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Abstract: Uniformly-spaced apertures or subapertures of large, densely-sampled, discrete linear
receiver arrays are often used in remote sensing to increase the signal-to-noise ratio (SNR) by
coherent beamforming that reduces noise coming from directions outside the signal beam. To avoid
spatial aliasing or the presence of grating lobes in real spatial directions, the uniformly-spaced array
inter-element spacing d sets a limit on the maximum frequency fmax < c/2d of signals suitable for
beamforming with the array, where c is the medium’s wave propagation speed. Here, we show
that a nonuniformly-spaced array, for instance, formed by combining multiple uniformly-spaced
subapertures of a nested linear array, can significantly enhance the array angular resolution while
simultaneously avoiding dominant grating lobes in real angular space, even for signals with
frequencies beyond the maximum that the array is designed for. The array gain, beam width,
and maximum grating lobe height are quantified for the Office of Naval Research Five Octave
Research Array (ONR-FORA) for various combinations of its uniformly-spaced subapertures, leading
to nonuniformly-spaced subarrays. Illustrative examples show angular resolution enhancement
provided by the nonuniformly-spaced ONR-FORA subarrays over that of its uniformly-spaced
individual subaperture counterparts in both active and passive ocean acoustic waveguide remote
sensing, drawn from measurements in the Gulf of Maine 2006 Experiment.
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1. Introduction

Large aperture densely-sampled arrays of sensors are employed in remote sensing and communication
applications [1–16] to enhance signal-to-noise ratio (SNR) via coherent beamforming [17–22], which reduces
noise coming from directions outside the signal beam. Coherent beamforming also provides an estimate
of signal bearing, required for direct spatial localization of a signal [11,12,23–25]. Most practical
arrays [1–3,9–16,26] are designed to have apertures or subapertures with uniform inter-element spacing
d kept below half a wavelength λ, (d < λ/2), following the Nyquist criteria for spatial sampling [27].
This is to avoid spatial aliasing of the signal that occurs when there are grating lobes present in
real spatial directions. Grating lobes reduce the effectiveness of the beamformer by including noise
coming from directions where the grating lobes occur, lowering the SNR enhancement and leading to
ambiguity in signal bearing estimation. The Nyquist spatial sampling criteria defines the maximum
signal frequency fmax < c/2d suitable for beamforming with the uniformly-spaced array below which
grating lobes are kept off real angular space.

Following the criteria for spatial sampling, nested arrays [26,28–31] have been developed and are
widely used in ocean acoustic remote sensing and communication applications [1–3,15,16] to beamform
signals with center frequencies spanning several octaves without spatial aliasing. A nested array contains
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several uniformly-spaced subapertures where the inter-element spacing of the longer subapertures are
integer multiples, usually even factors, of those for the shorter subapertures. Nested arrays are designed
so that hydrophone elements can be shared across multiple subapertures leading to significant reduction
in the total number of hydrophones required in the full array design. Co-prime arrays [32,33], on the
other hand, combine subapertures with uniform inter-element spacings that are non-integral multiples
of each other. Like nested arrays, co-prime arrays are also widely exploited to enhance beamwidth in
active and passive radar sensing, as well as in grating lobe suppression [34,35].

Various other approaches for suppressing the grating lobes of an array in real spatial directions
have been investigated. They include irregular, nonuniform array designs that remove the periodic
pattern in array structure and hence in the output of the beamformer for both transmit and receive
linear or planar arrays [22,36–42]. Another approach for suppressing grating lobes uses nonsinusoidal
transmit signals that also remove the periodic pattern in the beamformer output [43]. Grating lobe
suppression can also be accomplished via adaptive beamforming that applies a weighting factor either
to the echoes received on each sensor element [44,45] or to the transmit aperture [46,47]. Previous work
in optimizing array design or performance in ocean acoustic remote sensing applications are based on
numerical simulation for a given signal with deterministic frequency or bandwidth [36–42].

Here, we show with both theory and measurements that a nonuniformly-spaced large-aperture
densely-sampled discrete linear receiver array composed of multiple-nested uniformly-spaced
subapertures can significantly improve the array angular resolution, while simultaneously avoiding
dominant grating lobes in real angular space, for signals with varying bandwidths and center
frequencies. We provide an analysis of the Office of Naval Research Five Octave Research Array
(ONR-FORA) [26]. The ONR-FORA is a primary receiver array for long range ocean acoustics research
of the US academic community, widely employed in field experiments for ocean acoustic propagation,
scattering, remote sensing and communications studies [1–6,11–13,15,16]. The ONR-FORA is a
linear oil-filled array consisting of four nested subapertures, each uniformly spaced, designed for
beamforming signals without spatial aliasing over frequencies spanning from below 250 Hz up to
2000 Hz. The nested configuration of the ONR-FORA follows standard array design typically employed
in wide-area ocean acoustic array construction, making the analysis and results presented here for the
ONR-FORA applicable to other such nonuniformly-spaced arrays with nested subapertures (examples
of other ocean acoustic arrays with nested apertures are provided in [9,10,48,49]). Previously, all
data acquired by the ONR-FORA and other coherent ocean acoustic arrays were beamformed using
conventional uniformly-spaced single or individual subapertures [1,2,7,8,11–13,24,48–50].

The array gain, beam width and maximum grating lobe height are calculated for various
combinations of the ONR-FORA uniformly-spaced subapertures, which lead to nonuniformly-spaced
subarrays. These results are compared to those of the uniformly-spaced single subaperture counterparts.
The ONR-FORA has been employed as the primary receiver implementing the ocean acoustic
waveguide remote sensing (OAWRS) technology [1–6,12–14], providing real-time or near real-time
instantaneous wide-area sensing of the ocean environment in field experiments. Here, we
provide illustrative examples showing enhancements in both passive and active OAWRS achieved
via beamforming with the nonuniformly-spaced subarrays of the ONR-FORA over that of its
uniformly-spaced individual subaperture counterparts using data acquired during the Gulf of Maine
2006 Experiment (GOME06) [1,2,4–8,11–13,24,50,51].

In instantaneous continental-shelf scale OAWRS images of shoaling Atlantic herring fish
populations [2,13] from GOME06, we show the nonuniformly-spaced subarrays improve the
cross-range resolution significantly, enabling fish population centers to be better resolved. In contrast,
several of these population centers were previously blurred together when beamformed with the
array’s uniformly-spaced single subaperture. In passive OAWRS (POAWRS) of marine mammal
vocalizations and ship-radiated underwater sound, the nonuniformly-spaced subarrays improve
angular resolution, bearing estimation, and provide SNR enhancement for whale call and ship-radiated
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sound in the beamformed spectrograms when compared to that obtained with the uniformly-spaced
subapertures [1,4–6].

2. Methods and Materials

2.1. Theory: Linear Discrete Array Beamformer

Here, we provide analytic expressions for the beam pattern valid for both the uniformly-spaced
and nonuniformly-spaced linear discrete hydrophone array, and use these expressions to define
the array gain AG, beam width BW, and maximum grating lobe height GLH. In the next section,
these parameters will be quantified for the nonuniformly-spaced subarrays and compared with those
for the conventional uniformly-spaced individual subapertures of the ONR-FORA.

Let P(r, t) = A(r)
∫ ∞

−∞
Q( f ) exp

[
j2π f (

û0 · r
c
− t)

]
d f denote the pressure field of an incident

broadband signal at spatial location r and time t in the direction of the unit vector û0, where A
is the complex amplitude, c is the medium sound speed, and

∣∣Q( f )
∣∣2 is the signal’s normalized

power spectral density (
∫ ∞

−∞

∣∣Q( f )
∣∣2d f = 1). A nonuniformly-spaced linear array with N elements is

aligned horizontally along the y-axis in the ocean waveguide with elements located at rl = (0, yl , 0),
where l = 1, 2, ..., N (Figure 1). Here, we assume the object that, either generated or scattered, the
signal is located in the far field of the receiver array. The pressure field received on the l-th array
element can be considered to be a plane wave given by

P(rl, t) = A
∫ ∞

−∞
Q( f ) exp

[
j2π f (

yl sin θ0

c
− t)

]
d f (1)

where −π/2 ≤ θ0 ≤ π/2 is the azimuth of the unit vector û0 measured from the array
broadside (x-axis).

x

y
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∫

∞

−∞

Q(f)exp
[

j2πf(
û0 · r

c
− t)

]

df

Figure 1. A sketch of the array geometry and incident plane wave field. The nonuniformly-spaced
linear array is aligned horizontally along the y-axis in the ocean waveguide with elements located
at rl = (0, yl , 0). The incident broadband signal is propagated in the direction of the unit vector û0,
whose azimuth is θ0 measured from array broadside.
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Let T(y) be the spatial taper function applied across the array elements. The total pressure field at
scan angle θ after beamforming is

PB(θ, t) =
N

∑
l=1

A
∫ ∞

−∞
T(yl)Q( f ) exp

[
j2π f (yl

sin θ0 − sin θ

c
− t)

]
d f

= A
∫ ∞

−∞
Q( f ) exp(−j2π f t)B(sin θ − sin θ0, f )d f

(2)

where B(sin θ − sin θ0, f ) is the discrete linear array beam pattern given by

B(sin θ − sin θ0, f ) =
N

∑
l=1

T(yl) exp
[
− j

2π f
c

yl(sin θ − sin θ0)
]

(3)

For a uniformly-spaced array with N elements and total length of L, applying a rectangular
window spatial taper function T(yl) = 1/N for yl between [−L/2, L/2], leads to a beam pattern
given by

Brect(sin θ − sin θ0, f ) =
1
N

sin
(πNd f (sin θ − sin θ0)

c

)
sin
(πd f (sin θ − sin θ0)

c

) (4)

where d = L
N−1 is the inter-element spacing. For a general nonuniformly-spaced array with N elements

nested into M subapertures (see Figure 2 as an example, which is a schematic of M = 3 subapertures
of the ONR-FORA), its beam pattern can be derived using Equation (4) by linearly combining the
beam patterns of each of the M uniformly-spaced subapertures and is given by

Brect(sin θ − sin θ0, f ) =
1
N

[
M

∑
k=1

sin
(π(bLk/dkc+ 1)dk f (sin θ − sin θ0)

c

)
sin
(πdk f (sin θ − sin θ0)

c

)

−
M−1

∑
k=1

sin
(π(bLk+1/dkc+ 1)dk f (sin θ − sin θ0)

c

)
sin
(πdk f (sin θ − sin θ0)

c

)
] (5)

where bc is the floor operator, Lk and dk are the total length and inter-element spacing of the k-th
subaperture, respectively. A Hamming window T(yl) = 0.54 + 0.46 cos 2πyl/L is often employed
instead of a rectangular window as a spatial taper function to minimize side lobes. The resulting
beam pattern can be obtained by convolving the Fourier transform of the taper function with the beam
pattern from rectangular windowing,

Bhamming(sin θ − sin θ0, f ) =
[
0.54 δ(sin θ) + 0.23 δ(sin θ − c

f L
)

+ 0.23 δ(sin θ +
c
f L

)
]
× Brect(sin θ − sin θ0, f )

= 0.54 Brect(sin θ − sin θ0, f ) + 0.23 Brect(sin θ − sin θ0 −
c
f L

, f )

+ 0.23 Brect(sin θ − sin θ0 +
c
f L

, f )

(6)

The instantaneous beamformed intensity is

IB(θ, t) =
∣∣PB(θ, t)

∣∣2 = A2
∣∣∣ ∫ ∞

−∞
Q( f ) exp(−j2π f t)B(sin θ − sin θ0, f )d f

∣∣∣2 (7)
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and the time-averaged beamformed intensity σB(θ) is calculated from the integral of the instantaneous
beamformed intensity IB(θ, t) over time t between [−T/2, T/2]. For sufficiently large integration time
T � 1, incident plane waves at different frequencies are approximately orthogonal to each other,

such that
1
T

∫ T/2

−T/2
e−j2π( fi− f j)tdt ≈ δ( fi − f j). The time-averaged beamformed intensity simplifies to

σB(θ) =
1
T

∫ T/2

−T/2
IB(θ, t)dt

=
A2

T

∫ T/2

−T/2

∣∣∣ ∫ ∞

−∞
Q( f ) exp(−j2π f t)B(sin θ − sin θ0, f )d f

∣∣∣2dt

≈ A2
∫ ∞

−∞

∣∣Q( f )
∣∣2 ∣∣B(sin θ − sin θ0, f )

∣∣2d f

(8)

For a narrow-band signal, the beamformer output PB(θ, t) and time-averaged beamformed
intensity σB(θ) can be obtained directly from the beam pattern B(sin θ − sin θ0, f ) by multiplying
with the complex amplitude A and time dependence exp(−j2π f t). For a broadband signal, these
expressions cannot be simplified further unless the normalized power spectral density

∣∣Q( f )
∣∣2 is

specified. In practice, beamforming is often numerically implemented in the frequency domain by
operation on each frequency component following Equation (3), where the components are obtained
via discrete Fourier transform of the broadband signal.

The broadside beam width BW is estimated as the angle between the half-power (−3 dB) points
of the main lobe in the time-averaged beamformed intensity σB(θ) when the array is steered to the
broadside direction. The array gain [19] is calculated as the ratio of the time-averaged beamformed
intensity in the direction of the signal θ = θ0 to that averaged over all directions,

AG = 10 log10

[
2σB(θ = θ0)∫ π

2

− π
2

σB(θ) cos θdθ

]
(9)

The grating lobe height is calculated as the maximum value of the time-averaged beamformed
intensity excluding the main lobe. The maximum possible grating lobe height GLH, which occurs
when the array is steered in the end-fire direction, is quantified here.

2.2. Experimental Acoustic Data Collection with a Coherent Discrete Hydrophone Array

The Gulf of Maine 2006 Experiment [1,2,7,8,11–13,24,50] was conducted from 19 September to
6 October 2006, coinciding with the annual herring spawning period on the northern flank of Georges
Bank [51–53]. During the experiment, acoustic recordings were acquired using the nonuniformly-spaced
160 hydrophone-element ONR-FORA towed horizontally behind a research vessel along designated
tracks north of Georges Bank [2,12,13,50]. Tukey-windowed linear frequency modulated (LFM) pulses
of 1 s duration and 50 Hz bandwidth centered at 415, 735, 950 and 1125 Hz were transmitted by a
vertical source array deployed on another research vessel for bistatic measurement of echo returns.
The Atlantic herring areal population densities were monitored over instantaneous wide areas using
active OAWRS imaging [1,2,8,12,13] and calibrated with coincident conventional ultrasonic fisheries
echo sounding measurements [2,8,13] with fish species identification and physiological parameters
extracted from trawl samples collected over the course of the experiment [52,54]. In addition to echo
returns of the transmitted source signal, vocalizations from more than eight distinct marine mammal
species including fin, humpback, sei, minke, orca, pilot, sperm, and other unidentified baleen and
toothed whale species were also passively recorded by the coherent hydrophone array [1,4,5,12].
The ecosystem-wide spatial distributions of vocal marine mammals from multiple cetacean species
were simultaneously mapped by the POAWRS technique [1,4–6]. Detailed information about the
Gulf of Maine 2006 Experiment is provided in Refs. [1,2,7,11–13,24,50,55], including hydrophone
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array layout, measurement geometry, temporal and spatial span of acoustic data collection, and
oceanographic properties of the environment. Detailed aperture nesting schematic for the ONR-FORA
is provided in Ref. [26] (see Figures 1 and 2 of Ref. [26]).

Both OAWRS and POAWRS techniques employ beamforming extensively for high-resolution
signal bearing estimation. Previously, data acquired by the ONR-FORA was beamformed using
conventional uniformly-spaced single subapertures [1,2,7,8,11–13,24,50] in both passive and active
OAWRS. Here, we demonstrate that the beamformer output can be significantly enhanced by
combining the conventional uniformly-spaced subapertures to form nonuniformly-spaced subarrays.

The ONR-FORA contains 160 hydrophone elements nested into four uniformly-spaced
subapertures that are the ultra-low-frequency (ULF), low-frequency (LF), middle-frequency (MF),
and high-frequency (HF), each of which contains N = 64 hydrophones with inter-element spacing
of 3 m, 1.5 m, 0.75 m, and 0.375 m, respectively, designed to analyze and conventionally beamform
acoustic signals with fundamental frequency content below 250 Hz, 500 Hz, 1000 Hz, and 2000 Hz,
respectively [1,2,12,13]. A schematic of three of the four subapertures of the ONR-FORA is provided
in Figure 2, and they are the LF, MF and HF subapertures. These three subapertures are the
primary subapertures used in both active and passive OAWRS. By combining multiple conventional
uniformly-spaced subapertures, we obtain new nonuniformly-spaced subarrays (see Table 1).

HFForw. MF Aft. MFForw. LF Aft. LF
64 Hyd.16 Hyd. 16 Hyd.16 Hyd. 16 Hyd.

d = 0.375 md = 0.75 m d = 0.75 md = 1.5 m d = 1.5 m

HF aperture (64 Hyd.)
d

3
 = 0.375m, L

3
 = 23.625 m

MF aperture (64 Hyd.)
d

2
 = 0.75m, L

2
 = 47.25 m

LF aperture (64 Hyd.)
d

1
 = 1.5m, L

1
 = 94.5 m

Figure 2. Schematic of three of the four subapertures of the Office of Naval Research Five
Octave Research Array (ONR-FORA), including the low-frequency (LF), mid-frequency (MF) and
high-frequency (HF) subapertures. The ultra-low-frequency (ULF) subaperture of the ONR-FORA is
not shown here.

The pressure-time series measured by hydrophone elements from the newly defined subarrays
are beamformed to two-dimensional beam-time series, from which scattering strength images [2,3,13]
of the ocean environment are derived following the approaches in active OAWRS imaging [2,3,8,13,14].
The beam-time series data is matched filtered with the source transmitted 50 Hz bandwidth LFM
waveforms and is then bistatically charted onto geographic space. The beam-time data are linearly
converted to beam-range data by multiplying the two-way travel time from the source and receiver
locations to the the scattered field location with half the mean measured water-column sound speed c.
The log-transformed scattered intensity images are next corrected for (i) source level; (ii) two-way
transmission losses from the source and receiver locations to the scattered intensity locations;
and (iii) the range- and azimuth-dependent resolution footprint of the imaging system. The range
resolution is determined by the match filter pulse compression, while the cross-range resolution is
determined by the array beam width at the output of the beamformer. The two-dimensional beam-time
series are also utilized to generate beamformed spectrograms used extensively in POAWRS [1,4–6]
for detecting oceanic sound sources. The results generated using the nonuniformly-spaced subarrays
are compared to those obtained from the conventional uniformly-spaced single subapertures of
the ONR-FORA.
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3. Illustrative Examples

Here, we compare the beamformer output of the nonuniformly-spaced subarrays with those of
the conventional uniformly-spaced single subapertures of the FORA via theory and application to
acoustic data from GOME06.

3.1. Theoretical Results

Here, we show via numerical simulation that the angular resolution of the ONR-FORA can be
significantly enhanced by beamforming with the new nonuniformly-spaced subarrays, which provide
narrower main lobes while simultaneously avoiding spatial aliasing from dominant grating lobes,
when compared to the conventional uniformly-spaced subapertures (see Figures 3 and 4 and Table 1).

We consider incident signals that are LFM pulses of 1 s duration and 50 Hz bandwidth centered at
either 950 Hz or 1125 Hz with normalized power spectral densities uniform over the signal bandwidth.
Linear frequency modulated pulses were extensively employed in GOME06 for imaging Atlantic
herring areal population densities [2,13] via OAWRS. The array gain AG, broadside beam width BW,
and maximum grating lobe height GLH for the three conventional subapertures and two newly defined
subarrays are calculated for these signals and listed in Table 1. The results shown here incorporate
a spatial hamming window taper function in the beamforming. The time-averaged beamformed
intensity σB(θ) is calculated by substituting Equation (6) into Equation (8). The continuous frequency
integrals are implemented as discrete summation with frequency increment d f = 0.1 Hz. The array
gain AG, broadside beam width BW and maximum grating lobe height GLH are calculated from
the time-averaged beamformed intensity σB(θ). The azimuth of the incident signal θ0 is set to be 0
for calculating the broadside beam width and the array gain, and set to be ±90◦ for calculating the
maximum grating lobe height.

To first order, the angular resolution of a subaperture or subarray is dependent on its length. As can

be noted from Equation (4), since the first zero value of the beam pattern occurs at (sin θ− sin θ0) =
c
f

1
Nd

,

which is inversely proportional to the array length L = Nd. For the LFM signal centered at 950 Hz,
even though the long LF subaperture provides the best angular resolution (BW = 1.26 deg), it leads
to significant grating lobes (GLH = −3.92 dB) because of spatial aliasing, since the signal frequency
lies above the LF subaperture’s maximum design frequency of 500 Hz. This aliasing is especially
problematic for active imaging applications since the grating lobes can lead to false returns charted onto
real angular space. The MF subaperture is suitable for beamforming the 950 Hz centered LFM signal
without dominant grating lobes in real angular space (GLH = −42.6 dB), but provides poorer angular
resolution, with beam width (BW = 2.5 deg) roughly double that of the LF subaperture. The newly
defined nonuniformly-spaced subarray combining both the LF and MF subapertures outperforms
the single MF subaperture, since it provides fine angular resolution (BW = 1.44 deg) that is close
to that of the LF subaperture while simultaneously avoiding dominant grating lobes in real angular
space (GLH = −21.39 dB). Similarly, for the LFM signal with 1125 Hz center frequency and 50 Hz
bandwidth, the newly defined subarray combining LF, MF and HF subapertures outperforms all three
individual subapertures, since it provides fine enough angular resolution and avoids dominant grating
lobes in real angular space (see Table 1).

We next compare the beam pattern of the nonuniformly-spaced subarray with those of the
conventional uniformly-spaced subapertures for both a narrowband tonal at 1125 Hz and the
broadband 50 Hz bandwidth LFM signal centered at 1125 Hz. The beam patterns of (1) the
individual conventional uniformly-spaced subapertures LF, MF and HF, and (2) the newly defined
nonuniformly-spaced subarray combining LF, MF, and HF subapertures, calculated via Equation (6)
for the narrowband tonal at f = 1125 Hz are plotted in Figure 3. The corresponding time-averaged
beamformed intensities σB(θ) for the broadband LFM pulse of 50 Hz bandwidth centered at 1125 Hz
are calculated and plotted in Figure 4. The normalized power spectral density is assumed to be uniform
within the frequency band of the broadband signal. The azimuth of the incident signal θ0 is set to be
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either broadside θ0 = 0 or end-fire θ0 = ±90◦, respectively. The individual LF and MF subapertures
lead to spatial aliasing with presence of grating lobes in real angular space for both the narrowband
tonal and broadband LFM signals. The nonuniformly-spaced subarray, on the other hand, eliminates
the grating lobes and provides an angular resolution that is roughly a factor of three times smaller
than that of the conventional HF subaperture (Table 1).

In summary, the nonuniformly-spaced multiple-nested subarray takes advantage of the fine
angular resolution provided by the longer subaperture, while minimizing dominant grating lobes in
real angular space through the densely-spaced shorter subapertures.

Table 1. The number of elements N, total array length L, inter-element spacing d, array gain AG, beam
width BW, and maximum grating lobe height GLH of the conventional uniformly-spaced subapertures,
including the low-frequency (LF), mid-frequency (MF) and high-frequency (HF) subapertures, and
newly defined nonuniformly-spaced subarrays of the Office of Naval Research Five Octave Research
Array for signals with 50 Hz bandwidth centered at fc = 950 Hz and fc = 1125 Hz, respectively. The
azimuth of the incident signal θ0 is set to be 0 for calculating broadside beam width and array gain,
and is set to be ±90◦ for calculating maximum grating lobe height.

Subaperture LF MF HF LF + MF LF + MF + HF

N 64 64 64 96 128
L (m) 94.5 47.25 23.625 94.5 94.5
d (m) 1.5 0.75 0.375 variable variable

fc (Hz) 950 1125 950 1125 950 1125 950 1125 950 1125
AG (dB) 19.45 15.42 16.44 17.18 13.43 14.17 18.75 19.29 17.71 18.37

BW (deg) 1.26 1.05 2.50 2.11 4.97 4.19 1.44 1.21 1.74 1.47
GLH (dB) −3.92 −3.21 −42.64 −3.21 −42.64 −42.59 −21.39 −5.75 −24.88 −16.21
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Figure 3. A comparison of the beam patterns |B(sin θ − sin θ0, f )|2 of the conventional
uniformly-spaced individual subapertures LF, MF, and HF (dashed lines) and the newly defined
nonuniformly-spaced subarray combining the three subapertures (solid line) at frequency f = 1125 Hz.
The incident signal is assumed to be in the direction of (A,B) array broadside (θ0 = 0) and (C,D) array
end-fire (θ0 = 90◦), respectively. The subplots (B,D) are zoom-in views of the subplots (A,C) around
the main lobes.
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Figure 4. The time-averaged beamformed intensity σB(θ) calculated via Equation (8) corresponding
to Figure 3 for a broadband linear frequency modulated (LFM) pulse signal of 50 Hz bandwidth
centered at 1125 Hz with a uniform normalized power spectral density. The continuous frequency
integrals are implemented as discrete frequency component summation with a frequency increment
d f = 0.1 Hz. The incident signal is assumed to be in the direction of (A,B) array broadside (θ0 = 0) and
(C,D) array end-fire (θ0 = 90◦), respectively. The beam width of the nonuniformly-spaced subarray
is approximately three times smaller than that of the conventional HF subaperture at broadside,
and approximately 1.7 times smaller at end-fire.

3.2. OAWRS Scattering Strength Images of Shoaling Fish Populations

The cross-range or angular resolution of instantaneous wide-area OAWRS scattering strength
images of the ocean environment [2,3,13] can be significantly enhanced via beamforming with the
nonuniformly-spaced subarrays of the ONR-FORA over that of its individual uniformly-spaced
counterparts. Examples of OAWRS scattering strength images containing scattered returns from fish
populations formed from LFM signal transmissions centered at 1125 Hz and 50 Hz bandwidth are shown
in Figures 5 and 6. The OAWRS scattering strength images were generated following the OAWRS
approach outlined in Refs. [2,3]. Here, the acoustic pressure-time series measured by hydrophones
across the receiver array were processed using time-domain delay-and-sum beamforming [18] with
the nonuniformly-spaced subarrays. The results of which are compared to those obtained with the
conventional uniformly-spaced HF subaperture. In OAWRS images of shoaling Atlantic herring
populations from GOME06, we find that fish population centers that were previously merged together
when data were beamformed with the conventional HF subaperture can be spatially resolved after
beamforming with the newly defined subarray that combines the conventional LF, MF, and HF
subapertures (see Figures 5 and 6). The OAWRS image in Figure 5A is blurred because of the large beam
width (BW = 4.19 degree at broadside) of the conventional HF subaperture (see Table 1). In contrast, the
OAWRS image is significantly enhanced by beamforming with the newly defined subarray, as shown
in Figure 5B because of the narrower beam width (BW = 1.47 degree at broadside). OAWRS scattering
strength images containing scattered returns from widely-distributed shoaling fish populations along the
northern flank of Georges Bank are shown in Figure 6, illustrating the angular resolution enhancement
from array broadside to array end-fire achieved with the nonuniformly-spaced subarray.
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The scattering strength values along the black dashed contours in Figure 5A,B are plotted as a
function of relative bearing measured from array broadside in Figure 5C. The four fish population
centers are well resolved with the nonuniformly-spaced subarray while they are merged together
with the conventional uniformly-spaced HF subaperture. The Atlantic herring areal population
densities over instantaneous wide areas were obtained from OAWRS scattering strength images, like
the ones shown here, by correcting for the mean target strength of an individual fish in Refs. [2,8,13].
These references also provide ground-truth measurements of fish presence and locations in OAWRS
imagery via coincident conventional fish-finding sonar echosounding and trawl sampling.
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Figure 5. Comparison of instantaneous wide-area Ocean Acoustic Waveguide Remote Sensing
(OAWRS) scattering strength images of a spawning Atlantic herring shoal measured on 3 October 2006
on the northern flank of Georges Bank. These images are formed from an LFM pulse transmission
of 1 s duration and 50 Hz bandwidth centered at 1125 Hz (compare with Figure 1J in Ref. [2] based
on an LFM pulse transmission centered at 950 Hz). The OAWRS images are generated following
the approach outlined in Ref. [2,3] but is beamformed in the time domain using (A) the conventional
uniformly-spaced HF subaperture and (B) the newly defined nonuniformly-spaced subarray combining
LF, MF, and HF subapertures. The scattering strength values along the black dotted contours in (A,B)
are shown in (C) as a function of relative bearing measured from array broadside. The fish population
centers are well resolved when the acoustic data are beamformed with the nonuniformly-spaced
subarray while they are merged together with the conventional HF subaperture.

3.3. POAWRS Beamformed Spectrogram of Marine Mammal Vocalizations and Ship Tonals

The finer angular resolution and higher array gain provided by the nonuniformly-spaced subarray
can enhance bearing estimation and improve signal detection in beamformed spectrograms used
extensively in POAWRS [1,4–6]. These enhancements are illustrated in POAWRS of ship tonal and
marine mammal vocalization signals measured in GOME06.
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Figure 6. The same as Figure 5 showing a comparison of instantaneous wide-area OAWRS scattering
strength images of a spawning Atlantic herring shoal measured on 29 September 2006 on the northern
flank of Georges Bank. These images are formed from an LFM pulse transmission of 1 s duration
and 50 Hz bandwidth centered at 1125 Hz (compare with Figure 4C in Ref. [2] based on an LFM
pulse transmission centered at 950 Hz). Acoustic data are beamformed in time domain using (A) the
conventional uniformly-spaced HF subaperture and (B) the newly defined nonuniformly-spaced
subarray combining LF, MF, and HF subapertures.

The finer angular resolution provided by the nonuniformly-spaced subarray which combines
the LF, MF and HF subapertures leads to better localization of ship radiated sound and other signals
in azimuthal angular space (see Figure 7). Here, the acoustic pressure-time series measured by
sensors across the receiver array was bandpass filtered between 1.2 kHz to 1.5 kHz and converted
to two-dimensional beam-time series PB(θ, t) by frequency-domain beamforming via Equation (2)
with scan angle θ varying from −90◦ to 90◦. The azimuthal bearing of each ship radiated signal was
estimated as the beam that contains maximum energy in beam-time. As shown in Figure 7, the ambient
noise floor is reduced by approximately 4 dB because of an approximate factor of 2 narrower beam
width provided by the nonuniformly-spaced subarray.

Examples of beamformed spectrograms in a bearing containing pilot whale vocalizations are
shown in Figure 8. The beamformed spectrograms are generated by temporal Fourier transform of
the beamformed pressure-time series PB(θ = θ0, t) using the conventional HF subaperture, and the
newly defined nonuniformly-spaced subarray combining LF, MF and HF subapertures. Power spectral
density (PSD) within areas bounded by the white solid lines in Figure 8A,B are integrated along the
frequency axis and shown in Figure 8C as a function of time. The values of the peak intensities in
Figure 8C, which correspond to the pilot whale vocalizations located in time around 55.2 s and 57.4 s,
are consistent for both the HF subaperture and the nonuniformly-spaced subarray. Because of the
higher array gain it provides, the nonuniformly-spaced subarray suppresses the ambient noise level by
an additional 4 dB when compared to the conventional uniformly-spaced HF subaperture. These results
are consistent with the values shown in Figure 7 and Table 1, and illustrate the effectiveness of the
nonuniformly-spaced subarray for enhancing SNR in POAWRS.
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Figure 7. Two-dimensional beam-time series IB(θ, t) converted from acoustic pressure-time series
measured by sensors across the receiver array using the conventional time-domain beamforming for
(A) the uniformly-spaced HF subaperture, and (B) the newly defined subarray that combines LF, MF
and HF subapertures. The received vocalization pressure level within the shading area bounded by
the gray solid lines in (A,B) are averaged and shown in (C) as a function of scan angle θ. The ambient
noise floor is reduced by an approximately 4 dB because of an approximate factor of 2 narrower beam
width provided by the nonuniformly-spaced subarray.
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Figure 8. A comparison of spectrograms containing whistles from a pilot whale after coherent
beamforming using (A) the conventional HF subaperture, and (B) the newly defined nonuniformly-spaced
subarray combining LF, MF, and HF subapertures. Power spectral density within areas bounded by the
white solid lines in (A,B) are integrated along the frequency axis and plotted in (C) as a function of
time. The ambient noise floor is reduced by approximately 4 dB in agreement with the results shown
in Figure 7.
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4. Discussion

The potential enhancements provided by the nonuniformly-spaced subarrays over that of
the conventional uniformly-spaced individual subapertures of the ONR-FORA are dependent on
the signal center frequency, bandwidth, as well as the choice of subapertures used in forming
the nonuniformly-spaced subarrays in both active and passive OAWRS. In general, for a given
nonuniformly-spaced subarray, increasing the center frequency or extending the signal bandwidth
leads to higher array gain and finer beam width or angular resolution, but can also lead to larger
grating lobes in real angular space when the signal frequency lies beyond the maximum design
frequency associated with the subaperture that has the smallest inter-element spacing. In practical
ocean sensing applications, these factors need to be balanced and optimized accordingly. As shown in
Table 1, the subarray composed of the linear superposition of the LF, MF, and HF subapertures provides
an angular resolution (BW = 1.47 degree) at 1125 Hz that can be improved (up to BW = 0.8 degree)
by increasing signal center frequency up to 2 kHz without the presence of significant grating lobes
in real angular space. In contrast, the subarray composed of the linear superposition of the LF and
MF subapertures has a beam width BW limited to 1.44 degrees since the center frequency has to be
lower than 1 kHz in order to avoid significant grating lobes in real space. Since the ULF subaperture
introduces strong grating lobes for signals with frequencies larger than 500 Hz, it was excluded in all
calculations presented here.

5. Conclusions

Nonuniformly-spaced discrete linear receiver subarrays formed by combining multiple
uniformly-spaced subapertures of the ONR-FORA have been shown to significantly improve the
angular resolution and SNR in both active and passive OAWRS, while simultaneously avoiding
dominant grating lobes in real angular space. The array gain, beam width and maximum grating
lobe height are calculated by application of beamforming theory for various nonuniformly-spaced
ONR-FORA subarrays. Illustrative examples are provided showing beam width reduction, which leads
to SNR and angular resolution enhancements in active and passive OAWRS, based on acoustic data
acquired with the ONR-FORA in GOME06. These examples include OAWRS scattering strength images
of shoaling Atlantic herring populations and beamformed spectrograms containing ship radiated
sound and marine mammal vocalization signals. The nonuniformly-spaced subarray beamforming
approach demonstrated here can be employed for real-time ocean sensing because of the simplicity
in implementation and low computational cost. This approach can also incorporate other statistical
beamforming methods [56] for further enhancement of the angular resolution.

Acknowledgments: This research is supported by the Office of Naval Research (Ocean Acoustics Program),
the National Science Foundation, the National Oceanographic Partnership Program, the U.S. Presidential Early
Career Award for Scientists and Engineers, the Alfred P. Sloan Foundation, the Census of Marine Life, and
Northeastern University.

Author Contributions: Methods derivation and data analysis conducted by Delin Wang; Delin Wang and
Purnima Ratilal wrote the paper; research was directed by Purnima Ratilal.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SNR signal-to-noise ratio
ONR-FORA Office of Naval Research Five Octave Research Array
OAWRS ocean acoustic waveguide remote sensing
POAWRS passive ocean acoustic waveguide remote sensing
GOME06 Gulf of Maine 2006 Experiment
LFM linear frequency modulated



Remote Sens. 2017, 9, 1036 14 of 16

PSD power spectral density
ULF ultra low frequency
LF low frequency
MF mid frequency
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