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Abstract: Volunteered geographic data are being used increasingly to support land cover mapping
and validation, yet the reliability of the volunteered data still requires further research. This study
proposes data-based guidelines to help design the data collection by assessing the reliability of
volunteered data collected using the Geo-Wiki tool. We summarized the interpretation difficulties of
the volunteers at a global scale, including those areas and land cover types that generate the most
confusion. We also examined the factors affecting the reliability of majority opinion and individual
classification. The results showed that the highest interpretation inconsistency of the volunteers
occurred in the ecoregions of tropical and boreal forests (areas with relatively poor coverage of very
high resolution images), the tundra (a unique region that the volunteers are unacquainted with),
and savannas (transitional zones). The volunteers are good at identifying forests, snow/ice and
croplands, but not grasslands and wetlands. The most confusing pairs of land cover types are also
captured in this study and they vary greatly with different biomes. The reliability can be improved
by providing more high resolution ancillary data, more interpretation keys in tutorials, and tools that
assist in coverage estimation for those areas and land cover types that are most prone to confusion.
We found that the reliability of the majority opinion was positively correlated with the percentage of
volunteers selecting this choice and negatively related to their self-evaluated uncertainty when very
high resolution images were available. Factors influencing the reliability of individual classifications
were also compared and the results indicated that the interpretation difficulty of the target sample
played a more important role than the knowledge base of the volunteers. The professional background
and local knowledge had an influence on the interpretation performance, especially in identifying
vegetation land cover types other than croplands. These findings can help in building a better
filtering system to improve the reliability of volunteered data used in land cover validation and
other applications.
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1. Introduction

Land cover and land cover change data are an essential input to a wide range of applications,
e.g., Earth system modeling, urban planning, resource management, and biodiversity conservation,
among others [1–3]. Therefore, accurate and up-to-date land cover maps are required. It is widely
accepted that training and reference samples are very important in producing and validating land
cover maps. The collection of large samples of high quality reference data, whether through field
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surveys or expert interpretation of imagery, is very expensive, and thus alternative data collection
approaches are often desired.

In recent years, volunteered geographic information (VGI) [4] has emerged as a new source of
data that has been shown to support different applications, e.g., disaster management [5–7], urban
and transportation planning [8], and land use management [9]. With potentially large volumes of data
at relatively low costs, VGI has also been identified as a good source of data for Earth observation,
in particular for land cover validation [10–13]. In addition to validation, VGI can also be used as a
potential source of training data for land cover classification algorithms [14,15] and land cover change
detection [16], as well as building hybrid land cover products [17,18].

However, there are many concerns about the reliability of volunteered land cover reference data [19].
A few studies have evaluated the quality of volunteer contributions to land cover mapping [20,21] where
the results from these studies emphasized the importance of control or expert data in evaluating the
performance of the volunteer. They also provided some methods to measure the reliability of the
volunteered land cover information. However, it is time-consuming to build a global control data set.
Consensus-based data quality assessment is an alternative that is relatively easy to implement [22].

Another aspect of studies in VGI is the exploration of the effect of performance based on factors
related to contributors such as their backgrounds. For example, little difference was found between
experts and non-experts in the domain of remote sensing in identifying human impact from very high
resolution imagery, yet the experts were slightly better than non-experts in classifying land cover [23].
The impact of local knowledge on aiding classification performance was found to have little effect in
identifying cropland from very high resolution imagery in the Cropland Capture game [24]. The study
also found that the volunteers with a professional background in remote sensing did no better than
common volunteers at this task. However, since croplands are easier to differentiate and have less
spatial variation than other vegetation types, there are still open questions related to the impact of local
knowledge on the identification of other land cover types. There are other concerns that factors like
differences in landscape conceptualization will have impacts on the crowdsourced data. Another study
has shown that there are differences in the crowdsourced land cover data contributed by different
groups, based on nationality and on domain experience [25]. However, the influence of other factors
such as how much volunteers know about a given place for which they are making an interpretation
(e.g., the local climate type) still remains unclear. Among all the different factors that could influence
performance including the interpretation difficulty of the target sample and the knowledge base of the
volunteers, which play the most important role? These are still outstanding questions that need to
be answered.

In this paper, we analysed the reliability of volunteered land cover reference data at a global scale
using both consensus-based methods and expert review with two main aims. The first is to gain a better
understanding of where volunteers had difficulties in visual interpretation, as formulated in these two
research questions: (1) What are the areas where the largest interpretation difficulties occur and why?
(2) What are the land cover types with the largest interpretation difficulties and why? The second aim
is to examine the factors that affect the reliability of the volunteered land cover reference data when
(1) using a consensus-based approach; and (2) considering only individual contributions. The results
from these four analyses can be used to provide guidance for future data collection campaigns and can
provide further insights into which data filtering methods should be used based on the needs of the
user. The data used in this study were collected from land cover validation competitions that were run
using the Geo-Wiki crowdsourcing tool and is outlined in the next section.

2. Data

Geo-Wiki is an online platform for the visualization, crowdsourcing and validation of global
land cover maps [10,26]. As part of the crowdsourcing of global land cover, volunteers interpret very
high resolution satellite imagery from Google Earth. Competitions or campaigns are used to engage
volunteers to help validate different global products. During the competition, volunteers are shown
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different spatial locations from a sample that has been generated specifically for that competition and
are then asked to interpret the land cover as well as answering other questions related to the subject of
the competition.

Data used for this study came from three competitions. The first competition ran during the
autumn of 2011 where volunteers were invited to help validate a map of land availability for biofuel
production. This was based on a study that indicated that there are 320–1411 million hectares of land
available for biofuel production in marginal lands, i.e., abandoned or degraded croplands and low
productivity grasslands [27]. A random stratified sample set was generated where the strata were
based on whether the locations were inside or outside of the land available for biofuel production.
Volunteers were asked to interpret the land cover type and the degree of human impact at each sample
location. This competition is referred to here as the “Land Availability Competition” and the user
interface is shown in Figure 1. In total, 53,278 validation records were collected at around 36 K unique
locations from 67 volunteers. Since the competition was concerned with the land availability for biofuel
production, the sample units were mainly concentrated in agricultural regions, e.g., the Great Plains in
North America, southern Europe, southwestern Russia, the Ukraine, the Sahel, Ethiopia, South Africa,
India, and eastern China.

Figure 1. The user interface from the Geo-Wiki tool employed in the “Land Availability Competition”.

The second data source for this study is from a competition that ran in 2012 to validate locations
where there was a disagreement between three different land cover products: GLC2000, MODIS,
and GlobCover.

Both the GLC2000 and MODIS products were resampled to match the 300-m resolution of
GlobCover and a random stratified sample was generated based on the disagreement between the
three products. The volunteers were asked to identify the percentage of different land cover types at
each location. This competition is referred to here as the “Product Disagreement Competition” and
the user interface is shown in Figure 2. Data from the Land Availability and Product Disagreement
competitions are freely available for download from the PANGAEA repository [28].



Remote Sens. 2017, 9, 1034 4 of 21

Figure 2. The user interface from the Geo-Wiki tool employed in the “Product Disagreement Competition”.

The third data source is from a special competition that was held during the Young Scientist
Summer Program (YSSP) at the International Institute for Applied System Analysis (IIASA) in 2012,
referred to here as the “YSSP Competition”. During the summer of 2012, the following data were
collected from 16 YSSP volunteers: 1559 point validation records; 2445 records of 250 × 250-m pixel
validations; and 2979 records of 1 × 1 km pixels. The 16 volunteers were all Ph.D. students undertaking
research in the areas of global change, energy, ecosystem services and management, atmospheric pollution,
and related disciplines. The sample locations were selected from a global land cover validation data
set [29] and were assigned to each volunteer following specific rules (as outlined in more detail below).

3. Methods

3.1. Determining Key Locations of Confusion in the Volunteered Reference Data

The difficulty in validating the land cover type and the percentage coverage of each type in
a given pixel at a given location can be reflected by the degree of inconsistency among different
volunteers. If the land cover types are difficult to distinguish or the percent coverage is hard to
estimate, the volunteers may provide very different answers, which leads to greater inconsistency in
the data. Determining where the largest inconsistencies among volunteers occur can provide important
guidance in future data collection campaigns.

Each sample location in the data set was validated by 1 to 41 volunteers. We only analyzed
sample locations with five or more validation records, to reduce the errors caused by accidental factors,
e.g., the sample is difficult to interpret but happens to be visited by a volunteer. In order to facilitate
the analysis, each validation record was converted to a 10-dimensional vector (see Figure 3), i.e., the ith
element in the vector was assigned the coverage of land cover class i estimated by the volunteer
(i = 1, ..., 10).
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Figure 3. The vectorization examples of three interpretation records from the volunteers. The numbers 1
to 10 refer to the 10 land cover classes in Geo-Wiki, while the colored cells refer to the percentage of the
land cover class specified by the volunteer.

The Euclidean distances between each pair of 10-dimensional vectors for the same sample location
were then calculated. The interpretation consistency among different volunteers was measured by the
average of these Euclidean distances. Since each ecoregion has unique physical conditions (including
differences in geology, climate, vegetation, hydrology, and soil types) and human–earth relationships,
the spatial variation in the interpretation consistency was evaluated by averaging the interpretation
consistency of all sample locations within each ecoregion.

3.2. Understanding the Main Types of Land Cover Confusion in the Volunteered Reference Data

Understanding the land cover types that are confused the most often in volunteered reference
data can help to increase the interpretation accuracy of the volunteers, e.g., through provision of
targeted training and instruction materials aimed at helping to discriminate between confusing land
cover types.

To explore the pairs of land cover types with the most confusion by the volunteers, a confusion
matrix was built. It is assumed that the dominant choice of the group (i.e., the land cover type chosen
most frequently by the volunteers) is true, since we do not have expert validations for the complete
sample. The confusion matrix is calculated as follows: The total number of volunteers validating
one sample location is denoted by Ptotal . The dominant choice of the volunteers is denoted by land
cover class m. The number of volunteers choosing each land cover class was calculated iteratively.
For example, there are Pn volunteers who agreed on land cover class n, which means the percentage of
volunteers choosing land cover class n is Pn/Ptotal , denoted by p(n). The elements of this confusion
matrix A are calculated as follows:

A[m, n] =
k

∑
i=1

p(n)
p(m)

where k is the total number of sample locations. The result quantitatively reports the confusion level
of one land cover class in relation to all the other classes, which can be a good basis for providing
prior knowledge or tutorials for the volunteers in differentiating between the most confusing land
cover types.
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3.3. Reliability of Majority Opinion on Land Cover Classification

How to aggregate individual validations (or opinions) to characterize the views of a group and
assess the reliability of the group opinion (or majority) is another important issue to be discussed in
the construction of a volunteered land cover reference data set. The simplest method is to choose the
majority as the group opinion. Using this approach, we want to determine if this group opinion is
reliable and how many people are needed to select the most common choice.

To answer these questions, we extracted a total of 7072 records from the volunteers that were
at the same location as the 299 expert control points. Logistic regression was then applied with two
predictor variables: the percentage of volunteers selecting the most-commonly-identified land cover
type for each location, and the self-evaluated uncertainty of the volunteers. For example, if there are
24 people who classified the sample location No. 1971, among which 20 identified it as a “Mosaic
of cultivated and managed/natural vegetation”, then the percentage of volunteers selecting the
most-commonly-identified land cover type is 83.33% (i.e., 20 out of 24). Since each record has a field
of self-evaluated uncertainty provided by the volunteer, they were assigned a score of “0” for sure,
“10” for quite sure, “20” for less sure and “30” for unsure. The self-evaluated uncertainty was also
aggregated by averaging the scores of all volunteers classifying the same location. For the dependent
variable, we used the occurrence of the agreement between the most commonly identified land cover
type and the control point interpreted by the experts as our measure of group reliability, which is coded
as “0” (for non-agreement) and “1” (for agreement). The models were built separately for the control
points with and without availability of very high resolution images on Google Earth, since the very
high resolution images were the basis of interpretation and uncertainty assessment of the volunteers.

3.4. Reliability of Individual Classifications of Land Cover

In this section we address the next research question, i.e., what are the factors influencing the
reliability of individual classifications of land cover? To answer this question, we designed a special
competition during the YSSP at IIASA in 2012 using the Geo-Wiki platform. IIASA’s annual three-month
YSSP attracts Ph.D. students from around the world with different research interests. All 48 young
scientists (referred to as YSSPers hereafter) were invited to participate in the competition after taking
part in a training on satellite image interpretation.

The YSSPers had various professional backgrounds although their summer research projects were
all closely related to the dynamics of global change. Their backgrounds can be roughly grouped into the
following categories: natural resources (e.g., agronomy, forestry, energy and resources, environmental
sciences), biological sciences (e.g., ecology, zoology), earth sciences (e.g., geography), social sciences
(e.g., economics, management), and engineering (e.g., chemical engineering, civil engineering).

Since the YSSPers are from different places around the world, each of them was asked to provide
the names of places with which they are familiar. The place names were converted into geographic
coordinates using the Google Maps Geocoding API and a geodatabase was then generated containing
all the familiar places of the volunteers. Limited by the number of volunteers contributing to this
competition, the points were unevenly distributed globally (see Figure 4a), concentrated in central
and northern Europe (Figure 4b), eastern China (Figure 4c), and the western coast of North America
(Figure 4d).

Each of the volunteers was assigned a series of samples to classify, which included samples
both far from and near to the volunteer’s familiar places. The minimum distance between the
sample and each familiar place of the volunteer who classified the sample was calculated for each
data record. The distance was calculated using the geographic coordinates of the two locations,
regardless of the topographic relief of the Earth’s surface. For example, we have a volunteer who
was born in Wolkersdorf, Austria, and is studying in Bremen, Germany. He spent a long vacation
in Maun, Botswana. Hence, he provided the names of these three places as his familiar places.
Among the samples assigned to him, we found sample X in Germany (latitude/longitude coordinates:
53.19◦N/8.95◦E). The minimum distance between the sample location and the volunteer’s familiar
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place is then the distance between sample X and Bremen, which is approximately 15.76 km. We also
found sample Y (latitude/longitude coordinates: 33.81◦S/25.58◦E) in South Africa, and similarly,
the minimum distance was calculated between sample Y and Maun, which is 1552.55 km.

（a）

（c）（b） （d）

Location ID Latitude Longitude Place Name User ID Last Name First Name Gender

1 -29.8579 31.0276 Durban, KwaZulu-Natal, South Africa 999 Ayers Morag F

93 -19.9942 23.4184 Maun, North West, Botswana 1027 Schreier Stefan M

Figure 4. (a–d) The spatial distribution of place names with which the volunteers are familiar, globally
and regionally, and two records in the attribute table.

Since land cover conditions can be very different due to a variety of climates even across short
distances, we considered climate conditions as a factors influencing the reliability of individual
classifications of land cover. We chose the Köppen–Geiger climate classification system [30], described
by a code of three letters. The first letter is the general type, i.e., (A) equatorial climates; (B) arid
climates; (C) warm temperate climates; (D) snow climates; and (E) polar climates. The second letter
describes the precipitation regime, namely (W) desert; (S) steppe; (f) fully humid; (s) summer dry;
(w) winter dry; and (m) monsoonal. The third letter corresponds to temperature, in particular, (h) hot
arid; (k) cold arid; (a) hot summer; (b) warm summer; (c) cool summer; (d) extremely continental;
(F) polar frost; and (T) polar tundra.

Based on the Köppen–Geiger climate classification map, we extracted the climate classes of each
volunteer’s familiar places as well as the climate class of each sample that was classified. The climate
class of the volunteer’s familiar place and the samples classified were compared based on the three
aspects described above, i.e., the general type, the precipitation regime, and the temperature class.
A new field was added to the attribute table indicating whether there was a match between the climate
class of the volunteers’ familiar places and the classified samples.

To evaluate the performance of the volunteers, we prepared a marking scheme by asking experts
at IIASA to interpret the satellite imagery acquired at the same time as the ones interpreted by the
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volunteers. The first three major land cover types and their area proportion in a 250-m-resolution
pixel around each sample location were recorded. The number of land cover types is a measure
of the land cover complexity for a sample location. The classification results of all volunteers were
scored according to their performance in both identifying the land cover type and estimating the area
proportion. If R = {RLC1, ..., RLCn} is an array of suggested land cover classes (ranked in descending
order of area proportion) interpreted by the experts, then R% = {R1%, ..., RLCn%} is the corresponding
area proportion of each class. After the sample was validated by a volunteer, we had a record of
V = {VLC1, ..., VLCn} and V% = {VLC1%, ..., VLCn%} representing the land cover classes and their area
proportion interpreted by the volunteer (the order of the land cover classes was changed to best match
the order of the three land cover classes in R). The final score for a given data record is the weighted
mean of the scores calculated for all land cover classes in R, which was determined by the volunteer’s
performance in both identifying the land cover class (i.e., the basic score, calculated by fbasic) and
by estimating the area proportion of the land cover class (i.e., the bonus score, calculated by fbonus),
weighted by the area proportion:

Score =
n

∑
i=1

RLCi% fbasic(RLCi, VLCi) fbonus(RLCi%, VLCi%)

The basic score can range from 0 to 100, where 0 is incorrect and 100 is correct. If the volunteer
provides an incorrect answer but it is highly confused with the correct answer, the volunteer will
obtain a basic score (less than 30) depending on the difficulty in differentiating between the land cover
classes. For example, if a sample contains a rice field and is labeled as cropland, then the volunteer
will get 100 basic points for this record. The volunteer will obtain a score of 30 if it is labeled as a water
body when the field is flooded before being drained. The volunteer will obtain a score of 20 if it is
labeled as grassland because these two land cover types can be easily confused because of similarities
in the spectral characteristics.

The bonus score ranges between 1 and 2, reflecting the volunteer’s accuracy in estimating the area
proportion. For example, if the area proportion of a specific land cover class was 80% as interpreted by
the experts but the volunteer said it was 70%, then the bonus score is calculated as fbonus(80%, 70%) = 1.9.

The validation score can be influenced by both internal and external factors. The internal factors
are related to the knowledge base of the volunteers, including the professional background of the
volunteers, the minimum distance between the target sample and the familiar places of the volunteers,
and whether the climate type of the target sample is included in the familiar climate types of the
volunteers. The external factors can affect the interpretation difficulty of the target sample, including
the main land cover type of the target sample, and the number of land cover types in the target sample.
Data pre-processing included data normalization and the transformation of the categorical predictors.
The contribution of different factors to the volunteer’s interpretation performance was compared by
building a generalized linear regression model. We also used box plots to display the differences in the
data distributions arising from each of these factors.

4. Results and Discussion

4.1. Determining Key Locations of Confusion in the Volunteered Reference Data

The spatial variation of the interpretation measured by Euclidean distances is shown in Figure 5.
The most inconsistent interpretation of the volunteers occurs in the ecoregions of tropical forests,

boreal forests/taiga, tundra, grasslands, and shrublands. To uncover the reasons for this high
inconsistency, typical samples were analyzed in each ecoregion.
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Figure 5. Spatial variation of interpretation consistency measured by Euclidean distances.

In tropical forests, cloud-free high resolution satellite images are hard to obtain. Moreover, many
of the images in these locations are of Landsat resolution, which makes the interpretation difficult.
For example, Figure 6a shows a validation sample located in the southern New Guinea freshwater
swamp forests. Not only is there considerable cloud cover and shadow, but the image is from Landsat
(i.e., TerraMetrics 15-m resolution base imagery), which has the lowest resolution provided on Google
Earth. Of all of the interpretation records at this location, only 40% of the volunteers reached an
agreement and categorized the location as forests, while others selected shrublands or grasslands.
Some volunteers even made the mistake of judging the clouds as snow cover. This shows that Landsat
resolution reference data may lead to considerable confusion in land cover classification, especially
in tropical and high latitude areas, which could be largely avoided by adding more very high spatial
resolution imagery or microwave data. In addition, basic knowledge of land cover interpretation
(e.g., clouds can be distinguished from snow through nearby shadows) should be part of training
materials presented to the volunteers to help them get started and avoid simple mistakes such as this.

The unique characteristics of specific ecoregions are also sources of confusion. Figure 6b shows
a typical site in the northeastern Brazilian Restingas, a distinct ecoregion with sandy, acidic, and
nutrient-poor soils. The trees are medium-sized and mixed with shrubs, which results in serious
confusion over trees and shrubs during the interpretation process by the volunteers. Tundra is
particularly difficult since it is highly unlikely that the volunteers have visited these regions before.
The vegetation is composed of some shrub-formed trees, dwarf shrubs, grasses, mosses, and lichens,
varying with a slight difference in climate and topographic condition. Figure 6c shows a typical point
in the tundra where volunteers had different opinions regarding the land cover type, i.e., they chose
wetlands, herbaceous cover, shrub cover, and barren areas. For samples in specific ecoregions,
volunteers need greater background knowledge and spectral signatures, or alternatively these points
could be assigned to volunteers with knowledge of these ecoregions.

High inconsistency is also detected in the savanna, the transitional zone between forest and prairie
or steppe (see Figure 6d). Since the majority of rainfall is confined to one season, the land cover varies
considerably with the phenological changes in the vegetation. During the dry season, many savannas
are covered with dry shrubs and grass, which are difficult to distinguish from barren land through
image interpretation alone. One solution that has since been implemented in Geo-Wiki more recently
is the ability to view NDVI profiles from Landsat, MODIS and PROBA-V at any location. This new tool
can be used to help the volunteers distinguish between vegetation and barren land. In addition, it is
difficult for the volunteers to estimate the percentage of trees or shrubs in a pixel. If the trees or shrubs
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are densely distributed in part of the target pixel, the coverage could be estimated more easily with the
help of the grids provided on the Geo-Wiki user interface, while if the trees or shrubs are scattered
over the whole target pixel (as shown in Figure 6d), estimation of the percent coverage becomes very
difficult. Moreover, the presence of shadows from the vegetation canopy makes the interpretation
even more difficult and the volunteers tend to over-estimate the coverage of trees or shrubs when their
distribution is disperse. One solution to this problem is to develop more tools to assist the volunteers
in estimating the coverage of vegetation with unified standards. A series of computer-simulated
legends with different average crown diameters and canopy coverages could assist volunteers in better
estimating the coverage of the vegetation. Figure 7 shows a 100 × 100-m quadrat with the average
crown diameter and canopy coverage changing. Based on the actual crown diameter in the sample,
the volunteers should select the right simulated legend as a reference. The legend can be plotted more
accurately by making the crown sizes of trees and shrubs follow a specific distribution determined
by the parameters provided by the volunteers. These types of visual aids could help to improve the
classification experience of the volunteers and make it easier to estimate percentage coverage by trees
or shrubs.

Figure 6. (a–d) Examples of satellite imagery in Google Earth for some of the typical sample locations
interpreted by the volunteers.
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Figure 7. Computer-simulated legends of different average crown diameter and canopy coverage to
aid in visual interpretation by the volunteers.

4.2. Understanding the Main Types of Land Cover Confusion in the Volunteered Reference Data

As shown in Figure 8, volunteers are good at identifying forests, snow/ice, and croplands,
but have much more difficulty with grasslands and wetlands. Shrublands are confused with forests
most often, with a percentage of confusion up to 10.5%, followed by confusion with grasslands.
Croplands are often confused with mosaics of croplands and natural vegetation, mainly because
croplands are fragmented in many regions, exposing the problem of the mismatch between the spatial
resolution of the classification scheme and the sample size used in the interpretation. Wetlands are the
most confusing land cover type for the volunteers, especially with grasslands and forests. The first
reason is most likely due to the fact that the volunteers have less knowledge about wetlands compared
to other land cover types. The second reason is that marshlands and swamp forests have similar
appearances to grasslands and forests, respectively. A solution would be to provide additional data to
improve the visual interpretation, e.g., the water supply, topographic conditions, soil characteristics,
and groundwater levels.

Since the land cover types with the most confusion vary greatly with different vegetation
landscapes, the confusion matrix was calculated for each biome separately. As an example, in Figure 9,
the confusion matrix of Biome 4 (temperate broadleaf and mixed forests) was compared with Biome 8
(temperate grasslands, savannas, and shrublands), and we found that the land cover types with the
most confusion were quite different. In particular, 34.4% of shrublands are misclassified as forests in
Biome 4, but the percentage is only 8.3% in Biome 8. One possible reason is that the shrubs are taller
in Biome 4, but small and thorny in Biome 8 to adapt to the hot and dry environment of this area.
Data on canopy height and geo-tagged photographs would be useful for better differentiation of shrubs
and trees in Biome 4. There is almost no confusion between grasslands and barren lands in Biome 4,
but 7.7% of grasslands are mistakenly identified as barren lands in Biome 8, due to the seasonal
variation of precipitation. The grasslands look drab and lifeless during the dry season so it is easy to
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confuse them with barren lands, while the rainy season is the best time for differentiation from barren
lands. Thus, we need to provide multi-temporal images to the volunteers and geo-tagged photographs,
where available, to avoid this kind of confusion, as well as the NDVI tool mentioned above.
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Figure 8. The level of confusion by the volunteers for all land cover types based on all interpretations
compared to the dominant land cover type chosen.
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Figure 9. The level of confusion by volunteers of all land cover types in two different biomes.
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4.3. Reliability of Majority Opinion on Land Cover Classification

The coefficients, standard errors, the z-statistic, and the associated p-values of the logistic
regression models are shown in Table 1.

Table 1. Coefficients and associated statistical values of the logistic regression models.

Estimated Std. Error Z Value Pr (>|z|)

Very high resolution imagery available on Google Earth

(Intercept) 0.511 0.761 0.671 0.50211
Dominant percentage 0.057 0.017 3.294 0.00099 ***
Average uncertainty −0.704 0.199 −3.532 0.00041 ***

Very high resolution imagery not available on Google Earth

(Intercept) −3.592 1.376 −2.610 0.00905 **
Dominant percentage 0.095 0.028 3.379 0.00073 ***
Average uncertainty 0.104 0.146 0.713 0.47599

Signif.codes: ‘***’ p ≤ 0.001, ‘**’ p ≤ 0.01, ‘*’ p ≤ 0.05, ‘.’ p ≤ 0.1.

The results of the logistic regression show that the reliability of majority opinion on land cover
classification is positively related to the percentage of volunteers selecting the most commonly
identified land cover type and negatively related to the average of self-evaluated uncertainty for
the sample locations where very high resolution images are available on Google Earth. The logistic
regression coefficients give the change in the log odds ratio of the most common choice being reliable for
a one-unit increase in the predictor variable. For every one unit increase in the percentage of volunteers
selecting the most common choice, the log odds ratio of this most-commonly-identified choice being
reliable increases by 0.057. Meanwhile, every one unit increase in the average of self-evaluated
uncertainty decreases the log odds ratio by 0.704. Interpreting the table in the same way, for the points
where very high resolution imagery is not available in Google Earth, the percentage of volunteers
selecting the most common choice is also statistically significant, but the average of the uncertainty is
not. The self-evaluated uncertainty of the volunteers is not significantly related to the reliability of the
most common land cover choice, because it is hard for the volunteers to evaluate their uncertainty on
interpretation without the assistance of very high resolution images in Google Earth.

The predicted probabilities were computed by the logistic model with one predictor variable,
holding the other one at its overall mean (see Figure 10). This model can help us to roughly evaluate the
reliability of the aggregated group opinion. For areas where very high resolution imagery was available
in Google Earth, we found a positive correlation between the reliability of the group opinion and
the percentage of volunteers selecting the most commonly identified land cover choice. If more than
36.731% of volunteers select the most commonly identified choice, holding the average self-evaluated
uncertainty at its mean (1.715), the probability of this choice being correct reaches 0.8. We also found
a negative correlation between the reliability of the group opinion and the average self-evaluated
uncertainty of the volunteers. Similarly, if the average of the volunteers’ self-evaluated uncertainty
is higher than 2.167, meaning that the volunteers are less confident about their choice, holding the
percentage of the most common choice at its mean (42.344%), the probability of this choice being
correct will drop down to 0.8. However, to our surprise, for the areas where very high resolution
imagery is not available on Google Earth, the probability is even higher if people are less sure, but this
was not statistically significant. With these models, we can predict the reliability of the group decision
for each sample point using the predictor variables. The sample points with lower reliability should be
excluded from the data set to potential users of the data, and they should be classified again by the
experts or by more volunteers.
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Figure 10. Probabilities of the majority land cover choice being correct estimated using logistic
regression models with the predictor variable of (a) percentage of volunteers selecting the most
commonly identified land cover choice (for areas where very high resolution images are available);
(b) average self-evaluated uncertainty of volunteers (for areas where very high resolution images
are available); (c) percentage of volunteers selecting the most commonly identified land cover choice
(for areas where very high resolution images are unavailable); (d) average self-evaluated uncertainty of
volunteers (for areas where very high resolution images are unavailable).

4.4. Reliability of Individual Classifications of Land Cover

According to the p-values in the regression model between the interpretation reliability and
the predictor variables, we can see that the most statistically significant predictor variables are the
complexity and the main land cover type of the target sample, followed by the variables of the
volunteer’s familiar climate type and their discipline of study, where the p-values are lower than the
common alpha level of 0.05.

From the boxplots presenting the differences in the data distributions arising from all factors,
the factors of the target sample are the most important in the interpretation performance of all
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individuals. The first factor that may affect the interpretation performance is the complexity of the
target sample. Figure 11 shows the distribution of scores for different complexities of the target sample.
When the number of land cover types within the target grid increases (from left to right in Figure 11),
the median of the scores decreases, and the variation of the scores increases as well. This means that
the target sample is more difficult for the volunteers to interpret when it is more complex. These more
complex samples can be found by overlaying the existing very high resolution land cover products
with the target grids and calculating the land cover types in each of the grids, which should then be
double-checked by experts or more volunteers.
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Figure 11. The influence of the target sample complexity on the interpretation performance of the volunteers.

The interpretation scores are also greatly affected by the major land cover type of the target
sample (see Figure 12). From this result, we can see that the volunteers are good at interpreting
land cover types like croplands, forests, wetlands, water bodies, and barren lands. Some land cover
types (e.g., rice fields and wetlands) are regarded as difficult-to-interpret types by experts due to
their seasonally dynamic changes and differing appearances on satellite images, but the volunteers
have relatively good performance in identifying them, which is unexpected. Although pastures and
sandy areas have a high median score, the interquartile range is large, meaning that the volunteers
have uneven performance in identifying these types, which may be affected by their prior knowledge.
For example, many volunteers from eastern Asia have no idea about pastures. Some land cover types
are endemic and untraversed (e.g., tundra only occurs in the high latitudes or alpine areas), so most of
the volunteers had poor performances on these land cover types. Moreover, some land cover types are
defined according to the canopy coverage, so the interpretation scores are spread out with a high variation.

Different volunteers have their own knowledge base, because of their individual backgrounds and
circumstances. Identifying the influence of the individual knowledge base of the volunteers on land
cover classification is highly desirable for providing further important guidance in the data collection
process. By analysing the classification performance of the volunteers with different professional
backgrounds (see Figure 13), we found that the volunteers studying earth science had the highest
scores, followed by natural resources. The median scores for the volunteers in these two categories are
both over 180, meaning that they provide accurate land cover reference data, possibly because they
have a better understanding of the definition, characteristics, distribution of the land cover types and
know more about remote sensing. The median scores for the volunteers studying biosciences and social
sciences are between 140 and 160, with relatively higher variation. The volunteers with an engineering
background had the poorest performance among all the volunteers, with a median score of just over 80
and a very high variation. If we collect the background information of all volunteers, we can conduct a
preliminary evaluation of the reliability of individual results to help in filtering out data with lower
performance or for weighting the results when applied in further classification exercises.
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Figure 12. The influence of the major land cover types of the target sample on the interpretation
performance of the volunteers.
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Figure 13. The influence of the professional background of the volunteer on their interpretation performance.

In addition to professional background, the living environment and travel experiences may also
affect the classification performance of the volunteers. We examined if the volunteers were better at
interpreting samples nearer to familiar places. According to the result shown in Figure 14, when the
target sample was close to one of the familiar places of the volunteer, the interpretation uncertainty
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was a little lower, with a lower variance. Since the notches in the box plot do not overlap, we can
conclude that the medians of these two groups do differ with 95% confidence. Since researchers have
found little difference in identifying croplands between volunteers with and without local knowledge,
the statistical analysis was done separately for croplands and other land cover types. We found that
the impact of local knowledge in aiding interpretation performance was different between interpreting
croplands and other land cover types. From Figure 15, the difference in the interpretation score as
a result of local knowledge was larger when the volunteers were asked to identify other land cover
types than croplands.
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Figure 14. The influence of the minimum distance between the target sample and the familiar places of
the volunteer on their interpretation performance.
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Figure 15. The influence of the minimum distance between the target sample and the familiar places of
the volunteer on their interpretation performance displayed separately for croplands and other land
cover types.

Places may have different land cover characteristics determined by climate, even if they are very
close. According to Figure 16, if the climate type of the target sample, including (a) the general climate
type, (b) the temperature class and, (c) the precipitation regime, is in the familiar types of the volunteer,
then the interpretation performance is significantly higher than the others, and the variance is larger.
Therefore, when the volunteer is familiar with the climate type of the target sample, they appear to be
providing more reliable data. With the background information of the volunteer’s familiar climate
type, we can provide relevant samples to the most appropriate volunteers.
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Figure 16. (a–c) The influence of the volunteer’s familiar climate type on the interpretation performance.

5. Conclusions and Recommendations

Volunteered land cover reference data have the potential to provide useful information for land
cover mapping. The key issue of using volunteered land cover reference data is to assess and improve
the currently unknown reliability. In this research, volunteered data were collected via the Geo-Wiki
platform and analysed to find out which areas and land cover types are the most difficult to interpret
by the volunteers. We also tried to determine the factors influencing the reliability of majority opinion
and the individual classifications of the volunteers with respect to land cover classification. Several
recommendations are proposed to improve the collection of volunteered land cover reference data.
The key conclusions and recommendations of this research are shown as follows with respect to:

(1) Difficult-to-interpret areas: The highest interpretation inconsistency of the volunteers occurs in
the ecoregions of tropical and boreal forests (areas with relatively poor coverage of very high resolution
images), the tundra (a unique region that the volunteers are unacquainted with), and the savanna
(transitional zones). For tropical and high latitude areas, data collection can be improved by offering
more very high resolution images to the volunteers where available, e.g., through Bing in addition to
Google Earth. For unique ecoregions like the tundra, more background knowledge can be provided
in a tutorial to help the volunteers in their interpretation. For transitional zones, where it is hard for
the volunteers to estimate the canopy coverage, computer-simulated legends can help to assist the
interpretation of the percentage coverage.

(2) Difficult-to-interpret land cover types: The volunteers are good at identifying forests, snow/ice,
and croplands, but not grasslands and wetlands. The most confusing pairs of land cover types captured
here were shrublands vs. forests and wetlands vs. grasslands among others. Moreover, the confusing
pairs vary greatly with different biomes. Providing interpretation keys for both of the confusing land
cover types captured by this study will help to improve future volunteer classifications.

(3) Factors influencing the reliability of the majority opinion: When very high resolution images
were available on Google Earth, the reliability of the majority opinion was significantly positively
correlated with the percentage of volunteers selecting the majority land cover type and negatively
related to the average of self-evaluated uncertainty. This model can be used to estimate the reliability
of the majority land cover type, and the more reliable samples can be used with higher priority or
weighting, while the less reliable samples should be reviewed by remote sensing experts directly or by
additional volunteers to see if the percentage of volunteers selecting the majority land cover type can
be increased.

(4) Factors influencing the reliability of individual classifications: The interpretation score of
individual volunteers is influenced by external factors (i.e., factors related to the interpretation
difficulty of the target sample) and internal factors (i.e., factors related to the knowledge base of
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the volunteers). External factors play a more important role than the internal factors. For external
factors, the interpretation score decreases with increasing complexity of the target sample and with
specific land cover types (e.g., tundra, grasslands). For internal factors, volunteers with a professional
background in earth sciences or natural resources have better interpretation performance, and the
volunteers are good at interpreting samples near their familiar places or samples with their familiar
climate type. The difference in the interpretation performance as a result of local knowledge was larger
when the volunteers were asked to identify land cover types other than croplands. Therefore, more
information about the volunteers should be collected when they sign up for a campaign, such as their
professional background and places they are familiar with, from which familiar climate types can then
be derived. We can then estimate the reliability of individual data records and select the best ones to
use for a given application, or target the samples that are most appropriate for a volunteer based on
the factors identified in this study.

In addition to gamification, the use of mobile apps is another increasingly popular method of
crowdsourced data collection (e.g., [31]). The volunteer can easily take a photograph of the landscape
using their mobile phone and upload the geo-tagged photos to a photograph repository such as
Flickr or the Geo-Wiki Pictures branch. For vegetated land cover types, close-up photographs of the
dominant plant species are also encouraged to help with identifying plant species (e.g., Leafsnap [32])
in order to enrich the reference database. The conclusions we obtained from this study can also guide
the data collection process by mobile apps in the future. When the user is faced with areas that are
difficult to interpret, the app could send push notifications to the user, requesting them to collect
additional data on this area. Several different images can be prepared in advance that show the most
difficult-to-interpret land cover types for each biome. Then when the user has problems choosing
between two land cover choices, they can simply choose the image that most resembles what they see
from a gallery of examples. The request for labelling the same target sample can also be pushed to
many different volunteers, allowing for a majority result. The reliability of the majority result can be
evaluated using similar methods as described in this paper. The request can also be pushed to the
mobile device of specific volunteers according to their knowledge base as reflected by their user profile.

Another important issue related to the reliability of the volunteered land cover reference data
is the mismatch between what people see from remote sensing imagery and what they see on the
ground. Nagendra et al. [33] analyzed the difficulties that arise from this kind of misunderstanding
and have provided recommendations for tackling this problem. The scale of ground features also
needs to be matched to the spatial resolution of the remotely sensed images. The relationship between
remote sensing data of different spatial resolutions and their potential use in mapping thematic
ground features has also been summarized in Nagendra et al. [33], Nagendra and Rocchini [34], and
Pettorelli et al. [35]. Therefore, we should provide more standard practice and training using examples
from remote sensing. A good example would be to use the Land Use Cover Area Frame Survey
(LUCAS) data set [36], which provides a set of ground-based photographs (taken in four cardinal
directions and at the location) with corresponding detailed land cover and land use classes. Satellite
imagery at different resolutions could then be provided with these photographs to help train the
volunteers in recognizing different features at different spatial resolutions. Where possible, we should
present the volunteers with remote sensing imagery at the most appropriate spatial resolution to
improve their validation performance.

Finally, we have not discussed how the crowdsourced land cover reference data might be used
in an actual accuracy assessment. Rather, we have provided a method to generate probabilities of
accuracy based on majority opinion and self-evaluated uncertainty as well as other relationships
between accuracy and different user and location-based variables. It would be possible to use such
information in an approach similar to Sarmento et al. [37], which allows for the incorporation of
uncertainty in the accuracy assessment of land cover. Either the self-evaluated uncertainty could
be used directly as a measure of confidence, or the probability of accuracy generated by the logistic
regression approach could be used as a proxy for confidence. Further research in this area is still needed.
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