. Chla ranged from 6.80–223.50 mg·m−3,
while TSM ranged from 6.30–118.30 g·m−3. Chla concentrations revealed that the trophic status of
Lake Kasumigaura varied from mesotrophic (i.e., Chla ranged from 2.5–8.0 mg·m−3) to hypertrophic
(i.e., Chla > 25 mg·m−3) [41].
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Table 1. Descriptive statistics of water quality parameters measured at Lake Kasumigaura. Monthly
campaign refers to in situ measurements that were performed every month from May 2002 to May
2012. Sam- day and 1-day difference datasets represent in situ measurements that synchronized the
acquisition dates of MERIS images on the same day or with a one-day difference, respectively.

Min Max Mean Median SD

Monthly campaign (2002–2012) (n = 1210)

Chla (mg·m−3) 6.80 223.50 58.73 52.87 31.85
TSM (g·m−3) 6.30 118.30 26.80 24.30 12.22

Same day (n = 39)

Chla (mg·m−3) 8.10 187.40 72.97 58.90 48.77
TSM (g·m−3) 11.60 47.75 24.51 25.00 8.43

1-day difference (n = 73)

Chla (mg·m−3) 18.00 164.07 65.72 63.23 31.75
TSM (g·m−3) 10.70 71.20 25.71 23.60 11.41

Chla and TSM stand for chlorophyll-a and total suspended matter concentrations; SD denotes standard deviation;
and n represents the number of sampling points.

2.2. Medium Resolution Imaging Spectrometer (MERIS) Chlorophyll-a Processors

The MERIS sensor onboard the European Environmental Satellite (ENVISAT) is an ocean color
sensor designed to monitor changes in water quality of Case 1 waters (e.g., open ocean) and Case 2
waters (e.g., coastal areas). The mission of MERIS lasted for 10 years (March 2002 to April 2012) [42,43].
The Ocean Land Colour Instrument (OLCI) sensor launched in 2016 has a similar configuration to
MERIS and is considered as the follow-up to the MERIS mission. The MERIS sensor provides radiance
measurements at 15 bands in the spectral range of 412.5–900 nm with narrow bandwidths (Table 2).
The products of MERIS have two spatial resolutions: 300 m and 1200 m for full-resolution (FR) and
reduced resolution (RR), respectively. The MERIS sensor is composed of five cameras sharing a large
field of view (68.5◦) and an area of 1150 km [44]. MERIS provides global coverage of the Earth within
three days [44].

Seven algorithms were proposed to retrieve Chla concentrations or Chla-related products
(i.e., indices that can be correlated with Chla concentrations) from the MERIS data. Four out of
the seven algorithms are based on neural networks (NN) including Eutrophic Lake (EUL), Boreal Lake
(BOL), Case 2 Regional (C2R), and Free University of Berlin (FUB); the other three algorithms rely on
band height (i.e., Fluorescence Line Height (FLH), Maximum Chlorophyll Index (MCI), and Maximum
Peak Height (MPH)). These algorithms are available as plug-in processors with the BEAM V5.0
software (Envisat/Brockman Consult, Hamburg, Germany).

EUL, BOL, and C2R processors have the same structure as they consist of two NNs (i.e., inverse
and forward NNs): the inverse NN to execute atmospheric correction and the forward NN to
retrieve inherent optical properties (IOPs), and subsequently provide the concentrations of the
water constituents [28,29]. The inverse NN requires MERIS L1b top-of-atmosphere (TOA) radiances
(i.e., MERIS 15 bands) as well as some ancillary data (e.g., solar flux, sea surface pressure) as input to
generate atmospherically corrected water-leaving reflectance at 12 bands (i.e., bands 1–10, 12 and 13).
Eight out of these 12 atmospherically corrected bands (MERIS bands 2–7 and 9), as well as three
relevant angles (sun zenith angle, viewing zenith angle, and azimuth difference angle), were then input
into the forward NN to generate three IOPs at 443-nm (i.e., the absorption coefficient of phytoplankton
(apig), the absorption coefficient of CDOM (aCDOM), and particle scattering (btsm)) [28,29]. The Chla
and TSM concentrations were then estimated from apig, and btsm, respectively (Table 3).

The difference between the EUL, BOL, and C2R processors are the training datasets used to
train each processor [16] as well as the in situ data used to define the statistical properties of a
simulated data set. The EUL processor collects the in situ measurements from Spanish lakes (Chla
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of range 1–120 mg·m−3, TSM of 0.425–51 g·m−3, and aCDOM (443) of 0.1–3 m−1) [28]. The in situ
measurements of the BOL processor were collected from Finnish lakes (Chla of 0.5–50 mg·m−3, TSM of
0.1–20 g·m−3, and aCDOM (443) of 0.25–10 m−1) [28]. The in situ measurements of C2R processor
were collected from many sites (i.e., North Sea, Baltic Sea, Mediterranean Sea and North Atlantic)
with concentrations of 0.016–43.181 mg·m−3, 0.0087–51.9 g·m−3, and 0.005–5 m−1 for Chla, TSM,
and aCDOM (443), respectively [29].

Schroeder et al. [30] developed the FUB processor to retrieve the concentrations of Chla, TSM,
and aCDOM along with the water leaving reflectance at eight bands (MERIS bands 1–7 and 9),
from MERIS L1b TOA radiance using four separate NNs that were run simultaneously. The four
NN models were trained using extensive radiative transfer simulations that covered a wide range
of constituent concentrations in ranges of 0.05–50 mg·m−3, 0.05–50 g·m−3 and 0.005–1 m−1 for Chla,
TSM, and aCDOM (443), respectively. Table 3 summarizes the ranges of IOPs and concentrations used
to train the NN processors, along with the relationships between the IOPs and concentrations.

Eutrophic Lake (EUL), Boreal Lake (BOL), Case 2 Regional (C2R), and Free University of Berlin (FUB).

Table 2. Band centers and bandwidths of the Medium Resolution Imaging Spectrometer (MERIS).

Band Band Center (nm) Bandwidth (nm)

B1 412.5 10
B2 442.5 10
B3 490 10
B4 510 10
B5 560 10
B6 620 10
B7 665 10
B8 681.25 7.5
B9 708.75 10
B10 753.75 7.5
B11 760.625 3.75
B12 778.75 15
B13 865 20
B14 88 10
B15 900 10

Table 3. The ranges of inherent optical properties and concentrations used to train the neural network
of Eutrophic Lake (EUL), Boreal Lake (BOL), Case 2 Regional (C2R), and the Free University of Berlin
(FUB) processors.

Processors

EUL BOL C2R FUB

apig (443) (m−1) 0.0318–3.816 0.024–0.84 0.001–2
Chla to apig relation Chla = 31.447 ×apig Chla = 62.6 ×apig

1.29 Chla = 21 ×apig
1.04

Chla (mg·m−3) 1–120 0.5–50 0.016–43.181 0.05–50
bTSM (443) (m−1) 0.25–30 0.96–19.194 0.005–30

TSM to bTSM relation TSM = 1.7 × bTSM TSM = 1.042 × bTSM TSM = 1.73 × bTSM
TSM (mg·m−3) 0.425–51 0.1–20 0.0087–51.9 0.05–50

aCDOM (443) (m−1) 0.1–3 0.25–10 0.005–5 0.005–1

Optical data origin Spanish lakes Finnish lakes
North Sea, Baltic Sea,

Mediterranean Sea and
North Atlantic

Reference Doerffer et al. [28] Doerffer et al. [28] Doerffer et al. [29] Schroeder et al. [30]

apig (443), and aCDOM (443) denote the absorption coefficients of phytoplankton and colored dissolved organic
matter at 443-nm; Chla and TSM represent the concentrations of chlorophyll-a and total suspended matter; and
bTSM (443) refers to the total scattering coefficient of TSM at 443-nm band.

The sun-induced chlorophyll fluorescence peak at 865-nm is strongly correlated with Chla
concentration [45]. Gower et al. [21] proposed the Fluorescence Line Height (FLH) algorithm to
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retrieve Chla concentration from MERIS TOA radiance by measuring the height of radiance at 681-nm
above a linear baseline connecting the radiances at 665-nm and 709-nm as follows:

FLH = L681 − k× [L665 + (L709 − L665)×
(681− 665)
(709− 665)

] (2)

where L665, L681, and L709 denote MERIS TOA radiances at bands 7, 8 and 9, respectively; and k
represents a coefficient with a value of 1.005 to reduce the influence of thin cloud. MERIS band 8
shifted from the fluorescence peak at 685-nm to 681-nm to avoid the effects of oxygen absorption at
687-nm [21]. Similarly, the MCI algorithm was developed for MERIS data to detect harmful algal
blooms (HABs), such as the red tide, by determining the height of radiance at 709-nm over a baseline
between radiance values at 681-nm and 754-nm [23]:

MCI = L709 − k× [L681 + (L754 − L681)×
(709− 681)
(754− 681)

] (3)

where L681, L709, and L754 refer to MERIS TOA radiance at bands 8, 9 and 10, respectively. Both FLH
and Maximum Chlorophyll Index (MCI) algorithms can also be applied to atmospherically corrected
water-leaving reflectance [46]. MERIS TOA radiance spectra are characterized by high radiance values
in the short wavelengths owing to the Rayleigh scattering of sunlight in the atmosphere and a dip in
the radiance spectrum at 760-nm due to oxygen absorption [22,47], as shown in Figure 2.

Unlike FLH and MCI, both of which have fixed bands, the maximum peak height (MPH) algorithm
searches for the maximum peak height among multiple red and NIR bands (i.e., MERIS bands 8, 9
and 10) [24]. Bands 7 and 14 are used as a baseline to find the band of maximum height. The
MPH algorithm requires the bottom of the Rayleigh reflectance (BRR) as an input to produce Chla
concentrations. Rayleigh correction removes the influence of gaseous absorption (i.e., water vapor
(H2O) and ozone (O3)) and molecular Rayleigh scattering (not aerosol) from MERIS TOA radiance [48,
49]. The bottom-of-Rayleigh reflectance processor was used to perform Rayleigh correction. The MPH
can be estimated as:

MPH = ρBRR max − ρBRR 665 − (ρBRR 885 − ρBRR 665)×
(λmax − 665)
(885− 665)

(4)

where ρBRR 665 and ρBRR 885 refer to the BRR at 665-nm and 885-nm, respectively; ρBRR max represents
the maximum peak height at three candidate bands (i.e., MERIS bands 8, 9, and 10) over the linear
baseline between MERIS band 7 and band 14; and λmax denotes the wavelength of the ρBRR max.
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Figure 2. MERIS L1b top-of-atmosphere radiance spectra of Lake Kasumigaura aseveral chlorophyll-a
concentrations with the corresponding values of maximum chlorophyll index (MCI) and fluorescence
line height (FLH). The grey columns highlight MERIS bands that are used for FLH and MCI. Chla is in
(mg·m−3). MCI and FLH are in (mW·m−2·sr−1·nm−1).
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2.3. MERIS Image Processing

A total of 503 MERIS L1b images of 300 m full resolution were available for Lake Kasumigaura
between 2002 and 2012 on Earthnet Online, provided by the European Space Agency [50]. However,
only 122 clear and partially clear images out of 503 could be used, as summarized in Table 4.
A synchronization process was executed to match the monthly field campaigns that were performed
by NIES during 2002–2012 with the 122 images, resulting in five images acquired on the same day
as the field campaigns (hereafter, same day) and eight images with a one-day difference (hereafter,
1-day difference) (Table 5). The 1-day difference images were employed based on the assumption that
there were no significant changes in the Chla concentrations during the day recorded due to stable
weather conditions (Salem et al. (2017a), Table S1 in Supplementary Material). Several studies have
adopted a similar approach, such as Campbell et al. [51] for MERIS data across the Burdekin Falls Dam,
Australia. In general, the number of clear images (122 images) and synchronized images (13 images)
were relatively few, owing to the high cloud coverage over Japan, with an average monthly sunshine
ranging 31–64% at the Mita Station (the nearest weather station to Lake Kasumigaura) [52] during
2002–2012 (Figure 3).

Table 4. Summary of clear and partially clear * images of MERIS sensor over Lake Kasumigaura
between 2002 and 2012.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

January 1 3 2 5 2
February 1 2 4 1 3 1
March 2 4 3 2 3 1 1
April 2 1 3 2 2 6 1
May 2 2 4 4 1
June 2 1 2 2 1
July 4 1

August 1 1 1 2 1
September 1 1
October 1 1 2 2 3 1
November 1 3 2
December 1 1 1 2 2 1 2 4

* The MERIS images were considered as a partially clear if at least one out of the ten stations at Lake Kasumigaura
did not covered by cloud.

Table 5. Synchronization between the monthly field measurements and cloud-free images of MERIS
sensor for Lake Kasumigaura during 2002–2012.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

January 1 * 1 *
February 1 *
March 1
April 1 *
May 1 1 *
June
July 1

August 1 * 1 *
September
October 1
November 1 *
December 1

1 represents the images taken at the same day of the in situ measurements; 1 * represents the images with
1-day difference.
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Figure 3. The monthly average percentage of maximum possible sunshine at Mito WMO (World
Meteorological Organization) weather station located near Lake Kasumigaura during 2002–2012.

The matched-up images were processed using seven processors (EUL, BOL, C2R, FUB, FLH, MCI,
and MPH processors) to retrieve Chla concentrations or Chla indices following the flowchart illustrated
in Figure 4. A smile correction was performed on the MERIS L1b images to adjust the variation in the
central wavelength among the pixels of an image for a given band [44]. The variation in the central
wavelength per pixel can be in the range of 0.1 nm for one camera and within 1.7 nm between the
five cameras [53]. The land detection expression for EUL, BOL, and C2R processors was modified to
‘toa_reflec_10 > toa_reflec_6 AND toa_reflec_13 > 0.01’ for a better representation of the coastline between
the lake and land, as indicated by Binding et al. [36]. As many of the lakes’ pixels were inaccurately
masked as land for the FLH, MCI, and MPH processors, the ‘l1_flags. LAND_OCEAN’ statement
was removed from their default mask expression to enable them process to all land and ocean pixels.
Instead, a shapefile of Lake Kasumigaura, downloaded from the Japanese National Land Numerical
Information database [54], was used to mask the land pixels around the lake. In addition, pixels with a
radiance at 865-nm greater than 15 mW·m−2·sr−1·nm−1 were manually flagged and excluded from
calculations for FLH and MCI to remove pixels with strong sunlight, haze, or cloud, as reported by
Gower et al. [23]. Aside from these changes, all other default settings for the seven processors were
used to process the MERIS L1b data.
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Figure 4. Processing flowchart of MERIS L1b images to retrieve chlorophyll-a concentrations or indices
related to chlorophyll-a concentrations using neural network and band height processors. chl_conc
indicates the chlorophyll-a (Chla) concentration retrieved from the EUL, BOL, and C2R processors;
algal_2, and chl stand for the retrieved Chla of FUB and MPH processors, respectively; and FLH and
MCI denote indices correlated with Chla concentrations.
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2.4. Accuracy Assessment

Root mean square error (RMSE) and the mean absolute relative error (MARE) [55] were used to
assess the accuracy of Chla retrieval as follows:

RMSE =

√
∑n

i=1(Chlai , M − Chlai ,R)
2

n
(5)

MARE =
1
n
×

n

∑
i=1

|(Chlai , M − Chlai ,R)|
Chlai , M

× 100 (6)

where Chlai , M and Chlai ,R represent the measured and retrieved Chla concentrations, respectively;
and n is the number of samples.

3. Results and Discussion

3.1. Characteristics of Synchronized Measurements

The synchronization process between the MERIS data and in situ measurements at Lake
Kasumigaura from 2002 to 2012 resulted in 130 match-ups (13 images × 10 sampling stations for
each image). Nevertheless, the final number of match-ups varied for each processor based on the
flags present in Levels 1 and 2. The match-ups were 77 for EUL, BOL and C2R; 79 for FUB; 101 for
MPH; and 86 for FLH and MCI. Descriptive statistics of water quality parameters for the in situ
measurements of the match-ups are summarized in Table 1 (some match-up measurements were
noted as valid for some processors and invalid for others). The measurements covered a wide range
of trophic status for the same day (Chla = 8.1–187.4 mg·m−3, TSM = 11.6–47.75 g·m−3) and 1-day
difference (Chla = 18.0–164.07 mg·m−3, TSM = 10.7–71.2 g·m−3). These measurements confirmed the
characteristic of Lake Kasumigaura as a complex turbid water body.

3.2. Evaluation of Chlorophyll-a Retrieval Processors

Five out of the seven processors (EUL, BOL, C2R, FUB, and MPH) provide Chla concentrations,
whereas the other two processors (FLH_LI and MCI_L1) produce indices. The retrieved Chla from the
five processors were compared with the in situ measured Chla to evaluate their performances, as shown
in Figure 5. In general, the same day and 1-day difference match-ups were regularly distributed across
different Chla concentrations without any special trend (Figure 5), revealing the applicability of the
assumption for the one-day difference between the in situ measurements and MERIS data acquisition.
EUL, BOL, and C2R considerably underestimated the Chla concentration with an upper limit for the
retrieved Chla of 50 mg·m−3 (Figure 5a–c). Although the training dataset for the EUL processor used
Chla concentrations that ranged from 1–120 mg·m−3 (Table 3), the processor failed to retrieve Chla
concentrations higher than 50 mg·m−3 (Figure 5a), with retrieval accuracies of 0.42, 55.46 mg·m−3,
and 61.68% for the coefficient of determination (R2), RMSE, and MARE, respectively. The BOL
processor had the lowest retrieval accuracy with a R2 of 0.26 (Figure 5b), whereas C2R outperformed
the other processors with R2, RMSE, MARE of 0.52, 49.38 mg·m−3, and 54.34%, respectively (Figure 5c).
Although the measured Chla in Lake Kasumigaura ranged between 8.10–187.40 mg·m−3, the retrieved
Chla concentrations were <50 mg·m−3, due to the characteristics of the training datasets for these
processors (Chla concentrations covered ranges of 0.5–50 mg·m−3 and 0.016–43 mg·m−3 for the BOL
and C2R processors, respectively) as shown in Table 3.
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Figure 5. Comparison of the measured and retrieved Chla from (a) EUL; (b) BOL; (c) C2R; (d) FUB;
and (e) MPH processors. chl_conc indicates the chlorophyll-a (Chla) concentration retrieved from
EUL, BOL, and C2R processors; algal_2 and chl stand for the retrieved Chla from the FUB and MPH
processors, respectively; FLH and MCI denote indices correlated with Chla concentrations; n represents
the total number of match-ups available for each processor.

Although the FUB processor was the second most accurate processor (R2 = 0.41, RMSE = 34.71 mg·m−3,
MARE = 69.26%), it appeared that the processor inaccurately retrieved the Chla concentration at
100 mg·m−3 for many measured match-ups in the range of 25–180 mg·m−3 (Figure 5d). In contrast to
the four NN processors (EUL, BOL, C2R, and FUB), the MPH processor overestimated the retrieved
Chla up to 390 mg·m−3 (Figure 5e). As a result, the MPH introduced the highest RMSE and MARE of
106.77 mg·m−3 and 144.45%, respectively.

3.3. Processors Adjustment

As clearly shown in Figure 5, the five processors either underestimated or overestimated the
retrieved Chla. A regression approach was therefore used to adjust the inaccurate Chla retrieval
from the five processors. In addition, the regression approach was also incorporated to establish
a relationship between the measured Chla and the indices of the FLH_L1 and MCI_L1 processors.
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The derived relationship was used to retrieve Chla concentrations from the indices of FLH_L1 and
MCI_L1. Salem et al. [56] found that the differences in retrieval accuracies among linear, quadratic
polynomial, and power regression approaches were relatively small for the measured dataset. Linear
regression was therefore adopted during this research. The match-ups for each processor were split
into a 7:3 ratio for calibration to drive the relationship between the measured Chla and the processors’
outputs (which could be Chla concentrations or indices and validation stages), respectively.

The performance of each processor in terms of R2, as well as the derived relationship,
are summarized in Table 6 for the calibration stage. The MCI_L1 outperformed the other processors
(R2 = 0.65), as shown in Figure 6f. The second tier of processors was the FLH_L1 and C2R with R2 of
0.55 and 0.52, respectively (Figure 5c,e). The FLH_L1 provided positive values for Chla concentrations
≤10 mg·m−3 as the influence of fluorescence at 681-nm was much stronger than the influence of
particle scattering at 709-nm. However, particle scattering significantly increased the radiance at
709-nm for Chla concentrations above 10 mg·m−3, creating negative FLH height values at 681-nm
from the baseline between 665-nm and 709-nm [57] (Figure 6e). Figure 5b shows the BOL processor
had the lowest retrieval accuracy (R2 = 0.27). The poor retrieval accuracy of the BOL processor was
attributed to the fact that the Finnish lakes used to train the processor are not eutrophic water bodies,
therefore resulting in unrealistically low Chla concentrations, as reported by Shi et al. [16].

Table 6. The performance of the investigated processors for the current study and some recent studies.

Processors
Calibration Validation

n R2 b n R2 RMSE MARE

Current study (Chla in ranges of 8.10–187.40 mg·m−3) (Lake Kasumigaura, Japan)

EUL 53 0.42 Chla_m = 5.56 × Chl_conc − 55.98 24 0.42 29.67 33.38
BOL 53 0.27 Chla_m = 5.07 × Chl_conc − 171.42 24 0.29 29.41 56.20
C2R 53 0.52 Chla_m = 3.63 × chl_conc − 34.82 24 0.53 26.34 48.73
FUB 55 0.41 Chla_m = 0.80 × algal_2 − 4.46 24 0.42 32.49 57.00
FLH_L1 60 0.55 Chla_m = −31.76 × FLH + 22.50 26 0.56 25.80 34.52
MCI_L1 60 0.65 Chla_m = 16.63 ×MCI + 19.30 26 0.65 22.18 36.88
MPH 70 0.35 Chla_m = 0.25 × chl + 35.09 31 0.37 29.06 59.54

Ruiz-Verdú et al. (2008) (Chla < 8 mg·m−3) (Eleven lakes in Finland, Germany and Spain)

EUL 16 — Chla_m = 1.26 × Chl_conc + 0.55 — 0.46 2.54 —
BOL 16 — Chla_m = 2.65 × Chl_conc − 1.79 — 0.38 6.74 —
C2R 16 — Chla_m = 2.21 × Chl_conc − 1.39 — 0.57 4.21 —

Binding et al. (2011) (Chla in ranges of 1.9–70.50 mg·m−3) (Lake of the Woods, Canada)

EUL 16 0.188 Chla_m = −0.129 × Chl_conc + 17.678 12 — 46.24 —
BOL 16 0.207 Chla_m = 0.444 × Chl_conc + 7.566 12 — 11.84 —
C2R 16 0.159 Chla_m = 0.664 × Chl_conc + 7.133 12 — 11.15 —
MCI_L1 17 0.739 Chla_m = 6.166 ×MCI + 6.347 11 — 5.71 —

Odermatt et al. (2012) (Chla in ranges of 5–40 mg·m−3) (Greifensee Lake, Swiss)

EUL 16 0.41 Chla_m = 12.20 × Chl_conc − 3.17 — — — —
C2R 16 0.40 Chla_m = 7.87 × Chl_conc − 2.92 — — — —
FUB 16 0.39 Chla_m = 1.27 × algal_2 + 4.70 — — — —

Lankester et al. (2015) (Chla in ranges of 1.50–57.00 mg·m−3) (Lake Balaton, Hungary)

EUL 118 0.42 Chla_m = 2.01 × Chl_conc − 0.57 50 0.33 6.85 —
BOL 91 0.46 Chla_m = 0.65 × Chl_conc + 3.25 39 0.48 9.25 —
C2R 116 0.46 Chla_m = 1.63 × Chl_conc + 1.09 50 0.43 7.53 —
FUB 76 0.32 Chla_m = 0.30 × algal_2 + 4.63 32 0.65 3.83 —
FLH_L1 141 0.78 Chla_m = −8.08 × FLH + 10.33 60 0.87 4.19 —
MCI_L1 141 0.62 Chla_m = 3.91 ×MCI + 11.31 60 0.69 6.62 —

The text highlighted in bold represents the most accurate processor for each study.
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The seven processors in Figure 6 were classified into two groups—the first group consisted of
EUL, C2R, MCI_L1, and FLH_L processors; and the second group consisted of BOL, FUB, and MPH
processors. The first group showed a relatively close similarity between the measured and retrieved
Chla concentrations (Figure 5a,c,e,f). The second group, on the other hand, failed to retrieve Chla
concentrations from MERIS data by producing the same retrieved Chla concentration under different
conditions. For example, the BOL processor retrieved Chla concentrations around 50 mg·m−3 for
the measured Chla in the range of 25–180 mg·m−3 for many stations (Figure 6b). Similarly, the FUB
retrieved inaccurate Chla concentrations of around 120 mg·m−3 (Figure 6d). The MPH also had a
similar trend of around 40 mg·m−3; however, this trend was located within the limits of the retrieved
Chla, thus demonstrating the need to revise the conditions and thresholds of MPH to find the possible
causes of this error.

During the validation stage, the outputs of each processor (Chla concentrations or indices)
were substituted into the derived relationship from the calibration stage to obtain the retrieved
Chla concentrations. The MCI_L1 algorithms had the highest R2 of 0.65 and the lowest RMSE
of 22.18 mg·m−3 among the seven processors (Figure 7f). The second most accurate processors
were FLH_L1 (R2 = 0.56, RMSE = 25.80 mg·m−3, MARE = 34.52%) and C2R (R2 = 0.53,
RMSE = 26.34 mg·m−3, MARE = 48.73%), as illustrated in Figure 7e,c respectively. Though both
FLH_L1 and MCI_L1 processors were developed to monitor turbid water bodies, they were found to
be able to retrieve low Chla concentrations, as shown in Figures 6f and 7e, respectively.

Although the EUL processor was developed for turbid Case 2 waters and trained with Chla
concentrations up to 120 mg·m−3 (Table 3), it showed intermediate retrieval accuracy with R2, RMSE,
and MARE of 0.42, 29.67 mg·m−3 and 33.38%, respectively. The retrieved Chla was consistent with the
in situ measured Chla for the EUL, C2R, FLH_L1, and MCI_L1 processors, and generally followed the
1:1 line for Chla concentrations ≤100 mg·m−3. However, the four processors tended to underestimate
the retrieved Chla concentrations >100 mg·m−3 (Figure 7a,c,e,f).

The BOL, FUB, and MPH processors introduced the highest MARE values of 56.20, 57.00 and
59.54%, respectively. The limitation of the three processors to accurately retrieve Chla concentrations
from the MERIS data was evident from the data, as shown in Figure 7b (retrieved Chla around
80 mg·m−3), Figure 7d (retrieved Chla around 80 mg·m−3), and Figure 7g (retrieved Chla around
40 mg·m−3),. The MCI_L1 and FLH_L1 processors required MERIS L1b radiance as an input, which
avoided errors arising from atmospheric correction. In addition, the NN processors incorporated a
regression approach to adjust their outputs, which revealed the need to retrain the NN processors with
a simulated dataset covering wider trophic statuses to retrieve accurate products without a regression
approach. The FLH_L1 and MCI_L1 processors provided high retrieval accuracy during the calibration
and validation stages of the current study, as well as for other studies that compared the NN processors
with the band height processors (Table 6). Consequently, the MCI_L1 and FLH_L1 processors are
recommended for MERIS data.
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Figure 6. Calibration of (a) EUL; (b) BOL; (c) C2R; (d) FUB; (e) FLH; (f) MCI; and (g) MPH processors.
chl_conc indicates the chlorophyll-a (Chla) concentration retrieved from EUL, BOL, and C2R processors;
algal_2, and chl stand for the retrieved Chla of FUB and MPH processors; FLH and MCI denote
indices correlated with Chla concentrations; and n symbolizes the number of samples used during the
calibration stage (n represents 70% of total match-ups available for each processor).
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Figure 7. Validation of (a) EUL; (b) BOL; (c) C2R; (d) FUB; (e) FLH; (f) MCI; and (g) MPH processors.
n denotes the number of samples used during the validation stage (n represents 30% of total match-ups
available for each processor).
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To further investigate the ability of the seven processors to capture the spatial distribution of
Chla concentrations throughout Lake Kasumigaura, two MERIS images—one acquired on 7 December
2011 and another on 14 May 2009—were selected to represent moderate and high Chla concentrations,
respectively. For each image, Chla concentrations or indices were generated using the seven processors
and the relationships derived during the calibration stage were used to provide the adjusted Chla
concentrations, as shown in Figure 8a–g,i–s. The measured Chla at ten sampling points are illustrated
in Figure 8h,t. The measured Chla concentrations were interpolated using the Kriging technique [58]
via, ArcGIS 10.3 to produce the spatial distribution of the measured Chla across the lake as shown in
Figure 8i,u.

The measured Chla in Figure 8h,t indicated that Lake Kasumigaura was y-shaped with relatively
high Chla concentrations along both of its branches due to nutrient-rich inflow from rivers near St. 1
(Sakura and Hanamura River) and St. 6 (Koise River). However, the remainder of the lake was
subjected to relatively moderate Chla concentrations. The EUL, C2R, FLH_L1, and MCI_L1 processors
introduced a relatively accurate trend for Chla distribution when compared with the measured
Chla (Figure 8a,c,e,f,i,m,p,q). The MCI_L1 provided the most accurate image for the moderate Chla
concentration in December 2011 (Figure 8f) when compared with the measured Chla (Figure 8h,i).
Although the EUL, C2R, and FLH produced very similar distributions to the measured concentration
for the MERIS image in May 2009, C2R (Figure 8c) showed the closest distribution to the measured
concentration (Figure 8t,u). The MPH processor had a reasonable trend of Chla, with an overestimation
of retrieved Chla in December 2011 (Figure 8g,s). Both the BOL and FUB processors failed to capture
the Chla distribution for moderate and high concentrations, particularly in May 2009, as they produced
almost uniform Chla concentrations of 80–90 mg·m−3.

The seven processors represented two categories: neural networks and band height processors.
One processor was selected from each category to evaluate their retrieval accuracy over the 10-year
MERIS mission. The MCI_L1 and C2R processors were selected as they not only provided the
highest R2 values during the calibration and validation stages but also represent band height and NN
processors, respectively. A total of 122 clear or partially clear MERIS images were first processed using
MCI_L1 and C2R processors following the procedure shown in Figure 4. Next, the relationships derived
during the calibration stage were used to obtain the retrieved adjusted Chla. Chla concentrations have
been measured monthly at ten stations at Lake Kasumigaura since the 1970s by NIES [39]. Figure 9a,d
show the time series of measured Chla at St. 7 and St. 9, respectively. Additionally, the retrieved
adjusted Chla from the MCI_L1 and C2R processors are illustrated in Figure 9a,d.

A visual comparison between the measured and retrieved Chla from the MCI_L1 and C2R
processors revealed that both processors could follow the seasonal and annual patterns of Chla
concentration from 2002–2012 (Figure 9a,d). The retrieved Chla concentrations from MCI_L1 were
relatively more accurate than the retrieved Chla concentrations from C2R. Despite this, the MCI_L1
tended to overestimate the retrieved Chla during the spring seasons of 2004, 2006, 2008 and 2009
(Figure 9a,d). Diatoms usually bloom between April and June in Lake Kasumigaura [40], which
might have caused this error—further investigation is necessary to examine the possible influence of
phytoplankton species on the processors’ performances.



Remote Sens. 2017, 9, 1022 16 of 21

Remote Sens. 2017, 9, 1022 16 of 21 

 

 

 
Figure 8. Spatial distribution of chlorophyll-a (Chla) concentration in Lake Kasumigaura on 7 
December 2011 (low Chla concentrations) and 14 May 2009 (high Chla concentrations) using (a,i) EUL; 
(b,k) BOL; (c,m) C2R; (d,n) FUB; (e,p) FLH; (f,q) MCI; and (g,s) MPH processors. The measured Chla 
at the ten stations of the National Institute for Environmental Studies (NIES) shown in (h,t), and (I,u) 
illustrate the interpolated measured Chla. The units of measured and retrieved Chla are in mg∙m−3. 
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2011 (low Chla concentrations) and 14 May 2009 (high Chla concentrations) using (a,i) EUL; (b,k) BOL;
(c,m) C2R; (d,n) FUB; (e,p) FLH; (f,q) MCI; and (g,s) MPH processors. The measured Chla at the ten
stations of the National Institute for Environmental Studies (NIES) shown in (h,t), and (I,u) illustrate
the interpolated measured Chla. The units of measured and retrieved Chla are in mg·m−3.
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Figure 9. Time series of measured chlorophyll-a (Chla) versus retrieved Chla from MCI_L1 and C2R
processors at (a) station 7 (St 7) and (d) station 9 (St 9). Scatter plot of measured interpolated Chla
(linear interpolation was used to estimate measured Chla at the same day of available satellite data)
versus retrieved Chla (b) MCI_L1 at St 7; (c) C2R at St 7; (e) MCI_L1 at St 9; and (f) C2R at St 9. n stands
for the number of match-ups. The units of RMSE and MARE are in mg·m−3 and %, respectively.
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The main limitation of performing a quantitative evaluation of the retrieved Chla from the
MCI_L1 and C2R processors was that there are only 13 out of the 122 images synchronized the in
situ measurements with only one-day difference. To overcome this limitation, the measured Chla
were linearly interpolated to match the dates of the MERIS images. The comparison between the
measured interpolated Chla and the retrieved Chla demonstrated that the MCI_L1 provided better
retrieval accuracy than C2R in terms of R2 at St. 7 (R2 = 0.56) and St. 9 (R2 = 0.35), as shown in
Figure 9b,e, respectively.

4. Conclusions

Seven Chla retrieval processors developed for the MERIS data were evaluated throughout the
10-year MERIS lifetime. An evaluation of five out of the seven processors that provide direct Chla
concentrations revealed that these processors tended to underestimate (EUL, BOL, C2R, and FUB),
or overestimate (MPH) the retrieved Chla. These results emphasize the importance of performing
local calibration for the retrieved Chla. The MCI_L1 processor outperformed the seven processors
during the calibration (R2 = 0.65) and validation stages (R2 = 0.65), despite the fact that the MCI
processor was not developed for low Chla concentrations. Although the EUL, C2R, MCI_L1, and
FLH_L1 provided acceptable accuracies for the validation stage, they underestimated the retrieved
Chla for Chla concentrations > 100 mg·m−3. Thus, these results revealed the limitations of band
height algorithms to eliminate the influence of other constituents, particularly with high concentrations
as reported by [13] and emphasize the importance of including high Chla concentration during the
training stage of NN processors, especially before incorporating these processors with the OLCI
sensor. The ability of the seven processors to capture the spatial distribution of Chla across the lake
was investigated for moderate and high concentrations in 2011 and 2009, respectively. EUL, C2R,
FLH_L1, and MCI_L1 could generally capture the trend of Chla across the lake for moderate and high
concentrations. MCI was accurate for moderate Chla, whereas C2R estimated an accurate trend for
high Chla. The BOL and FUB processors failed to capture the Chla distribution across the lake for both
moderate and high Chla. In addition, the comparison between MCI_L1 and C2R processors versus the
10-years of measured Chla showed that both processors could follow the seasonal and annual patterns
of Chla concentration as a whole. However, MCI_L1 provided better retrieval accuracy than C2R with
a slight overestimation of retrieved Chla during the springtime. In general, the performance of band
height processors (MCI_L1 and FLH_L1) outperformed the neural network processors as shown in
our results and the previous studies that were described in this paper. These results can be attributed
to two factors: (1) the band height processors incorporated MERIS TOA radiance, which led to the
avoidance of errors arising from atmospheric correction, which was in contrast with the NN processors
that performed atmospheric correction; and (2) the simulated datasets that were used to train the NN
processors could not represent the various trophic statuses of Case 2 water.

Acknowledgments: The first author would like to acknowledge the Japanese Government for providing the
The Ministry of Education, Culture, Sports, Science and Technology (MEXT) scholarship to conduct this study.
The authors thank the Japan Aerospace eXploration Agency (JAXA) for the Global Change Observation Mission
for Climate (GCOM-C) RA2/4 funding.

Author Contributions: Salem Ibrahim Salem, Marie Hayashi Strand and Kazuo Oki took part in the conception
and designed the study; Komatsu Kazuhiro from the National Institute for Environmental Studies (NIES)
performed the field measurements at Lake Kasumigaura between 2002 and 2012; Salem Ibrahim Salem and
Marie Hayashi Strand analyzed the satellite images and the in-situ measurements. Salem Ibrahim Salem wrote
the paper; Hiroto Higa, Hyungjun Kim and Taikan Oki revised and commented the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 1022 19 of 21

References

1. Gokul, E.A.; Shanmugam, P.; Sundarabalan, B.; Sahay, A.; Chauhan, P. Modelling the inherent optical
properties and estimating the constituents’ concentrations in turbid and eutrophic waters. Cont. Shelf Res.
2014, 84, 120–138. [CrossRef]

2. Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance
measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters:
Modeling results. Appl. Opt. 2006, 45, 3577. [CrossRef] [PubMed]

3. Oyama, Y.; Matsushita, B.; Fukushima, T.; Matsushige, K.; Imai, A. Application of spectral decomposition
algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data.
ISPRS J. Photogramm. Remote Sens. 2009, 64, 73–85. [CrossRef]

4. Su, H.; Liu, H.; Wang, L.; Filippi, A.M.; Heyman, W.D.; Beck, R.A. Geographically Adaptive Inversion Model
for Improving Bathymetric Retrieval From Satellite Multispectral Imagery. IEEE Trans. Geosci. Remote Sens.
2014, 52, 465–476. [CrossRef]

5. Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Zhang, H. Remote estimation of chlorophyll a in optically complex
waters based on optical classification. Remote Sens. Environ. 2011, 115, 725–737. [CrossRef]

6. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters
Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [CrossRef] [PubMed]

7. Gordon, H.R.; Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery.
In A Review. Lecture Notes on Coastal and Estuarine Studies; Springer: Berlin, Germany, 1983.

8. Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote
Sensing; Vrije Universiteit: Amsterdam, The Netherlands, 1993.

9. Oki, K.; Yasuoka, Y. Estimation of Chlorophyll-a Concentration in Rich Chlorophyll Water Area from
Near-infrared and Red Spectral Signature. J. Remote Sens. Soc. Jpn 1996, 16, 315–323.

10. Gons, H.J. Optical Teledetection of Chlorophyll a in Turbid Inland Waters. Environ. Sci. Technol. 1999, 33,
1127–1132. [CrossRef]

11. Yoder, J.A.; McClain, C.R.; Blanton, J.O.; Oeymay, L.-Y. Spatial scales in CZCS-chlorophyll imagery of the
southeastern U.S. continental shelf. Limnol. Oceanogr. 1987, 32, 929–941. [CrossRef]

12. Gordon, H.; Brown, J.; Brown, O.; Evans, R.; Smith, R. A semianalytic radiance model of ocean color.
J. Geophys. Res. 1988, 93, 10909–10924. [CrossRef]

13. Matsushita, B.; Yang, W.; Jaelani, L.M.; Setiawan, F.; Fukushima, T. Monitoring Water Quality with Remote
Sensing Image Data. In Remote Sensing for Sustainability; CRC Press: Boca Raton, FL, USA, 2016; pp. 163–189.

14. Austin, R.W.; Petzold, T.J. The determination of the diffuse attenuation coefficient of sea water using the
Coastal Zone Color Scanner. In Oceanography from Space; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.;
Springer: Boston, MA, USA, 1981; pp. 239–256.

15. International Ocean Colour Coordinating Group (IOCCG). Remote Sensing of Ocean Colour in Coastal, and Other
Optically-Complex, Waters: Reports of the International Ocean Colour Coordinating Group; Sathyendranath, S.,
Ed.; IOCCG: Dartmouth, NS, Canada, 2000.

16. Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of
photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140,
365–377. [CrossRef]

17. Majozi, N.P.; Salama, M.S.; Bernard, S.; Harper, D.M.; Habte, M.G. Remote sensing of euphotic depth in
shallow tropical inland waters of Lake Naivasha using MERIS data. Remote Sens. Environ. 2014, 148, 178–189.
[CrossRef]

18. Ylöstalo, P.; Kallio, K.; Seppälä, J. Absorption properties of in-water constituents and their variation among
various lake types in the boreal region. Remote Sens. Environ. 2014, 148, 190–205. [CrossRef]

19. Kutser, T.; Metsamaa, L.; Strömbeck, N.; Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote
sensing. Estuar. Coast. Shelf Sci. 2006, 67, 303–312. [CrossRef]

20. Gower, J.; King, S.; Borstad, G.; Brown, L. The importance of a band at 709 nm for interpreting water-leaving
spectral radiance. Can. J. Remote Sens. 2008, 34, 287–295.

21. Gower, J.F.R.; Doerffer, R.; Borstad, G.A. Interpretation of the 685 nm peak in water-leaving radiance spectra
in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens. 1999,
20, 1771–1786. [CrossRef]

http://dx.doi.org/10.1016/j.csr.2014.05.013
http://dx.doi.org/10.1364/AO.45.003577
http://www.ncbi.nlm.nih.gov/pubmed/16708105
http://dx.doi.org/10.1016/j.isprsjprs.2008.04.005
http://dx.doi.org/10.1109/TGRS.2013.2241772
http://dx.doi.org/10.1016/j.rse.2010.10.014
http://dx.doi.org/10.3390/s16081298
http://www.ncbi.nlm.nih.gov/pubmed/27537896
http://dx.doi.org/10.1021/es9809657
http://dx.doi.org/10.4319/lo.1987.32.4.0929
http://dx.doi.org/10.1029/JD093iD09p10909
http://dx.doi.org/10.1016/j.rse.2013.09.013
http://dx.doi.org/10.1016/j.rse.2014.03.025
http://dx.doi.org/10.1016/j.rse.2014.03.023
http://dx.doi.org/10.1016/j.ecss.2005.11.024
http://dx.doi.org/10.1080/014311699212470


Remote Sens. 2017, 9, 1022 20 of 21

22. Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of
the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [CrossRef]

23. Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens.
2008, 29, 6209–6216. [CrossRef]

24. Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a),
cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens.
Environ. 2012, 124, 637–652. [CrossRef]

25. Matthews, M.W.; Bernard, S.; Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water
quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 2010, 114,
2070–2087. [CrossRef]

26. Baruah, P.J.; Tamura, M.; Oki, K.; Nishimura, H. Neural network modeling of lake surface chlorophyll
and sediment content from Landsat TM imagery. In Proceedings of the Paper Presented at the 22nd Asian
Conference on Remote Sensing, Singapore, 5–9 November 2001; Volume 5, p. 9.

27. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994.
28. Doerffer, R.; Schiller, H. MERIS Lake Water Algorithm for BEAM—MERIS Algorithm Theoretical Basis Document;

V1.0; GKSS Research Center: Geesthacht, Germany, 2008.
29. Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [CrossRef]
30. Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS

measurements: A new Case-2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [CrossRef]
31. Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing remotely sensed

chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes.
Sci. Total Environ. 2011, 409, 3083–3091. [CrossRef] [PubMed]

32. Jaelani, L.M.; Matsushita, B.; Yang, W.; Fukushima, T. Evaluation of four MERIS atmospheric correction
algorithms in Lake Kasumigaura, Japan. Int. J. Remote Sens. 2013, 34, 8967–8985. [CrossRef]

33. Salem, S.; Higa, H.; Kim, H.; Kazuhiro, K.; Kobayashi, H.; Oki, K.; Oki, T. Multi-Algorithm Indices
and Look-Up Table for Chlorophyll-a Retrieval in Highly Turbid Water Bodies Using Multispectral Data.
Remote Sens. 2017, 9, 556. [CrossRef]

34. Ruiz-Verdú, A.; Koponen, S.; Heege, T.; Doerffer, R.; Brockmann, C.; Kallio, K.; Pyhälahti, T.; Peña, R.;
Polvorionos, A.; Heblinski, J. Development of MERIS lake water algorithms: Validation results from Europe.
In Proceedings of the “2nd MERIS/(A) ATSR User Workshop”, Frascati, Italy, 22–26 September 2008.

35. Odermatt, D.; Pomati, F.; Pitarch, J.; Carpenter, J.; Kawka, M.; Schaepman, M.; Wüest, A. MERIS observations
of phytoplankton blooms in a stratified eutrophic lake. Remote Sens. Environ. 2012, 126, 232–239. [CrossRef]

36. Binding, C.E.; Greenberg, T.A.; Jerome, J.H.; Bukata, R.P.; Letourneau, G. An assessment of MERIS algal
products during an intense bloom in Lake of the Woods. J. Plankton Res. 2011, 33, 793–806. [CrossRef]

37. Palmer, S.C.J.; Hunter, P.D.; Lankester, T.; Hubbard, S.; Spyrakos, E.; Tyler, N.A.; Présing, M.; Horváth, H.;
Lamb, A.; Balzter, H.; et al. Validation of Envisat MERIS algorithms for chlorophyll retrieval in a large, turbid
and optically-complex shallow lake. Remote Sens. Environ. 2015, 157, 158–169. [CrossRef]

38. Higano, Y.; Sawada, T. The Dynamic Optimal Policy to Improve the Water Quality of Lake Kasumigaura.
Stud. Reg. Sci. 1995, 26, 75–86. [CrossRef]

39. NIES Lake Kasumigaura Database, National Institute for Environmental Studies, Japan. Available
online: http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html (accessed on
12 November 2016).

40. CEBES Lake Kasumigaura Database. Interpretations of Observed Data. Available online: http://db.cger.
nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/pdf/methods/interpretation2001.pdf (accessed on
27 June 2017).

41. Vollenweider, R.A.; Kerekes, J. Eutrophication of Waters: Monitoring, Assessment and Control; Organisation for
Economic Co-operation and Development (OECD): Paris, France, 1982; p. 156.

42. Hayashi, M.; Ishizaka, J.; Kobayashi, H.; Toratani, M.; Nakamura, T.; NAKASHIMA, Y.; Yamada, S.
Evaluation and Improvement of MODIS and SeaWIFS-derived Chlorophyll a Concentration in Ise-Mikawa
Bay. J. Remote Sens. Soc. Jpn 2015, 35, 245–259.

43. DAAC Envisat MEdium Resolution Imaging Spectrometer (MERIS). Available online: https://ladsweb.
modaps.eosdis.nasa.gov/missions-and-measurements/meris/ (accessed on 24 August 2017).

44. Levrini, G.; Delvart, S. MERIS Product Handbook; European Space Agency (ESA): Paris, France, 2011.

http://dx.doi.org/10.1080/01431160500075857
http://dx.doi.org/10.1080/01431160802178110
http://dx.doi.org/10.1016/j.rse.2012.05.032
http://dx.doi.org/10.1016/j.rse.2010.04.013
http://dx.doi.org/10.1080/01431160600821127
http://dx.doi.org/10.1080/01431160701601774
http://dx.doi.org/10.1016/j.scitotenv.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21632091
http://dx.doi.org/10.1080/01431161.2013.860660
http://dx.doi.org/10.3390/rs9060556
http://dx.doi.org/10.1016/j.rse.2012.08.031
http://dx.doi.org/10.1093/plankt/fbq133
http://dx.doi.org/10.1016/j.rse.2014.07.024
http://dx.doi.org/10.2457/srs.26.75
http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html
http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/pdf/methods/interpretation2001.pdf
http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/pdf/methods/interpretation2001.pdf
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/meris/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/meris/


Remote Sens. 2017, 9, 1022 21 of 21

45. Neville, R.A.; Gower, J.F.R. Passive remote sensing of phytoplankton via chlorophyll α fluorescence.
J. Geophys. Res. 1977, 82, 3487–3493. [CrossRef]

46. Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters
in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 4098–4106. [CrossRef]

47. Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.;
de J Romero-Troncoso, R.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in developing
chlorophyll fluorescence biosensing: a review. Sensors 2012, 12, 11853–11869. [CrossRef] [PubMed]

48. Santer, R.; Carrere, V.; Dubuisson, P.; Roger, J.C. Atmospheric correction over land for MERIS. Int. J. Remote
Sens. 1999, 20, 1819–1840. [CrossRef]

49. Matthews, M.W. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of
MERIS observations. Remote Sens. Environ. 2014, 155, 161–177. [CrossRef]

50. ESA European Space Agency. Earthnet Online. Available online: http://earth.esa.int/ (accessed on
10 March 2015).

51. Campbell, G.; Phinn, S.R.; Dekker, A.G.; Brando, V.E. Remote sensing of water quality in an Australian
tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens. Environ. 2011,
115, 2402–2414. [CrossRef]

52. JMA Monthly Mean Percentage of Possible Sunshine, Mito Station, Japan Meteorological Agency. Available
online: http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3_en.php?block_no=47629&view=10
(accessed on 4 March 2017).

53. ESA MERIS Frequently Asked Questions. Available online: http://earth.esa.int/pub/ESA_DOC/ENVISAT/
MERIS/VT-P017-DOC-005-E-01-01_meris.faq.1_1.pdf (accessed on 23 June 2017).

54. NLNI Lakes Data, National Land Numerical Information, Japan. Available online: http://nlftp.mlit.go.jp/
ksj/ (accessed on 14 March 2017).

55. Moore, T.S.; Dowell, M.D.; Bradt, S.; Verdu, A.R. An optical water type framework for selecting and blending
retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111.
[CrossRef] [PubMed]

56. Salem, S.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of Chlorophyll-a Algorithms
Considering Different Trophic Statuses and Optimal Bands. Sensors 2017, 17, 1746. [CrossRef] [PubMed]

57. Palmer, S.C. J.; Odermatt, D.; Hunter, P.D.; Brockmann, C.; Présing, M.; Balzter, H.; Tóth, V.R. Satellite remote
sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS observations. Remote Sens.
Environ. 2015, 158, 441–452. [CrossRef]

58. Hock, R.; Jensen, H. Application of kriging interpolation for glacier mass balance computations. Geogr. Ann.
Ser. A Phys. 1999, 81, 611–619. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/JC082i024p03487
http://dx.doi.org/10.1016/j.rse.2007.06.029
http://dx.doi.org/10.3390/s120911853
http://www.ncbi.nlm.nih.gov/pubmed/23112686
http://dx.doi.org/10.1080/014311699212506
http://dx.doi.org/10.1016/j.rse.2014.08.010
http://earth.esa.int/
http://dx.doi.org/10.1016/j.rse.2011.05.003
http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3_en.php?block_no=47629&view=10
http://earth.esa.int/pub/ESA_DOC/ENVISAT/MERIS/VT-P017-DOC-005-E-01-01_meris.faq.1_1.pdf
http://earth.esa.int/pub/ESA_DOC/ENVISAT/MERIS/VT-P017-DOC-005-E-01-01_meris.faq.1_1.pdf
http://nlftp.mlit.go.jp/ksj/
http://nlftp.mlit.go.jp/ksj/
http://dx.doi.org/10.1016/j.rse.2013.11.021
http://www.ncbi.nlm.nih.gov/pubmed/24839311
http://dx.doi.org/10.3390/s17081746
http://www.ncbi.nlm.nih.gov/pubmed/28758984
http://dx.doi.org/10.1016/j.rse.2014.11.021
http://dx.doi.org/10.1111/j.0435-3676.1999.00089.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	In Situ Measurements 
	Medium Resolution Imaging Spectrometer (MERIS) Chlorophyll-a Processors 
	MERIS Image Processing 
	Accuracy Assessment 

	Results and Discussion 
	Characteristics of Synchronized Measurements 
	Evaluation of Chlorophyll-a Retrieval Processors 
	Processors Adjustment 

	Conclusions 

