remote sensin N
?J & bpy

Article

Improving Land Use/Cover Classification with
a Multiple Classifier System Using AdaBoost
Integration Technique

Yangbo Chen '*, Peng Dou! / and Xiaojun Yang 2

1 School of Geography and Planning, Sun Yat-sen University, No. 135 Xinggangxi Road,

Guangzhou 510275, China; dp_imgclassifier@163.com
2 Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA; xyang@fsu.edu
*  Correspondence: eescyb@mail.sysu.edu.cn; Tel.: +86-20-84114269

Received: 19 August 2017; Accepted: 10 October 2017; Published: 17 October 2017

Abstract: Guangzhou has experienced a rapid urbanization since 1978 when China initiated
the economic reform, resulting in significant land use/cover changes (LUC). To produce a time
series of accurate LUC dataset that can be used to study urbanization and its impacts, Landsat
imagery was used to map LUC changes in Guangzhou from 1987 to 2015 at a three-year interval
using a multiple classifier system (MCS). The system was based on a weighted vector to combine base
classifiers of different classification algorithms, and was improved using the AdaBoost technique.
The new classification method used support vector machines (SVM), C4.5 decision tree, and neural
networks (ANN) as the training algorithms of the base classifiers, and produced higher overall
classification accuracy (88.12%) and Kappa coefficient (0.87) than each base classifier did. The results
of the experiment showed that, based on the accuracy improvement of each class, the overall accuracy
was improved effectively, which combined advantages from each base classifier. The new method is
of high robustness and low risk of overfitting, and is reliable and accurate, and could be used for
analyzing urbanization processes and its impacts.
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1. Introduction

Land use/cover (LUC) has been changed drastically due to urbanization in the past decades [1,2],
and more built area has appeared to provide space for development. Such changes also caused a series
of negative effects on human society, such as increasing flood risk [3], deteriorating environment [4],
degrading ecosystem [5], and so on. To better understand these impacts, LUC changes (LUCC) caused
by urbanization need to be quantified accurately. Remote sensing is the latest technique that has been
used to estimate LUCC [6-9], and the Landsat imagery acquired by MSS, TM, ETM+ and OLI sensors
have been widely used for such a purpose [10] due to its long records and free availability [11,12].

Quantitative LUCC estimation has mainly been driven from remotely sensed imagery using various
classification algorithms [13,14], which can be divided into supervised algorithms and unsupervised
algorithm [15]. Decision trees, support vector machines (SVM), artificial neural networks (ANN)
and maximum likelihood classifier are supervised classification algorithms [16-18], and K-means
algorithm, fuzzy c-means algorithm and AP cluster algorithm are typical unsupervised classification
algorithms [19-22]. These algorithms have been widely used in estimating LUCC with satellite remote
sensing. For example, Pal and Mather [23] used SVM to classify land cover with Landsat ETM+ images,
and Tong et al. [24] detected urban land changes of Shanghai in 1990, 2000 and 2006 by using artificial
backpropagation neural network (BPN) with Landsat TM images.
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Different classification algorithms have been found to have different advantages in classifying
different LUC categories; however, none could produce perfect classification accuracy to all LUC
categories [25,26]. One classification algorithm may have pretty good performance to a specific LUC
category, but may have some disadvantages on other LUC categories [27]. For example, SVM with RBF
(radial basis function) kernel has been found could have an accuracy of 95% to grassland, but only have
a low accuracy of 60.3% to houses [28]; maximum likelihood classifier performed better for bare soil
with a high accuracy (98.01%), but not for built-up area with only a much lower accuracy (75%) [26];
and, with k-NN (k-Nearest Neighbor), the classification accuracy of continuous urban fabric reached
97%, but that for cultivated soil was only 49% [29].

There is requirement for higher classifying accuracy in studying the impact of LUC changes on
flooding, particularly in large scale watershed [30]. Multiple classifier systems (MCS) are a newly
emerged classification algorithm that combines the classification results from several different
classification algorithms. The purpose of MCS is to achieve a better classification result than that
acquired by using only one classifier [31-36]. MCSs can be divided into two categories according to
specific methods for combining the classification results. The first one is called multiple algorithm
MCS, and the final result is generated by combining the classification results from a group of specific
classifiers as base or component classifiers with identical training samples. The second one is called
as single algorithm MCS, and the final result is generated from a single base algorithm. The core
of MCS is to combine the results provided by different base classifiers, and the earliest method for
combination was through the majority voting. By now, some more approaches have been proposed
for classifier combination, such as Bayes approach, Dempster-Shafer theory, fuzzy integral, and so
on [37-40]. Previous studies have shown that MCS are effective for LUC classification. For example,
Dai and Liu [41] constructed a MCS with six base classifiers, i.e., maximum likelihood classifier (ML),
support vector machines (SVM), artificial neural networks (ANN), spectral angle mapper (SAM),
minimum distance classifier (MD) and decision tree classifier (DTC), and the classifier combination
was through voting strategy. Their results showed that MCS obtained higher accuracy than those
achieved by its base classifiers. Zhao and Song [42] proposed a weighted multiple classifiers fusion
method to classify TM images, and their results showed that a higher classification accuracy has been
achieved by MCS. Based on different guiding rules of GNN (granular neural networks), Kumar and
Meher [43] proposed an efficient MCS framework with improved performance for LUC classification.

For an improved performance, a base classifier to be included in a multiple classifier system
(MCS) should be more accurate in at least one category than other classifiers, suggesting that base
classifiers should be selected from diverse families of pattern recognizers [44]. For a MCS using
different classifiers, the diversity is measured by the difference among the base classifier’s pattern
recognition algorithms [45]. We generally prefer to combine the advantages of different algorithms
based on priori-knowledge. However, there is a need to train a few different classification algorithms,
and they could be easily over-fitted without sufficient priori-knowledge [34,46—49]. Moreover, because
the algorithms currently developed for land use/cover classification are relatively limited, the diversity
of MCS can be low, which can further affect its performance. For a MCS based on one classification
algorithm, classification accuracy can be improved by combining many diverse classifiers [50,51],
which can be easily produced with plenty of sample sets. Disadvantage of this type of MCS is that
the base classifiers are based on one classification algorithm, the difference among various classification
algorithms is not considered.

Popular MCS combination techniques include Bagging, Boosting, random forests, and AdaBoost
with iterative and convergent nature [46,52-56]. To obtain more base classifiers with differences,
Ghimire and Rogan [54] performed land use/cover classification in a heterogeneous landscape
in Massachusetts by comparing three combining techniques, i.e., bagging, boosting, and random,
with decision tree algorithm, and their results showed that the MCS performed better than the decision
tree classifier. Based on SVM, Khosravi and Beigi [55] used bagging and AdaBoost to combine a MCS
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to classify a hyperspectral dataset, and their work has showed a high capability of MCS in classifying
high dimensionality data.

In this paper, a method was proposed, which can help improve the combination for multiple classifiers
systems and thus increase land use/cover classification accuracy. It is called as MCS_WV_AdaBoost,
which can combine the advantages of the multiple classifier systems based on a single classification
algorithm and on multiple algorithms. In this method, a MCS based on weighted vector combination
(called as MCS_WYV) was established, which can combine decisions of component classifiers trained by
different algorithms, and then the AdaBoost method was employed to boost the classification accuracy
of MCS_WV (MCS_WYV improved by AdaBoost, called as MCS_WV_AdaBoost). MCS_WV_AdaBoost
inherits the benefits of MCS_WV which combines the advantages from different classification
algorithms and reduces overfitting, resulting in more stable classification performance. In addition,
MCS_WV_AdaBoost exhibits more component classifiers with diversity, resulting in larger
improvement in classification accuracy. The proposed method was further used to produce a time series
of land cover maps from Landsat images for a highly dynamic, large metropolitan area. The proposed
method was found to be effective and can help improve land use/cover classification results.

2. Study Area and Data

2.1. Study Area

Guangzhou, the capital city of Guangdong province in southern China, is located at the confluence
of East River, West River and North River. It is not only the political, economic and cultural center of
Guangdong province, but also the most densely populated region in the province. Guangzhou has
been a forerunning city since 1978 when China opened its door to the western world and initiated
its economic transformation. Guangzhou has experienced dramatic economic development and
rapid urbanization, which have prompted dramatic changes in land use/cover. Therefore, it is of
great importance to develop a robust and good classification scheme to map the LUC in this region.
The study area covers the major urban area of Guangzhou City, including five districts, namely, Liwan,
Yuexiu, Haizhu, Tianhe and Baiyun, with a total area of 7434.4 km? (Figure 1).

R

Guangdong

Baiyun

Tianhe Study qirea

Figure 1. Location of the study area (the geographic extent is 113°8'43”E to 113°30'39”E and 23°2'30”"N
to 23°25'40”N).

2.2. Data and Pre-Processing

The primary data used in this study are a time series of cloud-free Landsat images with WRS Path
121 and Row 44 acquired by Landsat-5 Thematic Mapper (TM), Landsat-7 ETM+ (Enhanced Thematic
Mapper Plus) and Landsat-8 Operational Land Imager (OLI) sensors. We used images from different
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time periods, mainly to prove the generalization of the proposed method. All images were acquired
from US Geological Survey (USGS) EROS Data Center. All images were acquired during a dry season
including the months of January, February, November and December when clouds are scarce and
surface features rarely change. The thermal band (Band 6) of Landsat TM and ETM+ contains little
information of surface radiation that is not quite valuable for land use/cover classification. Thus, only
Bands 1-5 and Band 7 of TM and ETM+ were actually used in this study. Landsat-8 OLI has nine bands
including all ETM+ bands, and, to avoid atmospheric absorption, only Bands 2-7 were used. In total,
11 Landsat images from 1987 to 2015 were acquired, with an interval of 2—4 years. Table 1 provides
brief information on the Landsat images used in this study. The FLAASH model in ENVI was used
for the atmospheric correction of Landsat images for more clearly features recognizing. The selected
images were geometrically registered to an aerial photograph with Universal Transverse Mercator
(UTM) projection (zone 49 N), and the geometric error was less than 1 pixel (30 m). Then, the images
were clipped by a mask of the study area.

Table 1. Landsat images acquired.

Platform Sensor Bands  Spatial Resolution (m) Acquisition Year
Landsat 5 ™ 1-5,7 30 1987, 1990, 1993, 1996, 1999, 2005, 2008, 2011
Landsat7  ETM+ 1-5,7 30 2001
Landsat 8 OLI 2-6,7 30 2013, 2015
3. Methods

Figure 2 illustrates the classification method of this study. The process can be divided into
three levels. The first level is called “Base classifier level”, providing the base classifiers using different
classification algorithms. The second level is called “MCS_WYV level”, which produces many MCS_WVs
with AdaBoost iterative and convergent nature. MCS_WYV is a composed classifier combining the base
classifier’s decision with a weight vector. The third level is “"MCS_WV_AdaBoost level”. At this level,
the classification results of MCS_WYVs are combined with AdaBoost method and a more accurate
classification is produced.
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Figure 2. Flow chart of the research procedural route.
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3.1. Training Algorithms for Base Classifiers

Utilizing the advantage of each base classifier to improve the classification accuracy is the core of
MCS [56]. For better combination, the algorithms for base classifier training should be complementary
to each other [57-59]. Support vector machine (SVM), C4.5 decision tree and artificial neural network
(ANN) are among the most used remote sensing image classification algorithms, and are also quite
different in land cover classification, thus have diversities [59-63]. For this reason, they are selected as
the base classifiers here.

3.1.1. Support Vector Machine

Support Vector Machine (SVM) is a machine learning method proposed by Vapnik in the 1990s [62].
The training data were mapped to a higher dimension to find an optimal hyperplane to separate
the tuples tagged the same class from others. The algorithm is quite robust and would not be affected
by adding or removing samples for support vectors. It can generate high accuracy for modeling
complex nonlinear decision boundaries and is not easy to be over fitting. In fact, it is one of the most
ideal algorithms for remote sensing classification [63].

3.1.2. C4.5 Decision Tree

C4.5 is a decision tree proposed by Quinlan based on the ID3 algorithm. In this algorithm,
the decision tree is built by dividing the sample set layer-by-layer, where the split property is the one
which has the highest information gain ratio with the sample set and the optimal threshold under
the split property obtained by information entropy calculating [64]. C4.5 decision tree has advantages
of strong logicality, its rules are simple and easy to be understood, and thus is perfect for noise
suppressing. It is suitable for more complex multi-source or multi-scale data, and is also an excellent
classifier for remote sensing image classification.

3.1.3. Artificial Neural Network

Artificial neural networks ANN is an algorithm that simulates the function of human brain
based on a neural network composed by an input layer, hidden layers and an output layer [65].
Its best-known architecture, namely back-propagation artificial neural network (BPANN), was used
for classification in this study. Through the input layer, sample information forwards propagation
and the errors back propagation, the weights of path between neurons in different layers are adjusted
constantly to determine which class the input sample possibly should be, until the error of the output
of the network is small enough or the times of learning reaching its upper limit [66]. It is a strong
adaptive and self-learning algorithm that can consider many kinds of factors and uncertain information.
ANN can adapt to the rich texture and high spectrum confusion of remote sensing, especially by
setting the nodes in hidden layers, the problem of “homogeneous spectrum” and “foreign matter” can
be solved perfectly in the process of remote sensing classification [67].

3.2. Multiple Classifiers System Based on Weight Vector and Its Improved Version Using AdaBoost

3.2.1. Multiple Classifiers System Based on Weight Vector

The sensitivities of classifiers vary by classes. The difference between base classifiers is critical
to build a multiple classifiers system [68]. In this paper, the sensitivity of each base classifier with
respect to different classes is represented by weight vectors. Firstly, the training samples (the samples
with known labels) are grouped into the training and validation parts and then assume M as a base
classifier set, M = {M;, My, M3, ..., Mg}, K is the count of base classifiers; X as the sample set,
X=1{X1, Xp, X3, ..., XN}, N is the count of samples sets; () as classes set, () = {w1, wy, w3, ..., wc},
C is the total number of classes. Then, suppose the weight vector of classifier M; (i=1,2,3,...,K)is
Wi, tjj is the count of the validation samples which were classified as class w; by classifier M;, e;; reflects
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the count of samples error recognized as class w; by classifier M;, the weight classifier M; to class w;,

Wi

j » can be expressed as Equation (1):

Wij =1—Ej )

o
E;= 4 (2)
i

Thus, the weight vector of classifier M; voting for the class of validation samples is

Wi = (Wi, Wiz, Wiz ..., Wic) ®)
Finally, the classification result of an instance x can be calculated via weighted voting with
Equation (4):
K
M*(x) = arg max ) _ W;;M;(x) 4)
i=1

where M(x) means x is classified by M;.

Figure 3 illustrates the flow chart of the MCS_WYV classification. First, the samples were divided
into two parts with one part as the training subset and the other part as the validation subset. For each
pixel in each base, the classifier generated a classification, and, using the weight vector of each base
classifier, the final class label was determined by weighted voting.

oo

v '
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: |

|
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Remote T Classify | Classes obtained by each
sensing image Obtain recode of each pixel base classifier

Vote
Classified image [« i Voted class I

Figure 3. Diagram of MCS_WYV (multiple classifiers system based on weight vector) classification.

3.2.2. AdaBoost

AdaBoost (Adaptive Boosting) is an algorithm which can be used to boost the performance of
a classification algorithm [69,70]. First, entrusts with the same weight to each sample, and then train
anew classifier with the sample set which obtained by using the method of sampling with replacement.
Classify the samples in the set, and give higher weight to the misclassified samples and lower weight to
the correctly classified ones. The weight decides the chance of being used to train classifier in the next
iteration. Thus, the new classifier focuses more on the misclassified samples in the previous iteration.
More than one classifiers are trained with the sample sets obtained from the reweighed samples [71,72].
After all iterations, the final hypothetic class is calculated using weighted voting.
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3.2.3. Multiple Classifiers System Based on Weight Vector Improved by AdaBoost

The MCS_WYV has strong relationship with the priori knowledge, and its performance may be
limited if the validation sample set is inadequately representative. To make MCS_WYV classification
model stable with high accuracy, AdaBoost algorithm is used to help improve the performance.
As shown in Figure 4, first, initial the weights of samples in sample set D, and then extract a sample
set D; by sampling with replacement. D; was divided into two parts: D;, for base classifier (SVM;,
ANN;, and C4.5;) training, and Dy, for creating weight vectors. With the base classifier and weight
vectors, a composite classifier MCS_WYV; was generated. The error ratio is calculated by classifying
the samples in D, and the misclassified samples are given higher weight for next iteration. In each
iteration, the weight of each sample is adjusted to make MCS_WYV classifiers focus on the hard
classified samples until the end. Finally, a classifier set of MCS_WYV is produced, and the category of
pixels of RS image can be diagnosed by MCS_WYV classifiers which improved by AdaBoost algorithm

(MCS_WV_AdaBoost).

» Initial weight of samplesin D

|

Sample sat D <
i Put back samples

» Obtain a sample set D; for training

I

Sample set D, Sample set D,

Classify test samplesin Dy

{ SVM, ] [ ANN, ] I C45, ]

[ Weight vector for base calssifiers |

MCS_WV,

i Obtain error ratio e; ]

N A YCS = )
° ¢;meet the conditions? Update w e!ght —
of samples in D

End of iteration?

No

Figure 4. Diagram of MCS_WV_AdaBoost (MCS_WYV improved by AdaBoost) training.
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3.3. Base Classifier Contribution Calculate Method

In this study, we used the weight of each single classifier to calculate its contribution in
classification. The contribution can be calculated using Equations (5) and (6):
wis
Cij= 5 5)

m

Cj=—1t ©6)

where, i and j denote a sample and classifier, respectively; 7 is the total number of samples; m is
number of classifiers; C;; is contribution of classifier j to decide sample 7; w;; is the weight of classifier j
to classify i; and Cj indicates the contribution of classifier j in classification.

4. Results

4.1. Train Sample Selection

To analyze land use/cover distribution in Guangzhou, six LUC types were identified, including
forest (FO), grassland (GR), bare land (BL), built-up area (BA), cultivated land (CL) and waters (WA).
Because the combination of bands 3-5 of TM/ETM+ or bands 3, 5 and 6 of OLI has a better visual effect,
an image interpretation key for various land use/cover types was established for sample selection.

In this study, samples were categorized into reference sample set and training sample set. A grid
with resolution of 5 km was used to control the distribution of training samples. For each LUC class,
about 200 pure pixels distributed uniformly in the grid cells that contain the current LUC type were
selected for classifier training. The number of samples contained in each class in the training sets is
shown in Table 2. In each grid cell, about 50 points were generated randomly, and then labeled each
point with LUC type using the Landsat image. Finally, 2135 points were used as the reference to verify
the classification performance.

Table 2. Number of samples in training sets.

Year BA WA GR FO BL CL Total

1988 189 201 211 198 202 210 1211
1990 200 208 195 215 218 189 1225
1993 213 216 208 201 220 190 1248
1996 199 206 216 213 180 209 1223
1999 205 210 228 205 202 200 1250
2001 218 211 207 203 215 203 1257
2005 220 202 211 211 193 211 1248
2008 216 185 220 193 216 209 1239
2011 199 203 216 211 207 205 1241
2013 205 225 222 203 199 203 1257
2015 213 203 202 206 200 206 1230

4.2. Classification and Accuracy Analysis

Using SVM (RBF is used as the kernel function), ANN (it is composed of one input layer, one hidden
layer, and one output layer) and C4.5 (the tree height is 7), 11 land use/cover maps were generated from
Landsat images spanning the period of 1987 to 2015 (see Table 1). The MCS_WYV_AdaBoost algorithm
proposed here was used to help improve classification accuracy. Figure 5 illustrates the classification
results for 2001 that were generated by the three classifiers.
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Figure 5. Land use/cover maps for the Guangzhou metropolitan area in 2001 produced using different
classifiers: (a) SVM; (b) C4.5; (¢) ANN; and (d) MCS_WYV AdaBoost (MCS_WYV improved by AdaBoost).

Thematic mapping accuracy by each classifier was assessed, as summarized in Table 3. SVM
generated the highest average overall accuracy of 82.85% and its average overall kappa coefficient is
0.817. ANN took the second place with the average overall accuracy of 81.77% and the average overall
kappa coefficient of 0.807. The classification accuracy by C4.5 was the lowest among the three classifiers
considered, with the average overall accuracy of 80.20% and the average overall kappa coefficient of
0.792. The accuracy by MCS_WV_AdaBoost classifier was improved obviously when compared with
the three base classifiers, with the average overall accuracy of 88.12% and the average overall kappa
coefficient of 0.868. Clearly, the MCS_WV_AdaBoost classifier integrating multiple classifiers generated
higher accuracy than any base classifier considered, and the results from the MCS_WV_AdaBoost
classifier were reasonable and reliable. The final LUC classification results were shown in Figure 6.
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Figure 6. Land use/cover maps for the Guangzhou metropolitan area from 1987 to 2015.
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Table 3. Thematic mapping accuracies by different classifiers.

Classifiers
SVM C4.5 ANN MCS_WV_AdaBoost
Year OA (%) Kappa OA(%) Kappa OA(%) Kappa OA (%) Kappa
1987 82.32 0.809 80.03 0.796 82.01 0.821 87.33 0.861
1990 83.15 0.823 81.55 0.812 81.99 0.803 90.64 0.889
1993 82.33 0.812 79.98 0.791 81.35 0.801 87.22 0.869
1996 84.15 0.839 81.23 0.813 82.65 0.821 90.12 0.883
1999 81.07 0.801 78.33 0.774 80.69 0.785 86.55 0.859
2001 84.98 0.829 80.63 0.792 80.33 0.799 90.01 0.893
2005 82.42 0.802 81.22 0.805 83.66 0.830 86.33 0.852
2008 83.22 0.819 80.69 0.801 82.96 0.812 86.59 0.851
2011 82.09 0.813 78.23 0.776 79.58 0.788 88.01 0.859
2013 81.11 0.808 79.88 0.765 80.67 0.791 86.34 0.849
2015 84.56 0.832 80.38 0.788 83.55 0.829 90.23 0.888
Average 82.85 0.817 80.20 0.792 81.77 0.807 88.12 0.868

Note: OA is abbreviation of “overall accuracy”.

5. Discussion

5.1. Base Classifier Performance Comparison

The average overall classification accuracies, producer’s accuracies, and user’s accuracies,
by different classifiers, are summarized in Tables 4 and 5. Clearly, there is no significant difference in
the average overall mapping accuracy between the base classifiers considered. However, there are
significant differences at the categorical level, which were also noted by some other studies [73,74].
For example, SVM generated the highest average overall classification accuracy of 82.85% among
the three base classifiers considered, but with a relatively lower accuracy for the built-up land
(producer’s accuracy is 78.81%; user’s accuracy is 77.33%). SVM outperformed the other two classifiers
in mapping forest (producer’s accuracy is 88.24%; user’s accuracy is 87.29%) and cultivated land
(producer’s accuracy is 85.17%; user’s accuracy is 84.02%). C4.5 produced relatively lower average
overall accuracy (80.20%) than SVM, but performed better in classifying built-up land (producer’s
accuracy is 88.99%; user’s accuracy is 89.12%). Compared with the other two classifiers, ANN
performed better in mapping grassland (producer’s accuracy is 85.18%; user’s accuracy is 86.09%)
and bare land (producer’s accuracy is 84.37%; user’s accuracy is 85.23%). Waters had some unique
spectral characteristics, and thus all classifiers had a strong performance with the average accuracy of
more than 90%. Obviously, there are considerable differences in the classification accuracies of various
classes under various classifiers, as these classifiers are diverse. Different classifiers have different
advantages in classifying LUC classes; one classifier may outperform other classifiers in classifying
specific classes. That is to say, classifiers with different algorithms sometimes disagree in different parts
of the input space, they are complementary, and the feature of diverse can be used for combination to
achieve more accurate classification.

Table 4. Classification average producer’s accuracy with different classification algorithms.

Classifiers Average Producer’s Accuracy (%) OA (%)
BA WA GR FO BL CL
C4.5 88.99 91.89 77.31 74.51 83.58 70.32 80.20
SVM 78.81 91.40 80.22 88.24 79.95 85.17 82.85
ANN 80.17 90.20 85.18 81.38 84.37 80.57 81.77
MCS_WV 87.33 94.50 87.22 88.38 85.07 86.11 83.67

MCS_WV_AdaBoost ~ 92.99 98.20 91.18 89.13 88.11 86.24 88.12

Note: OA is abbreviation of “overall accuracy”; BA, WA, GR, FO, BL, and CL mean built-up area, water, grassland,
forest, bare land and cultivated land, respectively.
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Table 5. Classification average user’s accuracy with different classification algorithms.

Classifiers Average User’s Accuracy (%) OA (%)
BA WA GR FO BL CL
C4.5 89.12 90.44 73.28 80.01 82.01 75.34 80.20
SVM 77.33 92.01 83.37 87.29 73.55 84.02 82.85
ANN 79.26 90.59 86.09 80.03 80.23 81.25 81.77
MCS_WV 84.17 93.98 88.33 86.63 83.59 86.66 83.67

MCS_WV_AdaBoost  93.23 98.76 90.72 87.84 89.75 87.89 88.12

Note: BA, WA, GR, FO, BL, and CL mean built-up area, water, grassland, forest, bare land and cultivated
land respectively.

5.2. Performance of Multiple Classifiers System Based on Weight Vector

With MCS_WYV, the average overall classification accuracy reaches 83.67%, which is 3.47%,
0.82% and 1.9% better than C4.5, SVM and ANN, respectively (see Table 4). While the average
overall classification accuracy by MCS_WYV seems to be quite good, it does not show any significant
improvement over SVM. As shown in Figure 6, for most time periods, MCS_WYV generated an improved
mapping accuracy over any base classifiers. This is because that with the weight vector, which
represents a classifier’s recognition power for different classes, the decision of multiple classifiers is
combined accurately. The weight vector provides an approach assigning a self-adapting weight to
a base classifier so that the multiple classifier system (MCS_WV) can take the advantage from the base
classifier in generating better classification accuracy for certain classes. Applying the contribution
calculate method at the class level, the base classifier contribution in MCS_WYV is shown in Table 6.
It can be seen that C4.5 had a higher (0.421) contribution in classifying the built-up land (BA).
The contribution from each base classifier in classifying waters (WB) was almost the same (C4.5: 0.329,
SVM: 0.330, and ANN: 0.341). SVM contributed more in classifying grassland (GR) and cultivated land
(CL) (GR: 0.434 and CL: 0.428). ANN contributed the most in classifying forest (FO) with coefficient
of 0.535 that is higher than that from C4.5 (0.202) and ANN (0.263). This suggests that in MCS_WV
a base classifier can self-adapt to specific classes that can help improve classification accuracy for
these classes.

Table 6. The average contribution by each base classifier in MCS_WYV for each land use/cover class.

Land Use/Cover Class
Classifiers
BA WA GR FO BL CL
C45 0.421 0.329 0.255 0.202 0.358 0.271

SVM 0267 0330 0434 0263 0254 0428
ANN 0312 0341 0311 0535 0388 0.301

Note: BA, WA, GR, FO, BL and CL mean built-up area, water, grassland, forest, bare land and cultivated
land, respectively.

Although MCS_WYV can obtain a higher classification accuracy over each base classifier, this boost
may not applied to all cases, because the accuracies by MCS_WYV for the 1996, 2001, 2005 and 2013
maps are lower than the highest accuracy by a base classifier (see Figure 7). This observation suggests
that certain unstable factors may exist in the MCS_WYV classification model. Presumably, the weight
vector used in MCS_WYV should be based on a large amount of a priori knowledge in calculating
the recognition power for different base classifier. The higher representation of the training samples
is, the better performance of MCS_WYV could be. However, the objects on remote sensing images
are so complexed that training samples may not represent the entire dataset well, which may lead
the MCS_WYV classifier to over fit. This further suggests that MCS_WV may lack robustness as its
stability can be affected by less representative samples.
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Figure 7. Overall classification accuracies by SVM, C4.5, ANN and MCS_WYV for different years.

To analyze the classification performance of MCS_WV with two base classifiers, the average
overall classification accuracies from three combinations are shown in Table 7. Based on Table 7, we can
see that there is no significant improvement when MCS_WYV was built upon the use of two base
classifiers. This suggests that, if the number of base classifier is too small, the classification accuracy
improvement by MCS_WYV can be quite limited.

Table 7. MCS_WYV classification accuracy with two base classifiers.

Base Classifiers

Accuracy
ANN, SVM C45, SVM  C4.5 ANN
OA (%) 82.11 82.98 83.01
Kappa 80.88 0.801 0.815

5.3. Performance of MCS_WYV Improved by AdaBoost

Setting the iterations of AdaBoost as 50, the relationship between the classification accuracy
and the iteration number is illustrated in Figure 8, and the classification improvements of different
AdaBoosts are also compared with the random forest (the maximum depth of each decision tree
is 7, and the minimum simple count is 50; the total number of trees in a random forest is 50).
Under eight iterations, MCS_WYV_AdaBoost reached the highest classification accuracy (88.12%),
which is 4.45% higher than single MCS_WYV (83.67%). It is clear that MCS_WYV performance boosting
gradually increased as the iteration times increased, but the accuracy reached a ceiling point. When
applying AdaBoost on C4.5, SVM or ANN, classification performance was also improved under
several interactions. With C4.5-based AdaBoost, classification accuracy improved from 80.20 to 85%
under 13 iterations. SVM-based AdaBoost increased classification accuracy from 82.85 to 85.41%
with 17 iterations. Under 29 iterations, ANN-based AdaBoost improved classification accuracy from
81.77 to 84.34%. Clearly, MCS_WYV_AdaBoost outperformed C4.5-, SVM-, and ANN-based AdaBoost,
and needed fewer iterations to reach the highest classification accuracy.

Figures 9-11 show the performance of MCS_WYV_AdaBoosts with two component classification
algorithms. MCS_WV_AdaBoost with C4.5 and ANN improved the classification accuracy from 83.01
to 86.68% under eight iterations. MCS_WV_AdaBoost with C4.5 and SVM improved the classification
accuracy from 82.98 to 86.08% under eight iterations. MCS_WV_AdaBoost with ANN and SVM boosted
the classification accuracy from 82.11 to 85.97% under 10 iterations. While all these improvements are
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quite encouraging, MCS_WV_AdaBoost with C4.5, ANN, and SVM performed the best. It indicates that
MCS_WV_AdaBoost can improve MCS_WYV classification performance effectively and that the number
of classifiers included in MCS_WYV also affected the performance of MCS_WV_AdaBoost.

As shown in Figures 8-11, MCS_WV_AdaBoost can reach its highest classification accuracy under
few iterations. Random forest also achieves good classification performance. However, its highest
accuracy, 85.0%, appears at the 39th iteration, which is lower than that of MCS_WV_AdaBoost.
Compared with random forest, MCS_WV_AdaBoost cannot remain stable in its later iterations,
because the overfitting nature of AdaBoost in later iterations has influenced classification accuracy
improvement. This feature indicates that MCS_WV_AdaBoost is a classification algorithm which can
work effectively in the early iterations.
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Figure 8. Classification accuracy improvements of MCS_WV_AdaBoost using three base classifier
training algorithms: C4.5, ANN and SVM.
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Figure 9. Classification accuracy improvements of MCS_WYV_AdaBoost using two base classifier
training algorithms: C4.5 and ANN.
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Figure 10. Classification accuracy improvements of MCS_WV_AdaBoost using two base classifier
training algorithms: C4.5 and SVM.
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Figure 11. Classification accuracy improvements of MCS_WV_AdaBoost using two base classifier
training algorithms: ANN and SVM.

Table 8 lists the computation time costs of different MCS_WV_AdaBoosts and the random forest.
It indicates that MCS_WV_AdaBoosts cost more time for training than random forest within 50 iterations.
When it comes to the highest classification accuracy, the number of iterations of MCS_WV_AdaBoost is
smaller than that of random forests, but MCS_WV_AdaBoosts still show a feature of time-consuming.
The time cost of MCS_WV_AdaBooost mainly depends on the learning algorithms of the base classifiers.
As ANN and SVM require an excessive amount of time for training, MCS_WV_AdaBoosts that contain
ANN and SVM are more time-consuming.

MCS_WV_AdaBoost perfectly inherited the benefits from MCS_WYV and AdaBoost. First, with the
weighted samples, MCS_WYV in each subsequent iteration focused more on the samples being difficult
to classify in the prior iteration. As a result, all MCS_WYV classifiers are diverse in MCS_WV_AdaBoost.
With weighted voting, the decisions of MCS_WYV classifiers were combined and compared with any
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single MCS_WYV classifier a more accurate result was generated. Second, under several iterations of
MCS_WYV_AdaBoost, overfitting of MCS_WYV classifier that often caused by poor representation of
training sample set was minimized. By combining a set of MCS_WYV classifiers, MCS_WV_AdaBoost
generated very strong performance. Because MCS_WYV classifiers in MCS_WV_AdaBoost had a strong
adaptive ability to the samples which are difficult to classify, they are focused on these specific
samples rather than the whole sample set. In addition, due to MCS_WYV, the advantages of SVM,
C4.5 and ANN are complemented in MCS_WV_AdaBoost, which generated higher classification
accuracy than any single classifiers. It can be explained that, for different classes, the sensitivity of
different algorithms are different. With weight vectors, MCS_WYV took the full use of the advantages
from different classifiers, and these features were inherited by MCS_WYV_AdaBoost successfully.
In MCS_WV_AdaBoost, AdaBoost provided a classification accuracy boost mechanism for MCS_WYV,
and therefore, the advantages of MCS_WYV were not affected but enhanced through combining various
MCS_WVs decisions due to this mechanism. For example, built-up area (BA) and bare land (BL)
were classified with lower accuracies by using SVM, C4.5 or ANN, but with MCS_WV_AdaBoost,
the mapping accuracy of built-up area and bare land reached 92.99% and 88.11%, respectively, which
are higher than those by any single classifiers (see Table 4). Accuracies of grassland (GR) and cultivated
land (CL) were significantly improved. Comparing with the highest accuracy by single classifiers,
using MCS_WV_AdaBoost classifier, the mapping accuracy of grassland (GR) and cultivated land (CL)
was improved 6.1% and 5.9%, respectively. Obviously, MCS_WV_AdaBoost performed better for these
classes with similar spectral characteristics. The improvement made for individual classes eventually
helped improve the overall classification accuracy by MCS_WV_AdaBoost.

Table 8. Computation time costs of different MCS_WV_AdaBoosts and the random forest.

Learning Algorithm Boosting Method NIHCA  TC_NIHCA (ms) TC_50 (ms)

C4.5 AdaBoost 13 305 1425
SVM AdaBoost 28 2878 5350
ANN AdaBoost 30 4201 12,214
C4.5, ANN, and SVM MCS_WV_AdaBoost 8 3525 18,025
C4.5 and ANN MCS_WV_AdaBoost 5 1476 13,762
C4.5 and SVM MCS_WV_AdaBoost 8 1288 8703
ANN and SVM MCS_WV_AdaBoost 10 3016 14,289
Radom forest None 36 1523 3024

Note: NIHCA means the number of iterations to achieve highest classification accuracy and TC_NIHCA means
the corresponding time cost; TC_50 means the time cost under 50 interactions.

6. Conclusions

In this paper, a multiple classifiers system using SVM, C4.5 and ANN as base classifier and
AdaBoost as the combination strategy, namely MCS_WV_AdaBoost, was proposed to derive land
use/cover information from a time series of remote sensor images spanning a period from 1987 to 2015,
with an average interval of three years. In total, 11 land use/cover maps were produced. The following
conclusions have been made.

For the three base classifiers considered, SVM generated the highest average overall classification
(82.85), followed by ANN (81.77%) and C4.5 decision tree (80.20%). These classifiers had their own
advantages in mapping different LUC types. C4.5 outperformed the other two base classifiers in mapping
built-up land. ANN generated the highest classification accuracy for grassland. SVM performed the best
in classifying forest and cultivated land. All classifiers did well in mapping waters due to their unique
spectral characteristics. Using C4.5 or ANN, built-up land and bare land can be clearly separated. These
advantages by different classifiers for different classes were critical for MCS to generate improved
classification accuracy.

The MCS_WYV classifier was quite efficient in combining the results from different classifiers but
its ensemble results can be affected by the representative of the training samples. If the representative
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is weak, the MCS_WV classifier could be overfitting. The AdaBoost algorithm can overcome this
shortage by training more than one MCS_WYV classifier. Compared with the individual MCS_WV
classifier, MCS_WYV_AdaBoost was more robust with higher classification accuracy.

With MCS_WYV_AdaBoost, the classification accuracy was improved for each map, with the average
overall accuracy higher than that from any base classifiers, which was due to the combined advantages
from each base classifier. Based on the accuracy improvement of each class, the overall accuracy was
improved by MCS_WV_AdaBoost. MCS_WYV_AdaBoost generated higher classification accuracy,
especially for those classes with similar spectral characteristics, such as built-up area and bare land,
and cultivated land and grassland.

MCS_WV_AdaBoost inherited most benefits from MCS_WYV and AdaBoost. However, it also suffers
from some disadvantages. For example, it reduces but does not eliminate the overfitting inherited from
AdaBoost; if noise exists in the samples, it has a tendency to overfit. In this paper, three classification
algorithms were used to train base classifiers of MCS_WYV, the performance of MCS_WV_AdaBoost
worked on more classification algorithms still needs further study. In summary, with MCS_WV_AdaBoost,
a reliable and accurate LUC data set of Guangzhou city was obtained, and could be used analyzing urban
characteristics and urbanization effects upon the environment and ecosystem in the future studies.
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