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Abstract: Soil spectroscopy has shown to be a fast, cost-effective, environmentally friendly,
non-destructive, reproducible and repeatable analytical technique. Soil components, as well as types
of instruments, protocols, sampling methods, sample preparation, spectral acquisition techniques
and analytical algorithms have a combined influence on the final performance. Therefore, it is
important to characterize these differences and to introduce an effective approach in order to
minimize the technical factors that alter reflectance spectra and consequent prediction. To quantify
this alteration, a joint project between Czech University of Life Sciences Prague (CULS) and
Tel-Aviv University (TAU) was conducted to estimate Cox, pH-H2O, pH-KCl and selected forms
of Fe and Mn. Two different soil spectral measurement protocols and two data mining techniques
were used to examine seventy-eight soil samples from five agricultural areas in different parts of
the Czech Republic. Spectral measurements at both laboratories were made using different ASD
spectroradiometers. The CULS protocol was based on employing a contact probe (CP) spectral
measurement scheme, while the TAU protocol was carried out using a CP measurement method,
accompanied with the internal soil standard (ISS) procedure. Two spectral datasets, acquired from
different protocols, were both analyzed using partial least square regression (PLSR) technique as well
as the PARACUDA II®, a new data mining engine for optimizing PLSR models. The results showed
that spectra based on the CULS setup (non-ISS) demonstrated significantly higher albedo intensity
and reflectance values relative to the TAU setup with ISS. However, the majority of statistics using
the TAU protocol was not noticeably better than the CULS spectra. The paper also highlighted that
under both measurement protocols, the PARACUDA II® engine proved to be a powerful tool for
providing better results than PLSR. Such initiative is not only a way to unlock current limitations
of soil spectroscopy, but also offers considerable efficiency and cost- and time-saving possibilities,
which lead to further improvements in prediction performance of spectral models.

Keywords: soil spectroscopy; protocol and standard; data mining; internal soil standard

1. Introduction

Soil reflectance analysis in the visible-near infrared-short wave infrared (VIS-NIR-SWIR) region
has become a well-recognized, rapid and reproducible analytical method that has been used for
non-destructive and low-cost soil analyses [1]. It differentiates materials based on their reflectance
in the wavelength range from 400–2500 and can be used to encode information on the inherent
composition of soil and determine a wide range of soil parameters in different platforms (in the
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laboratory, in the field using sampling, on-the-go using sensors embedded on a tractor, as well as
airborne measurements) [2–4].

Although the technique is mainly used under controlled laboratory conditions, with the rise in
available portable spectrometers, its application in situ [5], as well as from the air- and space-borne
sensors, is growing [6,7]. Under in-situ measurement conditions, additional challenges associated
with the variation of soil-to-sensor distance affect the accuracy of the measurement [8,9]. In addition,
a wide range of soil spectral measurements are being gathered around the globe, which return different
results as they have been collected with different protocols, sampling techniques, sample preparation,
instrument specifications, spectral acquisition and analytical algorithms, and can severely affect the
prediction performance of spectroscopic models and outputs [4,10,11]. For instance, differences in
water content of air-dried samples (depending on the laboratory protocol), due to fluctuations in
relative humidity of the ambient air in the laboratory, affect the spectral shape and peaks, especially
around 1415 and 1915 nm [12,13]. According to Soriano-Disla et al. [4], spectral reflectance is also
affected by the grinding of soil, which can generate important differences of accuracy in the prediction
models due to the variation of particle sizes, the same is true for sieving. Suitable data preprocessing,
calibration and validation strategies, which frequently differ for users and operators, to calibrate
soil prediction models, influence the final model too. For example, Gholizadeh et al. [14] indicated
that the 1st derivative preprocessing method gave the best prediction of heavy metals in the Czech
Republic mining areas, in comparison to 2nd derivative, multiplicative scatter correction (MSC),
standard normal variate (SNV) and continuum removal (CR). Viscarra Rossel and Behrens [15] and
Araujo et al. [16] applied partial least square regression (PLSR), boosted regression trees (BRT) and
support vector machine regression (SVMR) methods for the prediction of clay; SVMR offered the most
successful prediction model due to its ability to solve the multivariate calibration problems and to
reduce problems with heterogeneity and non-linearity. However, in a study by Gholizadeh et al. [17],
the memory based learning (MBL) technique outperformed PLSR, BRT and SVMR in soil texture
prediction, which can be attributed to the selection of more appropriate neighbours to calibrate local
models, as well as the inclusion of more suitable neighbours in each local model as a source of
additional predictor variables [18]. Factors such as different populations, different partitions of the
population for the analyses and environmental condition may also cause variation.

To overcome these difficulties that block any attempt for reliability and comparability of
results [19], some solutions were suggested by researchers; these included the selection of
proper instrumentation, standards and protocol development [20], improved spectra filtering and
preprocessing [21], better control of ambient conditions [8] and the appropriate selection of multivariate
statistical analysis [15,22]. These approaches can significantly reduce differences between spectral
measurements of the same samples by different operators in different laboratories. Since calibration
and management represent a large part of costs and efforts in the use of spectroscopy techniques to
standardization and more suitable methods are strongly needed, the current study compares two
measurement protocols and two modelling techniques using the exact same soil population. To this
end, we compared the measurement protocols in terms of their effects on samples spectral responses:
The first is the protocol developed at Czech University of Life Sciences Prague (CULS) and the second
is the protocol developed by Ben-Dor et al. [20] at Tel-Aviv University (TAU). The other experiment
was to use the common PLSR technique on spectra collected using both protocols and compare it
to the all-possibilities approach using the PARACUDA II® engine, a new data mining and model
optimizing approach, to extract proxy models of some soil attributes, namely, oxidizable carbon (Cox),
pH-H2O, pH-KCl, crystalline Fe and Mn (Fe-d and Mn-d) and amorphous Fe and Mn (Fe-ox and
Mn-ox). The PARACUDA II® engine has been designed to utilize parallel and automatic processing
in order to build and process hundreds of diverse models in order to prevent errors or biases caused
by a human operator in the loop, when taking the model setting decision. PARACUDA II® also
enables us to check all of the possible preprocessing combinations along with different statistical
methods automatically and rapidly, which in reality are almost impossible for a single user to perform
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in a reasonable amount of time. This study involved a comprehensive collaboration between CULS
and TAU.

2. Materials and Methods

2.1. Study Area

Five agricultural areas from different parts of the Czech Republic were selected (Figure 1):
Vidim (50◦46′N; 14◦51′E, area 8 ha, altitude 315–323 m above sea level (a.s.l.), average annual
temperature 7–8 ◦C, average precipitation 550–650 mm), Sedlčany (49◦68′N; 14◦42′E, area 4 ha,
altitude 375–387 m a.s.l., average annual temperature 7–8 ◦C, average precipitation 550–650 mm),
Hostouň (50◦12′N; 14◦21′E, area 3 ha, altitude 335–358 m a.s.l., average annual temperature 8–9 ◦C,
average precipitation <500 mm), Železná (50◦00′N; 14◦09′E, area 3 ha, altitude 395–419 m a.s.l.,
average annual temperature 7–8.5 ◦C, average precipitation 450–550 mm) and Brumovice (48◦96′N;
16◦88′E, area 6 ha, altitude 187–227 m a.s.l., average annual temperature 9–10 ◦C, average precipitation
500–600 mm). According to the World reference base (WRB) for soil resources in 2014, the original
soil type in Brumovice was Haplic Chernozem on loess, which due to erosion changed into Regosol
(steep parts) and Colluvial soil (base slope and the tributary valley). A similar process can be observed
at the four other locations Vidim, Sedlčany, Hostouň and Železná, where the original soil types were
Haplic Luvisol on loess, Haplic Cambisol on gneiss, Calcaric Leptosol on marlite and Haplic Cambisol
on shales, respectively.
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2.2. Soil Sampling and Analysis

78 soil samples were taken from the topsoil (0–20 cm) within a regular grid covering the studied
areas: 16 samples on Vidim, 17 samples on Sedlčany, 18 samples on Hostouň, nine samples on
Železná and 18 samples on Brumovice (Figure 2). Regarding field size and the chosen sampling
algorithm [23,24], the selected sample size had sufficient coverage of the predictor space and it was a
suitable indicator of the population in which the models were applied.
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All of the samples were air-dried and sieved to <2 mm and then stored in plastic containers.
The basic chemical and physical soil properties were obtained using standard laboratory procedures
under a constant laboratory temperature of 20 ◦C. The Cox was measured using the dichromate
redox titration method [25]. Wet oxidation (K2Cr2O7) of the samples was followed by a potentiometric
titration with ferrous ammonium sulphate. The soil pH was measured using a 1:5 (w/v) ratio of soil and
water (pH-H2O) and 1 M potassium chloride (pH-KCl) solutions based on International Organization
of Standardization (ISO 10390:1994) using an inoLab Level 1 pH-meter. The content of Fe and Mn forms
was determined in all of the samples by simple extraction methods. While the extracted forms of Fe
can be classified as being labile, amorphous and crystalline [26–28], in the case of Mn, this designation
is rather more ambiguous [29]. The amount of crystalline forms (Fe-d, Mn-d) was determined by
extraction with a dithionite citrate (DC) solution [30,31] at a ratio of 0.5:25 (w/v) [28]. According
to Guest et al. [29], extraction with dithionite citrate bicarbonate (DCB) [32] gives similar results as
with DC [33], and determines the finely crystalline phases of Mn2+ and Mn3+ with quadrivalent Mn
most likely not being extracted. In the reducing conditions, Mn is also extracted from the structure
of Fe-oxides. In contrast, bivalent and trivalent Mn occurring in the structure of clay minerals and in
primary soil minerals are not extracted by DCB or DC. The proportion of amorphous forms and organic
complexes (Fe-ox, Mn-ox) was determined with ammonium oxalate. The extraction was carried out
according to McKeague and Day [30] and Courchesne and Turmel [28] with 0.2 M of ammonium



Remote Sens. 2017, 9, 1078 5 of 14

oxalate at pH 3 at a ratio of 0.25:10 (w/v). The final concentrations of Fe and Mn were subsequently
measured by ICP-OES with an iCAP 6500 Radial ICP Emission spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) under standard analytical conditions.

2.3. Reflectance Measurements

After soil chemical analysis and spectral measurements at CULS, the samples were sent to
TAU and spectral analysis was performed at this institution under different spectral measurement
protocols. In both laboratories, spectral reflectance was deliberated across the 350–2500 nm wavelength
range using an ASD FieldSpec III Pro FR spectroradiometer (ASD Inc., Denver, Boulder, CO, USA).
The spectral resolution of the spectroradiometer was 2 nm for the region 350–1050 nm and 10 nm for
the region 1050–2500 nm (495 individual spectral bands were calculated). The radiometer bandwidth
from 350–1000 nm was 1.4 nm, while it was 2 nm from 1000–2500 nm.

2.3.1. CULS Protocol

A high intensity contact probe (CP) was chosen for the spectral measurement at CULS.
The instrument ran for ~30 min to warm up the spectrometer and lamp. Soil samples were placed
in 9 cm diameter petri dishes, forming a 2 cm layer of soil. This was to avoid beam reflectance
from the bottom of the dish due to down-welling solar and sky radiation penetrating into the soil
at approximately 1/2 wavelength [34], which could have an unwanted effect of modifying the soil
spectra. Samples were levelled off using a stainless steel blade to guarantee a flat surface flush
with the top of the petri dish, as a smooth soil surface ensures maximum light reflection and a high
signal-to-noise ratio [35]. All of the spectral readings were measured in the center of the samples
(three replications each) in a dark room to avoid interference from stray light. The spectroradiometer
was optimized using a white Spectralon™ (Lab-sphere, North Sutton, NH, USA) prior to the first
scan and after every six measurements [36]. For each soil measurement, 30 spectra were averaged to
improve signal-to-noise ratio. Noisy portions between 350–400 nm and 2450–2500 nm were removed,
leaving spectra in the range from 400–2450 nm for our analysis.

2.3.2. TAU Protocol

The spectra measurement at TAU was carried out using a high intensity CP according to the
Commonwealth Scientific and Industrial Research Organization (CSIRO) protocol [20] and internal
soil standard (ISS) procedure. The ISS idea is based on the fact that the non-systematic effects,
such as random noise, uncertain effects and instabilities are minimized by the protocol used in the
professional laboratory, while the different systematic effects between protocols are corrected for using
the alignment factor generated from a well-known and agreed standard’s reading [23]. The introduced
ISS sample by Ben-Dor et al. [20] were homogeneous sand dunes along the coastline of Lucky Bay
(33◦59′S; 122◦13′E) in southwestern Australia, which were found to be excellent for the ISS concept.

The protocol’s arrangement requires 60 min of warming up the spectrometer and 30 min for the
lamps. The samples were prepared by pressing the soil surface against a glass surface and bringing
the bare samples to the CP by a stable elevator while the CP was held firmly in place. The sample
preparation was done using a large sample holder with surface preparation consisting of a flat sheet
of glass being used to apply pressure and flatten the surface. Three replications were used for each
sample, which originated from the same sample holder and was re-prepared after mixing it again for
measurement. After each measurement, a check was performed to determine if the white reference was
observed to have returned to 100%. If necessary, the white reference was retaken to set it back to 100%.
The ISS was measured using the same configuration before and after each five samples were inspected
for variation. The correction factor was calculated by dividing the ISS sample spectra measured before
and after the five samples in the motherhood ISS spectra measured at CSIRO. This factor was then
applied to five soil samples in order to standardize their spectra.
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2.4. Spectral Modelling

Spectral modelling of the selected soil attributes was performed using different techniques
to explore and compare the capability of the PLSR method, the most common algorithm for
VIS-NIR-SWIR spectra calibration of soil properties, and the PARACUDA II®, the all-possibilities
approach data mining engine.

2.4.1. PLSR Modelling

At both institutions, the spectral modelling first was done by employing a PLSR model under
an original raw spectral dataset, and two different datasets that were yielded after preprocessing
techniques including 1st and 2nd derivatives. The validation technique was 10-fold cross-validation.
A brief summary of the algorithm is as follows:

The PLSR, which has turned into a popular algorithm in chemometrics, decreases the data, noise
and calculation time with minor loss of the information contained in the original variables [37] and its
arithmetic can be found in Wold et al. [38]. It is strongly related to principal component regression
(PCR), in that both methods use statistical rotations to defeat the problem of high dimensionality and
multicollinearity [39,40]. They both compress the data before completing the regression. The difference
is that PLSR algorithm combines the compression and regression steps, and it selects successive
orthogonal factors that maximize the covariance between predictor and response variables [15,40–42].
By fitting a PLSR model, one expects to discover a few PLSR factors that clarify most of the variation
in both predictors and responses [43]. It can be said that in PLSR, an essential step is the selection
of the optimal number of latent variables (nLV) in the calibration model to avoid under-fitting and
over-fitting of data that would generate models with poor prediction potential [44,45].

2.4.2. PARACUDA II® Modelling

Spectral modelling of the provided soil attributes at CULS and TAU was then performed using
the PARACUDA II®, a new data mining and model optimizing approach, which has been developed
at the remote sensing laboratory of TAU by Carmon and Ben-Dor [46]. This is a sophisticated program
based on the all-possibilities-approach (APA) concept, a conditional Latin hypercube sampling (cLHs)
algorithm and parallel programming to evaluate all of the potential combinations of manipulations
(preprocessing) to the original reflectance and chemical data prior to model development. PARACUDA
II® has four main steps, each with an exact purpose in the modelling procedure, namely (i) outlier
detection and elimination; (ii) preprocessing and transformations; (iii) model development and
validation; and (iv) population analysis and best model selection. A schematic of the PARACUDA II®

processing framework can be seen in Figure 3.
At the first step, the outlier detection and elimination module for the spectral and the chemical

datasets, the chemical values for the specific task is transformed into z-scores and a pre-configured
threshold value to remove outliers is employed. The chemical values above or below ±2, which are in
the 2.5% out range of a normal distribution, are excluded from the population (in this study 2–5 samples,
depending on the property). For spectral data outlier detection, a principle component analysis (PCA)
calculation is used to derive the first two factors. Then, samples beyond a 95% confidence ellipse on the
two factors are detected and eliminated from the population. The algorithm, cLHs, is used to divide the
data into calibration and validation groups, which characterize the most variability of the data within
the two groups by data sub-setting based on a Gaussian distribution. The next step is preprocessing
and transformations in which the chemical values are transformed using a Box-Cox algorithm to
achieve a more normal distribution. However, the spectra are subjected to a sequence of preprocessing
calculation based on APA using eight different spectral preprocessing algorithms, namely moving
average, 1st and 2nd derivatives, absorbance transformation, CR, SNV, MSC and final smoothing,
in all mathematically possible combinations, resulting with up to 120 preprocessing sequences. Then,
the correlation between every spectral combination at each wavelength and the modeled chemical
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values is evaluated, the combination with the highest correlation chosen for further steps. The output
of this sequence is a set of different transformation values for every wavelength, which shows the
highest covariation with the modeled properties. Instead of relying on a single or arbitrarily selected
sequence for the whole wavelength region, we actually extracted all of the manipulations for the
spectral dataset. The final product of this step is a new dataset containing the values of different and
optimal preprocessing techniques for every wavelength separately. After the data transformation,
preprocessing and grouping, the calibration set is used for finding the best preprocessing sequence,
the optimal nLV and calculate the prediction model. To find the best per-wavelength combination,
the coefficient of determination (R2) between each preprocessing combination at each wavelength to
the chemical values is calculated. The optimal nLV is computed by determining the percentage of
variance (PCTVAR) of the modeled values for models with between 5 and 15 factors. Finally, the main
PLSR model is developed and a model on the per-wavelength preprocessed data and the transformed
chemical values with the optimal nLV and on the calibration group is created. During the third step,
model development and validation, a PLSR model is developed on transformed and preprocessed data
without overfitting. The sequence starting from the sampling routine and finishing in the prediction
model evaluation is repeated 512 times. To test the derived models, the validation group samples
are preprocessed with the same routine as the calibration samples. The model is applied on the
samples and the predicted values are transformed back from Box-Cox values to original chemical
values. After completion of the iterative procedure, 512 unique PLSR models with their performance
statistics are available. For step four, population analysis and best model selection, a R2 per wavelength
for the preprocessed data, as well as the weighted average beta coefficients of the best model of the
512 iterations are performed. These spectra are useful for understanding the important spectral ranges
of specific chemical attributes and for providing further observation of the results. PARACUDA II®

outputs are two files, the first file is the summary report of the calibration group, validation group,
cross-validation and the two spectral assignment spectra in Excel format, providing measured and
predicted values for each attribute and the second file is an applicable model in Matlab format, ready
to be applied on new spectral data. The second file is useful for either further validation or practical
purposes and can be applied on both point spectral data or on a hyperspectral image directly from the
PARACUDA II® interface.
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2.5. Assessment Statistics

The R2 and the root mean square error (RMSE) have been reported as standard methods for
validation of the prediction models [47]. Therefore, to compare the ability of different established
calibration methods, the R2 and the RMSE of cross-validation from the PLSR, as well as the R2 and
the RMSE from the test-set for PARACUDA II® at both institutions, were considered. R2 shows the
percentage of the variance in the y variable that is calculated by the x variables, and RMSE indicates
the prediction error. Generally, the best prediction model is shown by the largest R2 and the smallest
RMSE [47].

3. Results and Discussion

3.1. Soil Descriptive Statistics

Descriptive statistical results of soil parameters are summarized in Table 1. The studied samples
represented a narrow range of pH-H2O and pH-KCl (ranging from 5.3–8.6 and 4.5–7.6, respectively);
however, they varied widely in the case of Fe. The comparison of coefficients of variation (CV) of
different parameters showed that among all of the parameters, distribution of pH-H2O was more
homogeneous, it had the lowest CV and varied less when compared to other considered attributes
(12%). In contrast, Fe-ox had high CV (50%), underlining the varied and diverse origin of the samples.

Table 1. Descriptive statistics of soil properties in the studied sample sets.

Characteristic
Cox pH-H2O pH-KCl Fe-d Fe-ox Mn-d Mn-ox
(%) mg kg−1

Min 0.6 5.3 4.5 4360 620 122 140
Max 3.0 8.6 7.6 19,784 4280 573 478

Mean 1.5 7.3 6.6 9151 1775 350 260
SD 0.5 0.9 1.0 3112 891 89 88

CV (%) 33 12 15 34 50 25 34

3.2. Soil Spectral Reflectance Pattern

The spectral responses of soil samples, measured at CULS and TAU, are presented in Figure 4.
Both spectra had a similar general form with reflectance increasing with increasing of wavelength in
the VIS range. A broad region within which there were sharp absorption bands in the infrared range
was also obvious at both institutions measured spectra. Soil reflectance, like other soil properties,
varies continuously and the resulting spectra represent complex compositional mixtures of soil
materials from diverse origins that are also affected by their environments. It is clear that VIS-NIR-SWIR
spectra contain useful information that can be used to derive estimates of soil properties. For example,
absorption features in the VIS-NIR wavelength (400–1000 nm) are characteristics of the presence
of soil carbon and iron oxide [34,35,48–50], and those in the SWIR (1000–2500 nm) are from water,
clay minerals and organic matter [16,51]. The important spectra absorption features through the
use of some data mining algorithms have been studied by Viscarra Rossel and Behrens [15] and
Gholizadeh et al. [17].

Figure 5 demonstrates the spectra of soil samples based on their median, 1st and 3rd quartiles,
as measured by both institutions protocols. It can be clearly seen that spectral shape and position
at both CULS and TAU protocols did not show any noticeable difference, though spectra based on
the CULS setup demonstrated apparently higher albedo intensity and reflectance values relative
to the TAU setup reflectance. This is partly due to the fact that the measurement conditions
(different sample preparation, different environments, different white references, different bulbs
and illumination situation) for the TAU protocol were different to those at CULS, and more important
due to applying ISS correction factors at TAU, which decreased the spectral variation and was able
to correct the TAU spectra. According to Pimstein et al. [23], the albedo intensity may refer to an



Remote Sens. 2017, 9, 1078 9 of 14

offsetting of the spectral baseline. They also mentioned the higher reflectance, suggesting that the
differences in relative humidity during the measurements in different laboratories might be affecting
the spectral response.
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3.3. Comparison of Predictions Using Different Protocols and Algorithms

3.3.1. PLSR on CULS and TAU Spectral Datasets

Table 2 provides results of the analysis using PLSR on three spectral datasets of CULS and TAU:
original raw spectral data, 1st derivative and 2nd derivative.

Table 2. PLSR performance for CULS and TAU spectral datasets.

Attribute

Raw Spectra 1st Derivative 2nd Derivative

CULS TAU CULS TAU CULS TAU

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Cox 0.62 0.32 0.51 0.35 0.37 0.46 0.45 0.38 0.03 0.58 0.08 0.48
pH-H2O 0.76 0.46 0.72 0.50 0.60 0.64 0.59 0.63 0.30 0.84 0.20 0.85
pH-KCl 0.68 0.55 0.63 0.58 0.52 0.73 0.48 0.69 0.29 0.88 0.13 0.89

Fe-d 0.59 2000 0.53 2123 0.50 2220 0.40 2451 0.31 2600 0.17 2785
Fe-ox 0.75 453.36 0.64 533.70 0.60 599.84 0.55 598.60 0.39 701.08 0.32 725.23
Mn-d 0.39 69.83 0.32 73.67 0.29 75.89 0.15 82.67 0.10 84.71 0.03 87.51
Mn-ox 0.43 66.51 0.30 74.13 0.32 72.91 0.16 81.45 0.09 84.04 0.03 86.53
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In the multivariate calibration, raw spectra provided the best results in comparison to the 1st and
2nd derivatives at both institutions (R2 values 0.39–0.76 and 0.30–0.72 at CULS and TAU, respectively).
When compared to CULS, TAU protocol in most of statistics gave lower R2 and higher RMSE, in spite
of employing ISS. Pimstein et al. [23] also noticed the same pattern in their study and mentioned that
ISS can bring good results if a standard protocol is used in different laboratories. The most consistent
estimates were commonly gained for pH-H2O and Fe-ox in all three datasets at both CULS and TAU.
Good and excellent R2 (R2 > 0.81 and R2 > 0.90, respectively) [52] were not obtained for any of the
studied elements ad any of protocols. Inadequate models with poor accuracy (R2 < 0.50 and high
RMSE) were obtained for Mn-d and Mn-ox in raw spectral data and 1st derivative. 2nd derivative
provided poor and unsatisfactory accuracy for all of the treated attributes in both of the laboratories.

3.3.2. PARACUDA II® on CULS and TAU Spectral Datasets

The PARACUDA II® results on both the CULS and TAU spectral datasets are given in Table 3.
The best results of 512 models and the performances of R2 and RMSE can be seen. All of the statistics
are for maximum R2 values of 512 individual model iterations.

Table 3. PARACUDA II® performance for CULS and TAU spectral datasets.

Attribute
CULS TAU

R2 RMSE R2 RMSE

Cox 0.95 0.09 0.96 0.08
pH-H2O 0.76 0.25 0.78 0.25
pH-KCl 0.94 0.06 0.95 0.05

Fe-d 0.81 0.27 0.87 0.24
Fe-ox 0.91 5.85 0.95 3.65
Mn-d 0.89 39.99 0.83 34.98
Mn-ox 0.93 0.24 0.90 0.36

Summarizing the results of Table 3, it can be seen that the best predictability from PARACUDA II®

was obtained for Cox (R2 = 0.95, RMSE = 0.09; R2 = 0.96, RMSE = 0.08), followed by pH-KCl (R2 = 0.94,
RMSE = 0.06; R = 0.95, RMSE = 0.05) in CULS and TAU measurements, respectively. Moreover, for all
of the parameters except Mn, the TAU spectral dataset achieved higher results (but not significantly)
than the CULS dataset. The 512 different linear models for the range of soil properties would not be
easy to run without the automatic and parallel processing abilities that the PARACUDA II® offers.

A comparison of R2 using different algorithms on different datasets has been summarized in
Figure 6. It indicates that a noticeable improvement of both protocols data performances by using
PARACUDA II® was achieved. Accordingly, the PARACUDA II® provided excellent models, even to
those attributes that did not show any model by traditional PLSR. Mn-d and Mn-ox, which provided
poor accuracy (R2 < 0.50 and high RMSE) using PLSR, showed a quite notable improvement,
when PARACUDA II® was employed. This is mainly because of the capability of PARACUDA
II® to check all the available options and prepare the hidden models, which cannot be depicted
by PLSR. As the CULS measurements were acquired under a very accurate and stable procedure
(CULS protocol), it is most likely that the non-systematic effects (e.g., random noise, uncertain effects
and instabilities) were minimized, hence the PARACUDA II® could yield very high accuracy as the
TAU-ISS protocol provided.

All to all, despite the important influence of ISS on spectra correction and variation reduction,
as well as its positive and apparent effect on soil samples spectral responses, the final enhancement
of TAU protocol with ISS on statistics was not noticeably better than the non-ISS spectra (the CULS
results). Although, it has been demonstrated that ISS is extremely beneficial when combining Soil
Spectral Libraries (SSLs) measured with different protocols (users, instrumentation, environment,
white reference condition, etc.) [20,23] and may also be useable for instruments’ cross-validation
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process [53,54]. Accordingly, the PARACUDA II® data mining engine proved to be a powerful tool for
achieving higher results than the regular schemes such as PLSR, which was employed in this study.
This can be related to its capability for automatic parallel examination of many data manipulations,
as well as generating many partitions of the calibration-validation groups. It also excels in the automatic
procedure it provides, which enables searching for the best available model, something that cannot be
obtained by a skilled person in a reasonable amount of time.
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4. Summary and Conclusions

The results of the study showed that ISS aligned the systematic changes of the TAU protocol to
make it more stable; however, the analytical results from the TAU protocol with ISS did not show
noticeably higher enhancement than the CULS (non-ISS) outputs. It seems that keeping a protocol
(no matter what the protocol is) constant, reduces the efficiency of ISS, as the non-systematic effects
are minimal. Although, using ISS is highly recommended for fine-tuning small systematic effects in
a given protocol in general and between protocols in particular. In terms of data mining techniques,
PARACUDA II® as a new data mining and model optimizing approach, obviously provided better
results and proved to be a powerful and reliable tool in achieving the best prediction model, rather than
PLSR as a conventional data mining algorithm; however, PARACUDA II® is also a PLSR model, but it
uses a covariate optimization routine that selects the best preprocessing steps for a given response
variable. Based on the promising results of the PARACUDA II® performance, implementation of
further studies with other data mining and machine learning algorithms over different geographic
scales is highly advocated in order to check the PARACUDA II® robustness and stability. In conclusion,
adherence to a consistent protocol and a reliable data mining technique will improve the accuracy and
the comparability of results, which is necessary for the entire soil community.
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