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Abstract: Accurate knowledge of the sea ice parameters, including the thickness and the snow
depth over sea ice, are key to both climate change studies and operational forecast in polar regions.
The estimation of these parameters mainly relies on satellite based remote sensing, and current
retrieval algorithms usually focus on the retrieval of a single parameter under simple assumptions
over the other. In this article, we explore the potential of combined retrieval of both sea ice thickness
and snow depth through the data synergy two types of concurrent observations of the sea ice cover:
the active altimetry and the L-band passive remote sensing. The data synergy is based on two
physical constrains: (1) L-band (1.4 GHz) radiation model for the sea ice cover, and (2) the hydrostatic
equilibrium as used in satellite altimetry. Two schemes of data synergy are proposed: (1) the synergy
between L-band brightness temperature (TB) from passive microwave remote sensing and sea ice
freeboard (FBice) as measured by radar altimetry, and (2) the synergy between L-band TB and snow
freeboard (FBsnow) as measured by laser altimetry. Based on retrievability studies, we show that
both parameters can be retrieved using the two sets of data. Specifically, we show that there is
potential problem of ill-posedness for the synergy between L-band TB and FBsnow, with two possible
retrieval solutions for a small portion of the solution space. On the other hand, the synergy between
L-band TB and FBice is always well-posed. In terms of sensitivity, lower uncertainty is witnessed
for thin ice for the retrieval with FBice, while the retrieval with FBsnow shows advantage for thick
ice. Besides the input parameters of TB, FBice and FBsnow, the uncertainty associated with certain
model parameters such as snow and ice densities is not negligible for the uncertainty estimation of
the retrieved parameters. Verification is carried out with observational data from Operation IceBridge
(OIB) campaigns and SMOS satellite, showing that both sea ice thickness and snow depth can be
attained by the proposed retrieval algorithms. These algorithms serve as the basis for large-scale
retrieval with satellite remote sensing data, including concurrent observation of the Arctic Ocean by
independent satellite campaigns such as SMOS, CryoSat-2 and ICESat.

Keywords: sea ice; passive microwave remote sensing; altimetry; brightness temperature; retrieval

1. Introduction

The sea ice forms as the result of the cooling and the phase change of the sea surface [1]. As an
important factor in the climate system, the sea ice influences the overall radiative budget of the
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earth through albedo effects. Besides, it actively modulates the exchanges of heat, momentum and
gas between the polar atmosphere and ocean, and plays an important role in the propagation of
salinity and freshwater [2–5]. The snow cover is an integrated component of the sea ice, which is the
direct indicator of the polar atmospheric hydrological cycle. With higher albedo and better thermal
insulation as compared with the sea ice, the snow cover is also of crucial importance to the associated
atmosphere-ocean interactions. Therefore, the accurate estimation of the sea ice thickness and snow
depth over sea ice are the key to the understanding of processes in polar regions and the projections of
future changes [6], especially under the context of drastic shrinkage and thinning of the Arctic sea ice
cover during the recent decades. Aside from scientific questions, it is also indispensable to applications
such as the sea ice forecast operations and seasonal prediction [7].

Large-scale observation of sea ice thickness is challenging due to the scarcity of in-situ
measurements. Active satellite remote sensing based on radar or laser altimetry is the major
source of sea ice thickness estimations, which are available during the freeze-up period. By using
freeboard measurements from satellite altimetry such as ICESat [8] or CryoSat-2 [9], the thickness
of sea ice is retrieved under certain assumptions over the snow depth and snow loading [10–13].
However, large uncertainty is usually present for satellite altimetry when the sea ice thickness is
small (less than 1 m) [10,11]. Besides active altimetry, sea ice thickness can also be retrieved through
passive microwave satellite remote sensing. The thickness of thin sea ice can be estimated with thermal
imagery [14,15], which might be susceptible to cloud contamination. Besides, the thin ice thickness
(10 to 20 cm) can be also estimated with the brightness temperature (TB) measurements from various
frequency bands of passive microwave radiometer such as Special Sensor Microwave Imager (SSM/I)
and Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) sensors [16–19].
Recently, in Kaleschke et al. [20] and related works, the retrieval of thin ice thickness with L-band
(1.4 GHz) TB measurements from Soil Moisture and Ocean Salinity (SMOS) satellite is carried out,
based on a forward sea ice radiation model. It is shown that SMOS-derived ice thickness has a lower
uncertainty as compared with active altimetry for thin ice, and can serve as a complementary data
set [20,21]. However, for thicker ice (over 0.5 m), the uncertainty is very large due to the saturation of
TB with respect to the thickness [22]. A few recent work [21,23] focused on the synergy of the retrieved
sea ice thickness from SMOS and that based on CryoSat-2. Ricker et al. [24] created a merged weekly
product based on optimal interpolation scheme. It is worth noting that current retrieval of sea ice
thickness are all based on simple assumptions over the snow loading over the sea ice. For example,
the retrieval based on CryoSat-2 (or the merged product) is based on (adapted) climatology snow
depth in [25], and that based on ICESat resorts to the combination of: (1) the snowfall from reanalysis
data throughout the freeze-up period, and (2) the climatological snow depth at the beginning of the
freeze-up period [11]. On one hand, the validity of climatological snow depth may be compromised
due to its limited efficacy [26] and large uncertainty that arise from interannual variability [13,25].
On the other hand, the snow depth as estimated from reanalysis usually has unconstrained uncertainty
and is subjected to model biases.

As compared with sea ice thickness, the observations of the snow depth over the sea ice are also
sparse [27,28]. The climatology of snow depth in the Arctic Ocean has been developed in Warren et al. [25]
by compiling multi-decadal (1954 to 1991) in-situ measurements with drifting stations. Snow depth
retrieval with satellite based passive microwave remote sensing are proposed in various studies [29,30].
Comiso et al. [29] obtained snow depth over Antarctic sea ice and first-year sea ice (FYI) in the Arctic
based on difference between 19 and 37 GHz TB (vertical polarization) from AMSR-E. Maaß et al. [31]
(and related works) adopted a radiation model that incorporates the radiative properties of both snow
and sea ice, and achieved snow depth retrieval over thick Arctic multi-year ice (MYI) using SMOS TB. It is
worth noting that the sea ice thickness is a prerequisite for the snow depth retrieval, and the retrievable
depth is about 35 cm due to TB saturation.

In this study, we carry out theoretical study over the simultaneous retrieval of both sea ice
thickness and snow depth, by data synergy of concurrent active and passive remote sensing of the
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sea ice cover. Two data synergy schemes are proposed: (1) the synergy of L-band TB and radar
altimetry such as CryoSat-2 (for sea ice freeboard measurements), and (2) the synergy between L-band
TB and laser altimetry such as ICESat and ICESat-2 (for snow or total freeboard measurements).
Similar to current active and passive remote sensing algorithms [9,11,31], the proposed retrieval
framework relies on physical constraints for the retrieval, including the L-band radiation model and
the hydrostatic equilibrium relationship. However, the existing algorithms usually target at a single
sea ice parameter by using a single observational dataset, while the proposed framework aims at the
simultaneous retrieval of both parameters with two independent observational datasets. Theoretical
studies, including the analysis of the well-posedness of the retrieval problem, show that there exists
good retrievability for the synergy of two independent datasets. The overall validity of the proposed
algorithms is further verified with successful retrieval for typical scenarios, as well as the synergy
study based on SMOS and airborne data of OIB. Furthermore, through sensitivity studies we analyze
the quantitative contribution of various parameters to the uncertainty of the retrieved parameters.
The proposed data synergy serves as a theoretical basis for the basin-scale retrieval of sea ice parameters
using concurrent active and passive satellite remote sensing data, including SMOS and CryoSat-2
or ICESat-2.

2. Retrievability Studies

The active and passive remote sensing of the sea ice cover can be summarized in Figure 1.
Radar and laser altimetry detects the elevation of the main reflectance plane of the surface by active
scanning. Either the sea ice freeboard or the snow freeboard is attained, which is converted to sea ice
thickness following buoyancy relationships. On the other hand, passive remote sensing (in microwave
bands) such as SMOS measures the radiative properties of the earth’s surface, which usually features
lower spatial resolution but better spatial coverage than active altimetry. Active and passive remote
sensing are usually carried out by independent campaigns, such as ICESat and CryoSat-2 for altimetry,
and SMOS for L-band passive remote sensing.

Laser Radar TB(SMOS)

snow

sea ice

sea water

snow depth:

hs

sea ice 
thickness:

hi

snow freeboard: 

FB snow

ice freeboard:

FB ice

Figure 1. Schematic diagram of active and passive remote sensing of the sea ice cover. Sea ice
parameters (hi and hs), as well as the directly observed values of freeboard (FBice amd FBsnow) and
brightness temperature (TB) are also shown.

For the synergy of L-band TB and freeboard measurements, we adopt two existing physical
models that constrain the observational data with the sea ice parameters. The first model is the L-band
radiation model [32], which simulates the L-band (1.4 GHz) brightness temperature of the sea ice cover
based on its parameters. The second model is the hydrostatic equilibrium model based on buoyancy
relationship, which is widely used in satellite altimetry. Section 2.1 gives a short introduction to these
models, including the parameters as adopted by the retrieval algorithms. Based on these two forward
models, the inverse problem of retrieval is studied in Section 2.2 for the synergy between TB and FBice
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and that between TB and FBsnow. The analysis of the properties of the solution space and the potential
problem of ill-posedness is the basis of the design of retrieval methods in Section 3.

2.1. Forward Models

The first physical model as adopted by the retrieval is the L-band (1.4 GHz) radiation model.
The original model was developed for modeling the radiative transfer of soil moisture at L-band, as in
Burke et al. [33]. The adapted version of the model was applied for the sea ice that are related to the
retrieval with SMOS data [31]. Specifically, in Kaleschke et al. [21] introduced the detailed modeling of
the dielectric properties of the sea ice, and in Maaß et al. [31] the model was extended to include a snow
layer over the sea ice and further applied for the snow depth retrieval. In Zhou et al. [32], the model
was further improved to include more realistic characterization of the small-scale sea ice variabilities.
Due to the sensitivity of the radiative properties to the salinity in the sea ice [21], the vertical salinity
profile is integrated in the multi-layer formulation of the model. Sea ice type dependent salinity profile
was adopted to reflect the more thorough salinity drainage and flushing of MYI as compared with FYI.
Besides, as discussed in Zhou et al. [32], the open water or (refrozen) sea ice leads could have profound
impact on the overall L-band TB, we limit the discussion in this article to the theoretical studies which:
(1) only apply to normal Arctic winter conditions, and (2) involve no mixture of open water or sea ice
types. In Zhou et al. [32], the improved multi-layer radiation model was verified with observational
data including SMOS and Operation IceBridge (OIB [34]). There was good agreement between the
modeled and the observational TB (R2 as high as 0.81, with a correction factor of about 1.8 K).

Figure 2 shows the simulated TB with respect to sea ice parameters (hi and hs), under normal
Arctic winter conditions (the surface temperature of −30 ◦C). There is non-linear relationship between
TB and hi or hs. With the deepening of either the sea ice or the snow cover (i.e., increasing hi or hs),
the value of TB gradually saturates for both FYI and MYI. For hi larger than about 2.5 m (1.2 m) for
MYI (FYI), the value of TB saturates. For the retrieval of hi based on a prescribed hs, this implies that a
small perturbation/error in the observed TB would result in a large difference in the retrieved hi, as in
Tian-Kunze et al. [22]. Also due to the nonlinear relationship, the retrieval cannot be formulated in
an explicit form. We use Equation (1) to represent the nonlinear relationship between TB and related
parameters, including: surface temperature (Ts f c), sea ice type (ice_type), sea water temperature (Twater)
and sea water salinity (Swater) at the bottom of the sea ice.

TB = TB(hi, hs, Ts f c, ice_type, Twater, Swater) (1)

The second physical model as adopted by the retrieval is the hydrostatic equilibrium model
based on the buoyancy relationship between hi, hs and the density of sea ice, snow and sea water
(ρice, ρsnow and ρwater). This model is the basis of both radar and laser satellite altimetry [8,10,35].
For radar altimetry as in CryoSat-2 [13,36,37], the sea ice thickness can be estimated with FBice as
derived from satellite data, according to Equation (2). For laser altimetry as in ICESat [8,38], the same
model is applied with a different form involving FBsnow, as shown in Equation (3).

hi =
ρwater

ρwater − ρice
· FBice +

ρsnow

ρwater − ρice
· hs (2)

hi =
ρwater

ρwater − ρice
· FBsnow −

ρwater − ρsnow

ρwater − ρice
· hs (3)

Since the linear relationship between hi and FBice or FBsnow, the retrieval of hi can be formulated
in the explicit form above. The value of hs is treated as a priori knowledge which can be estimated
from other sources (see Section 1).

For the retrieval, we treat TB, FBice and FBsnow as input parameters, and hi and hs the retrieved
parameters. Other parameters as used by the models are categorized as model parameters, which are
either treated as constants or assumed to be derived from other sources. For the radiation model, Ts f c is
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assumed to be derived from remote sensing or reanalysis data. In this article, we mainly consider the
typical winter condition of the Arctic, and the surface temperature is assumed to be −30 ◦C Besides,
we also consider the relatively warmer condition (Ts f c = −15 ◦C) in the sensitivity studies, which is
becoming more common with global warming [39]. The values of Twater and Swater are considered as
constants (Twater = −1.8 ◦C and Swater = 33 g/kg). Following common practice in satellite altimetry,
density values are assumed constant: ρwater = 1024 kg/m3 and ρice = 915 kg/m3, as derived from
field measurements [40], and ρsnow = 320 kg/m3 following Warren et al. [25]. Although these model
parameters are assumed to be constant, the uncertainty as caused by these parameters are all analyzed
systematically for the sensitivity studies in Section 4.

With the transformed forms of Equations (2) and (3), we can also derive FBice and FBsnow based
on hi and hs. In Figure 2, the colored lines (with labels) represent constant FBice (blue lines) and
constant FBsnow (red lines). Since FBice and FBsnow are input parameters, the solution to the retrieval
based on TB and freeboard synergy resides on the corresponding constant freeboard lines. For the
synergy between TB and FBice, TB increases monotonically on each constant FBice line, in spite of the
saturation and minor decrease of TB with respect to hi. This implies good potential of retrieving hi and
hs based on TB and FBice. However, for the synergy between TB and FBsnow, under certain values of
FBsnow (e.g., 0.12 m for FYI and 0.30 m for MYI), there is no monotonic increase of TB with the increase
of hi. This implies that for certain combinations of TBsnow and TB, there may exist more than 1 solution
to the retrieval problem. It is worth noting that for thick sea ice, there is potentially better sensitivity
for both schemes of synergy, as indicated by the non-flat constant freeboard lines with respect to TB.
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Figure 2. The relationship between TB and sea ice parameters (hi and hs) under typical Arctic winter
conditions (surface temperature is −30 ◦C) for FYI (a) and MYI (b). The corresponding constant
freeboard lines are shown. Constant FBsnow lines and corresponding values (in m) of FBsnow are in red,
and those for FBice in blue.

2.2. Retrievability Analysis

We construct the solution space for the retrieval problems by scanning the sea ice parameters.
For each scanned values of hi and hs, we generate the values of TB, FBice and FBsnow. We exclude the
cases involving inundation (i.e., FBice < 0), which is uncommon for Arctic regions. The solution space
for each of the data synergy scheme is plotted and examined with respect to the input parameters.

For the synergy between TB and FBice, Figure 3a,b show the solution space for hi and hs
respectively for FYI, and Figure 3c,d show those for MYI. A reasonable range of the solution space
for both hi and hs is included (hi within about 10 m and hs within 1 m). With a certain value of FBice,
there exists a range of possible TB values. For FYI, with the increase in FBice, the lowest possible value
of TB also increases. For MYI, there is a slight decrease of the lowest bound of TB when FBice is high.
Due to the saturation of TB with respect to either hi or hs, there also exists an upper bound for TB.
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Under certain value of TB (or FBice), the solutions of both hi and hs become larger with the increase of
FBice (or TB).
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Figure 3. The solution space of hi (a) and hs (b) based on synergy between TB and FBice for FYI.
(c,d) show the solution spaces for MYI. The results correspond to typical Arctic winter conditions.
Asterisks and Roman numerals (I to VIII) in the figures represent representative retrieval scenarios
with typical Arctic sea ice parameters.

Figure 4 shows the solution space for the synergy between TB and FBsnow. As compared with the
corresponding information in Figure 3, there exists evident differences. The most prominent difference
from the synergy between TB and FBice is the presence of two potential solutions for certain part of
the solution space. Therefore, the retrieval problem of the synergy between TB and FBsnow is not
well-posed. In each subfigure, the portion of the solution space that involves two potential solutions
is outlined by dotted lines in the main part. The other solution of this portion of the solution space
is also shown by embedded graph in each subfigure. The corresponding input parameters are as
follows: (1) for FYI, FBsnow around 0.1 m and TB around 237 K, (2) for MYI, FBsnow around 0.37 m
and TB around 247 K. For FYI, this portion consists of a small part (3.32%) of the solution space,
and the corresponding two solutions for hi (hs) are about 0.4 m and 0.9 m (0.1 m and 0.07 m). For MYI,
the proportion is higher (6.67%), and the two potential solutions for hi (hs) are about 1.3 m and 2.8 m
(0.3 m and 0.12 m).
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Figure 4. Same as Figure 3 but for the synergy between TB and FBsnow. Subfigures are ordered as in
Figure 3, with (a,b) showing the sol2zuole tion space of hi and hs for FYI respectively, and (c,d) showing
those for MYI.

We also consider the relatively warmer Arctic condition with Ts f c = −15 ◦C, instead of the normal
winter condition (Ts f c = −30 ◦C). Examination of the corresponding solution space is carried out
in a similar manner. The results (not shown) indicate that under the relatively warmer condition,
the range of TB is from 247 K to 255 K (250 K to 257 K) when FBice is large in FYI (MYI) algorithm.
This range is narrower as compared to winter condition (Figure 3). However, the well-posedness
(ill-posedness) of the retrieval problem for the synergy between TB and FBice (FBsnow) is not changed.
Besides, the portion of the solution space that involves two solutions takes up about 9.28% (5.49%) for
FYI (MYI).

To summarize, there exists retrievability of sea ice parameters with the observational data of
L-band TB and freeboard measurements. For typical parameters, both hi and hs can be attained given
the combination of TB and FBice or FBsnow. The synergy between TB and FBice is always well-posed,
while for that between TB and FBsnow there is potential of two solutions. These characteristics of the
solution space should be accounted for by the retrieval algorithms.

3. Retrieval Algorithms

To accommodate the different characteristics of the data synergy schemes, we construct two retrieval
algorithms with the forward physical models. For the synergy between TB and FBice, due to the retrieval
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problem is well-posed, we start with a minimum guess for snow depth (hs = 0), and the corresponding
hi can be computed according to Equation (2). At each iteration, the values of hi and hs are used to
compute the TB using the forward radiation model. The modeled TB is compared against the observed
TB. If the modeled TB is lower, hs is then increased for the next iteration. Otherwise, a small step in
increasing hs is adopted. Therefore an iterative process (involving binary search) is carried out to locate
the proper value of hs (as well as hi) that generates the observed TB. The outline of the iterative algorithm
is shown in Figure 5.

Initialization:

i = 0, hs(i) = hs(0) = 0,∆hs = 4cmi = 0, hs(i) = hs(0) = 0,∆hs = 4cm

i = i+ 1i = i+ 1

hsi = hsi−1 +∆hshsi = hsi−1 +∆hs

Compute hihi with hs(i)hs(i) and FBiFBi, denotes hi(i)hi(i):

hi(i) = f(hs(i), FBi)hi(i) = f(hs(i), FBi)

Simulate TB as:
TB(i) = TB(hi(i), hs(i), IceType, Tair, . . . )TB(i) = TB(hi(i), hs(i), IceType, Tair, . . . )

TB(i−1) = TB(hi(i−1), hs(i−1), Icetype, Tair, . . . )TB(i−1) = TB(hi(i−1), hs(i−1), Icetype, Tair, . . . )

∣∣TB(i) − TBobs

∣∣! threshold
∣∣TB(i) − TBobs

∣∣! threshold

Output:

hi(i), hs(i)hi(i), hs(i)

Yes

TB(i) < TBobsTB(i) < TBobs

&

TB(i−1) < TBobsTB(i−1) < TBobs

∆hs = 1
2∆hs∆hs = 1
2∆hs

hs(i) = hs(i−1)hs(i) = hs(i−1)

No

YesNo

EXIT

Figure 5. Retrieval algorithm based on data synergy between L-band TB and FBice.

For the synergy between TB and FBsnow, since there exists possibility of two potential
solutions, instead of a simple iterative process in Figure 5, two steps are involved for the retrieval.
Firstly, a scanning process within the possible range of hs is carried out. The scanning targets at
individual values of hs by a sufficiently small step (e.g., 1 cm). Potential solutions are detected when
the values of modeled TB from two adjacent values of hs reside on different side of the observed
TB. For the second step, for each potential solution, a binary search process can then be carried out.
For the case involving two potential solutions, both of them are reported by the retrieval algorithm.
The outline of this algorithm is shown in Figure 6.
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For hsscanhsscan from 0 ∼ 1m0 ∼ 1m step by 1cm1cm

hiscan(i) = f(hsscan(i), FBs)hiscan(i) = f(hsscan(i), FBs)

TBscan(i) = TB(hiscan, hsscan, Icetype, Tair, ...)TBscan(i) = TB(hiscan, hsscan, Icetype, Tair, ...)

(i = 1, 2, ...101)(i = 1, 2, ...101)

(TBscan(i)− TBobs) · (TBscan(i+ 1)− TBobs) < 0(TBscan(i)− TBobs) · (TBscan(i+ 1)− TBobs) < 0No

i = i+ 1i = i+ 1

i = 1i = 1

k = 0k = 0

Yes

k = k + 1k = k + 1

hssolution(k) = hsscan(k)hssolution(k) = hsscan(k)

i > 100i > 100No

Yes

k > 0k > 0NoExit

Yes

hs− = hssolution(k), hi
− = f (hs−, FBs)hs− = hssolution(k), hi
− = f (hs−, FBs)

TB− = TB(hi−, hs−, Icetype, Tair, ...)TB− = TB(hi−, hs−, Icetype, Tair, ...)

hs+ = hs− + 0.01hs+ = hs− + 0.01

|TB∗ − TBobs|! threshold|TB∗ − TBobs|! threshold Output:
hihi,hshs

Yes
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Figure 6. Retrieval algorithm based on data synergy between L-band TB and FBsnow.
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In order to verify the retrieval algorithms, we construct 8 idealized retrieval scenarios that are
typical for the Arctic region. As shown in Table 1, these scenarios cover both sea ice types, as well
as a range of sea ice thickness and snow depth. The derived parameters based on physical models
in Section 2.1 are also shown, including FBice, FBsnow and L-band TB. We denote these scenarios by
number I to VIII, and their locations in the solution space for both types of data synergy are indicated
in Figures 3 and 4.

Table 1. Sea ice parameters (hi and hs) and observed parameters (FBice, FBsnow and TB) for 8 typical
retrieval scenarios for the Arctic.

Ice Type Scenario hi (m) hs (m) FBice (m) FBsnow (m) TB (K)

FYI

I 0.5 0.05 0.0376 0.0876 231.5
II 1.0 0.03 0.0971 0.1271 238.2
III 1.5 0.10 0.1284 0.2284 243.7
IV 2.5 0.25 0.1880 0.4380 246.5

MYI

V 1.5 0.15 0.1127 0.2627 243.8
VI 2.5 0.15 0.2192 0.3692 248.9
VII 3.0 0.35 0.2100 0.5600 252.0
VIII 5.0 0.40 0.4072 0.8072 250.4

We carry out retrieval with the derived values of FBice, FBsnow and L-band TB, using the
corresponding retrieval algorithm. Table 2 shows the retrieval results. By comparison with the
true values of the parameters, we demonstrate that the true values of hi and hs are attained with both
types of data synergy. For the synergy between TB and FBice, the retrieval solution is unique for all
scenarios. For the synergy between TB and FBsnow, two potential solutions are possible for scenario
II and VI. The true solution is included in the retrieval result, and the other solution is shown in red
for each scenario. It is further verified this solution does produce the same FBsnow and TB as the true
solution. As compared with the true solution, the snow is thicker and the sea ice is thinner. Consistent
with the retrievability study, it is indicated that scenario II and VI are included in the portion of the
solution space that contain ambiguous solutions, as in Figure 4.

Table 2. Retrieved sea ice parameters (hi and hs) for typical scenarios in Table 1. For the case with two
potential solutions, the bold texts show the true solution, while the red texts in parentheses the other
potential solution. The case with double solutions is only possible for the synergy of TB and FBsnow.

Results
Data

Synergy
Scenario

I II III IV V VI VII VIII

Retrieved
hi (m)

TB & FBice 0.5000 1.0000 1.5000 2.5000 1.5000 2.5000 3.0000 5.0000

TB & FBsnow 0.5000 1.0000
(0.5552)

1.5000 2.5000 1.5000
2.5000

(1.5499) 3.0000 5.0000

True hi (m) 0.50 1.00 1.50 2.50 1.50 2.50 3.00 5.00

Retrieved
hi (m)

TB & FBice 0.0500 0.0300 0.1000 0.2500 0.1500 0.1500 0.3500 0.4000

TB & FBsnow 0.0500 0.0300
(0.0989)

0.1000 0.2500 0.1500
0.1500

(0.2971) 0.3500 0.4000

True hs (m) 0.05 0.03 0.10 0.25 0.15 0.15 0.35 0.40

4. Sensitivity Studies

In this section we carry out sensitivity study over the retrieved parameters and the effect of both
the input and the model parameters. We first examine that of input parameters in Sections 4.1 and 4.2,
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and further examine that of model parameters in Section 4.3. The uncertainty for these parameters
are listed in Table 3. The values are the in standard deviation (σ) as derived from typical observations
or datasets. For example, the uncertainty of TB is 0.5 K, as specified by SMOS data [22], and the
uncertainty of Swater represents Arctic basin-wide variability of surface salinity. Therefore, these values
serve as references to the uncertainty of the data during actual retrieval practice. Uncertainty in
the retrieved parameters are quantified by either differentiation or Monte Carlo simulations with
perturbations to both individual parameters and a set of parameters. In Monte-Carlo simulations,
all the perturbations to all parameters except the freeboard values follow normal distribution with
the prescribed standard deviations. The perturbation to freeboard values (FBice and FBsnow) follow
log-normal distributions to avoid negative freeboards. Results show that TB and freeboard plays
different roles in the uncertainty of hi and that of hs. Furthermore, model parameters play a
non-negligible role as compared with input parameters. For further study with realistic data, both types
of parameters should be accounted for the uncertainty estimation of the retrieved parameters.

Table 3. The uncertainty (σ) of input parameters and model parameters in sensitivity studies.

Input Parameters

σFBice (m) σFBsnow (m) σTB (K)

0.01 0.01 0.5
Model Parameters

σρice (kg/m3) σρsnow (kg/m3) σTs f c (K) σTwater (K) σSwater (psu)

10 33.3 1.031 0.2 2

4.1. Effect of Input Parameters for the Synergy between TB and FBice

Based on the solution spaces of both types of data synergy, we compute the differences of the
retrieved hi and hs as caused by perturbations to either TB or freeboard values. First, we compute the
absolute uncertainty of hi and hs, denoted εabsolute:εabsolute|y =

∆y
∆x
· σx, where x is the input parameter

(TB or FBice or FBsnow), and y the retrieved parameter (hi or hs). The values of ∆x and ∆y are derived

by differentiation within the solution space in Figures 3 and 4, and the value of ∆y
∆x

characterizes
the rate of change in y as caused by a small perturbation in x. Therefore εabsolute represents the
uncertainty of y in terms of standard deviation. Second, we compute the relative uncertainty based on
the absolute uncertainty and the actual value of the parameter. The relative uncertainty is defined as:

εrelative|y =
εabsolute |y

y × 100%, which is the percentage of the uncertainty of y with respect to y.
For the data synergy between TB and FBice, Figures 7 and 8 show the uncertainty analysis for

perturbations to FBice and TB, respectively. As shown in Figure 7, the uncertainty in hi as caused
by that of FBice is generally lower than 10% (subfigure a and c). For comparison, as in Figure 8,
the uncertainty in hi as caused by TB is generally lower than that caused by FBice when TB is relatively
low. However, when TB is high (hi > 4 m and hs > 0.9 m for FYI, or hi > 7 m and hs > 70 cm for MYI),
the uncertainty as caused by TB is larger than that of FBice. This change is attributed to the saturation
feature of TB for thick ice. It is worth noting that these parameters are relatively rare during Arctic
observations. For hs, when comparing Figures 7 and 8, it is shown that different from the case of hi,
TB always plays a dominant role in the uncertainty of hs. The uncertainty in hs as caused by FBice is
only higher than 10% when TB is lower than about 238 K or higher than 250 K for FYI, and lower than
246 K or higher than 253% for MYI. However, TB consistently causes nearly 10% or higher uncertainty
in hs for both FYI and MYI. As a result, TB causes larger uncertainty in hs for a larger portion of the
solution space than FBice. Similar to hi, when both hi and hs are relatively large, there exists increase in
the uncertainty of hs for both absolute and relative terms (>0.4 m or 20% for FYI, and >0.5 m or 30%
for MYI).
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Figure 7. Sensitivity study of retrieved parameters to freeboard measurements. Results for the synergy
between TB and FBice are shown. (a,b) show the sensitivity of the retrieved hi and hs to FBice for FYI,
respectively. (c,d) show the results for MYI. The filled color contour is the absolute uncertainty of hi or
hs (in meters), and the labeled lines are the relative uncertainty (units: %). The uncertainty for FBice is
quantified in terms of standard deviations according to Table 3. The absolute uncertainty in hi or hs
(denoted εabsolute) is the quantitative difference in hi or hs as caused by perturbation to FBice or TB by

1 standard deviation. The relative uncertainty of y is computed as: εrelative|y =
εabsolute |y

y × 100%, where
y is the corresponding value of hi or hs.

We further carry out sensitivity studies for the 8 typical retrieval scenarios as introduced in
Section 3. In order to evaluate the uncertainty in the retrieved hi and hs, we apply Monte Carlo
simulations with the retrieval algorithms. For each type of data synergy, three simulations are carried
out, containing random perturbations to the value of freeboard, to that of TB, and to both of them.
Each simulation contains 5000 samples. Each simulation sample contains a perturbation (or a set of
perturbations), and the retrieval is carried out with the perturbed parameter(s). Perturbations follow
normal distribution for TB and log-normal distribution for freeboard (see Table 3). The uncertainty in
the retrieved hi and hs is then estimated by computing the standard deviation among the samples.
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Table 4 (first 3 columns of the results) shows the relative uncertainty as estimated from the
simulations for the synergy between TB and FBice. The relative uncertainty of parameter y, denoted
εrelative|y is computed as σy

y × 100%, where σy is the standard deviation as derived from Monte-Carlo
samples and y the true value of the parameter. In order to contrast the relative importance between TB
and FBice, the larger value is shown in bold. For both hi and hs, FBice plays an more dominant role or
relative thin ice (scenario I, II and V), and TB plays an more important role for thick MYI (scenario VII
and VIII). For other scenarios (III, IV, VI), FBice plays a dominant role for hi, but TB caused higher
uncertainty for hs. Also the uncertainty in hi and hs as caused by both input parameters is lower than
11% and 28%, respectively. Besides, they are generally lower than the combined values as caused by
each parameter under the assumption of independence. This implies that the uncertainty in hi and hs
is correlated, although the uncertainty in input parameters are independent.
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Figure 8. Same as Figure 7 but for the effect of the uncertainty in TB for the synergy between TB and FBice.
The order of subfigures are also the same as Figure 7, with (a,b) showing the sensitivity of the retrieved hi and hs
to TB for FYI, and (c,d) the results for MYI.
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Table 4. Relative uncertainty (units: %) in the retrieved hi and hs for the synergy between TB
and FBice, as estimated by Monte-Carlo simulations. Normal Arctic winter condition is assumed
(surface temperature of−30 ◦C). In each Monte-Carlo simulation sample, the retrieval process is carried
out with a random perturbation to the designated parameter(s). The perturbations are Gaussian, with
the standard deviation in Table 3. The relative uncertainty εrelative|y is given by: σy

y × 100%, where σy

is the standard deviation of y estimated from samples of the corresponding Monte-Carlo simulation,
and y the true value (y for hi or hs). Sensitivity studies are carried out for each input or model parameter,
each set of parameters, as well as all parameters (in different columns). The numbers in bold are the
relatively larger one between the two values associated with the input parameters.

Scenario Results FBice TB Both Input Param. ρice ρsnow Ts f c All Model Param. All Param.

I hi 11.18% 1.15% 10.69% 3.93% 0.72% 1.52% 4.39% 11.50%
hs 27.61% 3.91% 26.73% 10.27% 5.60% 5.17% 13.10% 29.55%

II hi 7.79% 1.18% 7.93% 5.92% 0.10% 1.64% 6.16% 9.85%
hs 18.45% 13.42% 23.24% 13.95% 8.28% 18.61% 25.16% 33.80%

III hi 6.74% 2.39% 7.08% 7.71% 0.53% 2.54% 8.24% 11.24%
hs 2.23% 12.22% 12.40% 2.77% 5.55% 12.95% 14.52% 20.21%

IV hi 4.75% 3.92% 6.27% 9.29% 1.31% 3.54% 10.04% 11.73%
hs 3.54% 13.36% 13.72% 6.75% 4.03% 12.06% 14.67% 20.05%

V hi 3.71% 1.62% 3.96% 4.10% 1.23% 1.79% 4.45% 5.98%
hs 9.67% 5.41% 10.55% 10.69% 5.12% 5.99% 12.93% 16.49%

VI hi 3.21% 2.16% 3.77% 6.12% 0.58% 1.96% 6.48% 7.75%
hs 3.85% 12.28% 12.52% 6.38% 5.49% 11.10% 13.77% 18.95%

VII hi 3.88% 6.22% 7.36% 10.13% 1.55% 3.69% 12.65% 16.59%
hs 2.66% 18.18% 18.54% 8.54% 3.96% 10.78% 18.97% 33.30%

VIII hi 3.21% 6.40% 7.13% 12.83% 1.35% 4.38% 15.32% 18.03%
hs 5.66% 27.24% 27.80% 23.34% 4.12% 18.63% 34.59% 50.31%

Aside from the normal winter condition of the Arctic, we also consider a relatively warm condition
(Ts f c = −15 ◦C), to reflect the effect of global warming for the typical scenarios. The uncertainty is
estimated with Monte-Carlo simulations, and the results are shown in Table 5. Comparison with
Table 4 shows that there is little change or slight increase in the uncertainty caused by FBice, but the
increase in that caused by TB is much larger. In relative terms, TB has become the dominant source
of uncertainty of hi for scenario IV and VI, and that of hs for scenario II. With the warmer condition,
the saturation of TB with respect to sea ice parameters is more premature, which is the reason for the
increase of its role in the uncertainty of the retrieved parameters.

Table 5. Same as Table 4 but for the relatively warm Arctic conditions (surface temperature of −15◦C).

Scenario Results FBice TB Both Input Param. ρice ρsnow Ts f c All Model Param. All Param.

I hi 11.88% 1.93% 11.48% 4.23% 0.20% 3.53% 5.66% 12.80%
hs 25.35% 6.56% 25.18% 9.29% 7.81% 12.02% 17.39% 30.68%

II hi 7.45% 2.20% 7.78% 5.65% 0.71% 3.37% 6.68% 10.13%
hs 22.14% 24.92% 33.74% 16.77% 16.92% 38.29% 44.08% 54.91%

III hi 6.07% 5.24% 7.97% 6.91% 1.41% 4.92% 8.71% 12.52%
hs 1.37% 26.78% 26.76% 1.56% 15.81% 25.13% 30.02% 43.55%

IV hi 4.16% 8.81% 9.80% 8.21% 1.85% 6.68% 11.10% 15.36%
hs 1.58% 30.01% 29.73% 3.19% 14.83% 22.75% 28.72% 44.01%

V hi 3.42% 2.37% 4.17% 3.87% 0.48% 3.14% 5.04% 6.73%
hs 9.84% 8.11% 12.65% 11.06% 6.65% 10.70% 16.96% 21.27%

VI hi 3.46% 5.93% 6.86% 6.88% 0.67% 4.63% 8.67% 16.50%
hs 1.59% 33.68% 33.49% 3.25% 11.64% 26.30% 30.62% 71.31%

VII hi 4.85% 54.97% 56.27% 14.36% 2.04% 12.50% 32.46% 86.22%
hs 5.17% >100% >100% 19.32% 13.48% 36.50% 76.16% >100%

VIII hi 3.07% 14.08% 14.77% 11.86% 1.36% 9.26% 17.23% 28.86%
hs 5.04% 59.97% 61.86% 19.64% 13.64% 39.41% 51.66% >100%
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4.2. Effect of Input Parameters for the Synergy between TB and FBsnow

We carry out sensitivity study for the data synergy between TB and FBsnow as in Section 4.1. On the
solution space, the most prominent difference from the synergy between TB and FBice is the region with
two potential solutions. In Figures 9 and 10, the sensitivity of the retrieved parameters to FBsnow and TB
in the solution space are shown, respectively. The sensitivity for the portion that contains two potential
solutions are shown by embedded figures, similar to Figure 4. For scenario II and IV with two potentials
solutions, the effect of double solution is accounted for during the uncertainty estimation. Both FBsnow

and TB have direct influence over the retrieved hi and hs. When the sea ice is thin, the relative uncertainty
in hi as caused by FBsnow grows to over 15% for both FYI and MYI. When the sea ice thickness is high,
this value drops under 2%. Similar situation applies to hs, for shallower snow cover or thinner sea ice,
the relative uncertainty as caused by FBsnow is high. For comparison, the effects of TB is relatively more
dominant that of FBsnow than the data synergy of FBice and TB. The influence on the uncertainty of
hs is more prominent. For FYI, when TB is low, the relative uncertainty of hs rises up to 20%, and for
MYI, to over 15%. Table 6 (first 3 columns) lists the uncertainty estimation for representative scenarios,
which is in direct comparison with Table 4. The relative uncertainty as caused by both input parameters
drops with the increase in sea ice thickness and snow depth. As contrast from Table 4, TB causes a larger
portion of the uncertainty in both hi and hs (6 for hi and 7 for hs, among 8 scenarios), while FBsnow and
TB cause uncertainty in hi and hs on equal terms for thin FYI and thin MYI.
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Figure 9. Same as Figure 7 but for the effect of the uncertainty in FBsnow for the synergy of TB and FBsnow.
The order of subfigures are also the same as Figure 7, with (a,b) showing the sensitivity of the retrieved hi and hs
to FBsnow for FYI, and (c,d) the results for MYI.
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Figure 10. Same as Figure 7 but for the effect of the uncertainty in TB for the synergy of TB and FBsnow.
The order of subfigures are also the same as Figure 7, with (a,b) showing the sensitivity of the retrieved
hi and hs to TB for FYI, and (c,d) the results for MYI.

Table 6. Same as Table 4 but for the data synergy between TB and FBsnow.

Scenario Results FBice TB Both Input Param. ρice ρsnow Ts f c All Model Param. All Param.

I hi 32.96% 35.71% 33.14% 32.90% 37.12% 34.51% 33.24% 33.61%
hs 61.79% 60.40% 61.92% 54.80% 62.52% 57.54% 57.13% 62.04%

II hi 28.11% 24.30% 28.79% 28.10% 24.81% 24.95% 28.48% 29.83%
hs 54.03% 55.47% 57.48% 54.53% 51.12% 56.77% 58.72% 64.14%

III hi 5.60% 4.30% 6.98% 6.23% 3.50% 4.60% 8.61% 11.31%
hs 1.75% 9.99% 10.08% 2.08% 4.59% 10.69% 11.84% 16.09%

IV hi 2.43% 4.34% 4.90% 4.69% 3.46% 3.91% 7.08% 8.61%
hs 1.96% 6.71% 6.83% 3.78% 1.86% 6.06% 7.28% 10.28%

V hi 18.67% 22.35% 22.43% 20.13% 13.16% 22.92% 23.19% 24.56%
hs 38.84% 40.67% 45.13% 43.55% 21.27% 42.70% 46.33% 46.04%

VI hi 25.31% 26.60% 27.49% 27.18% 25.27% 26.33% 29.40% 30.88%
hs 35.56% 37.84% 39.19% 36.18% 35.95% 37.14% 40.38% 43.25%

VII hi 2.26% 7.01% 7.26% 4.97% 4.32% 4.60% 8.02% 10.54%
hs 1.59% 9.30% 9.81% 3.02% 2.36% 6.01% 7.17% 11.70%

VIII hi 0.99% 3.99% 4.16% 3.58% 2.38% 2.93% 5.29% 6.68%
hs 1.74% 7.73% 7.98% 6.31% 1.25% 5.67% 8.75% 11.63%
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When compared with the data synergy between TB and FBice, the major difference is that for
relatively thinner sea ice, the synergy between TB and FBice yields lower uncertainty in sea ice
parameters, and for thicker ice, that between TB and FBsnow shows advantage. We also carry out the
study for these scenarios under relatively warm Arctic conditions (shown in Table 7). For relatively
thinner sea ice cover, there is no general trend of the uncertainty in the retrieved parameters.
However, for scenarios with thicker ice, the relative uncertainty as caused by TB generally double or
triple. Similar to the other type of synergy, the uncertainty caused by freeboard measurements stays
unchanged, due to the irrelevance of the physical model of buoyancy to the change of temperature
from −30 ◦C to −15 ◦C.

Table 7. Same as Table 5 but for the data synergy between TB and FBsnow.

Scenario Results FBice TB Both Input Param. ρice ρsnow Ts f c All Model Param. All Param.

I hi 22.72% 21.43% 24.07% 19.07% 20.41% 22.45% 22.81% 26.71%
hs 33.59% 39.53% 38.73% 38.04% 38.80% 33.12% 34.10% 40.09%

II hi 35.11% 31.87% 36.07% 32.50% 30.59% 33.18% 36.70% 38.70%
hs 65.16% 57.95% 63.67% 57.63% 58.09% 54.32% 57.42% 59.10%

III hi 22.46% 26.36% 27.92% 11.34% 25.48% 20.72% 29.56% 30.48%
hs 33.11% 43.44% 42.57% 16.17% 38.12% 41.13% 44.20% 47.93%

IV hi 3.02% 13.61% 13.57% 5.57% 10.65% 10.42% 15.63% 19.12%
hs 1.14% 20.55% 20.21% 2.12% 12.17% 16.45% 19.73% 26.72%

V hi 18.29% 22.08% 22.64% 18.82% 20.58% 22.93% 24.64% 25.65%
hs 45.23% 47.91% 49.65% 48.24% 44.07% 46.84% 49.28% 47.62%

VI hi 25.35% 29.36% 29.88% 26.29% 25.77% 28.88% 30.74% 33.50%
hs 34.60% 40.92% 41.90% 34.23% 35.37% 40.10% 42.10% 47.46%

VII hi 1.74% 12.16% 12.29% 3.94% 6.80% 8.03% 12.49% 16.36%
hs 1.79% 16.01% 15.85% 4.06% 5.40% 10.75% 13.04% 19.90%

VIII hi 1.03% 7.99% 7.80% 3.77% 3.83% 6.63% 8.67% 11.62%
hs 1.69% 15.37% 14.99% 6.19% 3.80% 13.04% 14.58% 21.29%

4.3. Uncertainty Analysis from Model Parameters

Apart from input parameters, the effect of model parameters on the retrieved sea ice parameters
are evaluated in terms of uncertainty. We extend the Monte-Carlo simulations in Sections 4.1 and 4.2
to include perturbations to model parameters. The analyzed parameters are listed in Table 3. Since the
effects of Twater and Swater are very small, causing less than 0.01% change in the retrieved hi and
hs. This is due to two reasons: (1) they have very small impact on the density of the water and the
corresponding retrieval process of altimetry, and (2) the radiative properties of the sea ice covered
ocean are dominated by that of the sea ice cover, and the small change in the radiative property of the
sea water as caused by these parameters has little impact on the sea ice retrieval. Therefore, we focus
on the other 3 parameters: ρice, ρsnow and Ts f c. The density values mainly affect the physical model
for altimetry, influencing the quantitative relationship between hi and hs under a linear relationship
(see Equations (2) and (3)). Due to the observed large uncertainty and seasonal evolution of ρsnow [25]
as well as their important role in altimetry [41,42], their uncertainty values are chosen accordingly
to reflect their change during the Arctic winter season, ranging from 220 kg/m3 to 420 kg/m3

(see also [43,44]). The uncertainty of ρice is set to 10 kg/m3, after [41,43,44]. On the other hand,
Ts f c mainly affects the retrieval results through its influence over the vertical temperature structure of
the sea ice cover and its radiative properties [32]. The uncertainty of Ts f c of about 1 K is derived from
OIB dataset [45], which reflects the variability of surface temperature within a range of 25 km which is
commonly used for the production of polar remote sensing data products.

In Tables 4–7, the uncertainty as caused by ρice, ρsnow, Ts f c, and their combination are shown
in column 4 to 7 (of the results). When compared with input parameters, they show non-negligible
influence over the uncertainty of retrieved parameters. Their combined effect is comparable to that of
input parameters across all scenarios. Besides, for the synergy between TB and FBice, with the increase
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of hi and hs, the uncertainty caused by these model parameters increase, but for the synergy between
TB and FBsnow, the decrease of the uncertainty for hi and hs is witnessed. This is in general consistency
with the analysis for input parameters, and coincides with the relative advantage of the two types of
synergy over different range of sea ice parameter. Under warmer conditions, the difference as caused
by density values generally remain unchanged, while that of Ts f c increase by 100% or higher for both
hi and hs.

For the uncertainty estimation of the typical scenarios, we also produce a set of Monte-Carlo
simulation that contain perturbations to all the parameters (including both input and model
parameters), as shown by the last column in each table. For the retrieval problem, the model parameters
are mainly derived from other supportive data sources, and not directly provided by satellite altimetry
or L-band remote sensing data. However, according to the analyses, they can have equally profound
influence over the retrieved parameters, which is consistent with existing studies such as the analysis
of satellite altimetry [41,42]. Their effect should also be accounted for during the actual retrieval
problems for the data synergy proposed by this article.

5. Verification with OIB and SMOS Data

5.1. Data

For the verification, we use airborne measurements from OIB and SMOS satellite based TB data,
by considering the co-registered scanning of the sea ice by the two independent data sets. OIB data
are provided as 40 m resolution along-track scanning of the sea ice cover. The onboard snow radar
and laser altimeter measure the nadir snow depth and total freeboard, and the sea ice thickness can be
derived with these parameters. All the data from OIB campaigns during year 2012 and 2015 are used
for the retrieval and verifications [34]. The level-4 SMOS TB data product [46] is adopted, which are
regridded on the 12.5 km EASE grid.

SMOS TB field on the same date of each OIB campaign is attained for the data synergy. Due to the
inherent resolution difference between OIB (limited swath) and SMOS, we treat OIB as samples of the
underlying sea ice cover that corresponds to a single TB value in the daily SMOS TB field. Although
the resolution of the SMOS TB product is 12.5 km, the native resolution of SMOS measurements is
about 40 km. Therefore, all the measurements from OIB that are within the 9 EASE grid cells are
treated as samples, covering an area of 37.5 km × 37.5 km which is consistent in general with the
native resolution of SMOS measurements.

For the verification, we align the spatial resolution of OIB data to that of SMOS. Points with mixed
sea ice type, open water or lead are excluded for further retrieval and verification, in order to exclude
the uncertainty associated with the mixture of the sea ice cover. For each SMOS TB, the arithmetic
mean values of FBsnow, hs, FBice and hi among all the OIB samples are computed. These values are
denoted FBsnow, hs, FBice and hi, respectively. For the synergy between radar altimetry and L-band TB,
we treat OIB measurements of FBice as that measured by radar altimetry. Specifically we use FBice and
TB for the retrieval, and compare the retrieve value of hi and hs with hi and hs, respectively. For the
synergy between laser altimetry and L-band TB, we use FBsnow and TB for the retrieval, and the
verification is also between the retrieved parameters and observed ones, including hi and hs.

5.2. Results and Discussion

The TB as modeled using hi and hs for available OIB points is first compared with the
corresponding SMOS TB. The root-mean-square error (RMSE) of the TB is about 3.1 K. Since OIB
campaigns contain certain areas with recursive fly-over and better spatial coverage, we further compute
the RMSE of TB for these points (95 percentile in terms of OIB sample count). The RMSE drops from
3.1 K to 1.41 K, which indicates that the coverage of airborne (or any type of altimetry) may potentially
play an important role in the data synergy.
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Figure 11 shows the result of verification with all available data. For both types of data synergy,
there exists good match between the retrieval result and the observation for both sea ice thickness
(hi) and snow depth (hs). For data synergy between FBice and TB, the R2 for hi is 0.87 (0.86) for the
least squares fitting (under the slope = 1 constraint) between retrieved parameter and observation,
and no significant bias is present for hi (Figure 11a). For hs, the R2 is 0.26, which is lower than that for
hi (Figure 11b). The least squares fit under the constraint of slope = 1 yields an underestimation of
about 4 cm for hs.
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Figure 11. Verification with co-registered OIB and SMOS TB data. (a,c) show the results of data
synergy between FBice and TB for hi and hs, respectively. (b,d) show those between FBsnow and TB.
Blue triangles represent FYI, and blue squares MYI. Solid black line in each subfigure is the 1:1 line,
the (dotted-)dashed line the least squares fit line (under the constraint that the slope is 1).

In order to analyze the source of error in the retrieved parameters, we further limit the retrieval
to the points with lower difference between the modeled TB and the observed TB (within 1.5 K),
shown in Figure 12. Based on all the points within 1.5 K of the observed TB (accounting for half of all
points), the R2 for hi and hs for the synergy between FBice and TB increase to 0.90 and 0.49, respectively.
Besides, two extra improvements are present: (1) a minor decrease in the bias of hs is also witnessed
(about −3 cm), and (2) the least squares fitting is very close to that under the constraint of slope = 1.
As a comparison, in Figure 11b, the under-estimation of hs for relatively thick snow cover is present,
lowering the quality of matching of the retrieved hs to observation. Limiting the retrieval to points
with lower difference in TB removes these points in effect. Also the quality in the retrieved hi is also
improved (0.87 to 0.90 for R2). This result indicates that the error in TB is a major source of the error in
the retrieved parameters, especially hs.
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Figure 12. Similar to Figure 11, but limited to points of modeled TB within +/− 1.5 K of SMOS TB.
The ordering of the subfigures are the same as in Figure 11, with (a,b) showing the results for hi and hs
during the synergy between FBice and TB, and (c,d) the results during the synergy between FBsnow

and TB.

For the data synergy between FBsnow and TB, the R2 for hi and hs are 0.78 and 0.45, respectively
(Figure 11c,d). Also, there is very small difference between the least squares fit and that under the
constraint of slope = 1. If the retrieval is limited to points within 1.5 K, there exists increase in R2 for hs
(0.45 to 0.50), while that for hi remains the same (Figure 12c,d). As discussed in Section 3, the retrieval
with FBsnow and TB is not always well-posed, as contrast from that with FBice and TB. Among all the
data in the verification, there exists potential of two solutions for 13.6% of all points (mainly MYI).
When two potential solutions are encountered during retrieval, the one with smaller hs is adopted by
default which is used for the verification.

For the actual retrieval with satellite altimetry data, several factors should be considered due
to the difference from the airborne data. First, each satellite altimetry campaign features specific
resolution settings, with fine spatial scans for laser altimetry (about 70 m for ICESat), and relatively
large footprint for radar altimetry (e.g., 300 m by 1.5 km for CryoSat-2). Since the spatial coverage of
OIB plays an important role in the error for both TB and retrieval, the specific information for each
satellite campaign should be taken into account for the synergy with TB measurements (e.g., 40 km for
SMOS). Better spatial coverage of satellite altimetric scans is also present for cross-over points of the
scanning tracks on the daily basis. Second, there exists spatial variability of the sea ice cover which can
be represented by the altimetry scans due to their relatively higher spatial resolution. Since there exists
nonlinear relationship of TB to sea ice parameters as indicated by the radiation model, the variability
on the small scale for both sea ice thickness and snow depth should be accounted for the actual synergy
of remote sensing data. Third, other factors such as the presence of open water and (refrozen) leads
can play a profound role in modulating the large-scale TB, as studied in Zhou et al. [32]. In this study,
points involving these factors are ignored for the verification. For the actual retrieval with satellite
data, third-party data sources such as sea ice lead maps, can be integrated in the retrieval process.
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Their role in the uncertainty of the retrieved parameters can be accounted for in a systematic way,
by adopting the approach of Monte-Carlo simulations as in Section 4.

6. Summary and Future Work

In this study we propose the data synergy between active altimetry and L-band passive microwave
remote sensing of the sea ice cover, for the retrieval of both sea ice thickness and snow depth.
The synergy is based on two physical models: (1) the hydrostatic equilibrium relationship which is
widely adopted in satellite altimetry, and (2) the L-band radiation model [32]. Specifically, the L-band
radiation model is an improved version based on Maaß et al. [30] and verified with observational
datasets of OIB and SMOS. The Arctic winter condition is assumed, during which the satellite altimetry
is carried out [8,36]. Theoretical study over the retrievability and the well-posedness of the retrieval
problem are carried out, and it is demonstrated that both sea ice parameters can be retrieved with two
observational data. Furthermore, during the data synergy between L-band TB and FBsnow, we discover
the potential of the existence of two solutions, due to the non-monotonous relationship between
sea ice thickness and TB. Although it consists of a small portion of the solution space for retrieval
(3.32% and 6.67% for FYI and MYI, respectively), this feature should be accounted for in the retrieval
algorithm of the data synergy between TB and FBsnow. On the contrary, the data synergy between TB
and FBice is always well-posed. Based on solution space analysis and retrieval with typical scenarios,
we further carry out sensitivity studies over the retrieved parameters. While both input parameters
affect the uncertainty of the retrieved parameters, the two types of data synergy have advantage
over each other over different range of sea ice parameters. For thin sea ice, the synergy between TB
and FBice shows lower uncertainty, while for thick sea ice, that between TB and FBsnow produces
lower uncertainty. Besides, under warmer conditions in the Arctic during winter, the uncertainty of
the retrieved parameters increases, mainly due to the saturation of L-band TB. Furthermore, it is
demonstrated that model parameters such as density and temperature have comparable influence over
the retrieved parameters as input parameters. This indicates that for the actual retrieval, the uncertainty
of both types of parameters should be accounted for in a systematic way, such as Monte-Carlo
simulation as introduced in Section 4.

The proposed data synergy and corresponding retrieval algorithms serve as a basis for the
retrieval with satellite measurements of the Arctic sea ice. Traditional retrieval methods usually utilize
a single type of observational data, such as sea ice (or snow) freeboard in altimetry or L-band TB for
the studies involving SMOS, and the objective for the retrieval is a single type of sea ice parameters
(hi or hs). As a comparison, the proposed data synergy schemes aim at: (1) the utilization of two
independent but concurrent observations, and (2) the retrieval of both hi and hs. By using SMOS TB
and the co-registering OIB data, we simulate the retrieval based on both types of altimetry and the
passive L-band measurement, and demonstrate that on the spatial scale of SMOS TB, both hi and hs can
be retrieved by combining active and passive remote sensing data. For the study with actual data such
as CryoSat-2 and SMOS, extension to the theoretical framework should be made. As contrast from the
idealized retrieval scenario in this study, the difference in the spatial and temporal coverage of different
observations should be considered for the design of retrieval algorithms. Specifically, SMOS satellite
typically produces daily Arctic wide observations, but satellite altimetry as in CryoSat-2 can only
achieve basin coverage on a monthly basis. Besides, there exists inherent resolution difference among
various data (e.g., 40 km for SMOS, about 1 km for CryoSat-2, 40 m for OIB). This resolution difference
should be considered during retrieval, using specific spatial coverage information of both data during
the synergy. The inherent spatial variability of the sea ice cover, such as the sea ice cover with relatively
lower ice concentration or the presence of leads, should also be accounted for by treating it as a mixture
of various types, similar to [32]. With respect to the uncertainty for the large-scale retrieval problem,
the Monte-Carlo simulation based methods in Section 4 can be adopted, with a systematic treatment to
both observational data and model parameters. These research directions serve as future directions for
the retrieval of sea ice parameters on the basin-scale.
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