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Abstract: Visible and near-infrared (Vis-NIR) diffuse reflectance spectroscopy with partial least
squares (PLS) regression is a quick, cost-effective, and promising technology for predicting soil
properties. The advantage of PLS regression is that all available wavebands can be incorporated
in the model, while earlier studies indicate that PLS models include redundant wavelengths, and
selecting specific wavebands can refine PLS analyses. This study evaluated the performance of PLS
regression with waveband selection using Vis-NIR reflectance spectra to estimate the total carbon (TC)
and total nitrogen (TN) in soils collected mainly from the surface of upland and lowland rice fields in
Madagascar (n = 59; after outliers were removed). We used iterative stepwise elimination-based PLS
(ISE-PLS) to estimate soil TC and TN and compared the predictive ability with standard full-spectrum
PLS (FS-PLS). The predictive abilities were assessed using the coefficient of determination (R2), the
root mean squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD).
Overall, ISE-PLS using first derivative reflectance (FDR) showed a better predictive accuracy than
ISE-PLS for both TC (R2 = 0.972, RMSECV = 0.194, RPD = 5.995) and TN (R2 = 0.949, RMSECV = 0.019,
RPD = 4.416) in the soil of Madagascar. The important wavebands for estimating TC (12.59% of
all wavebands) and TN (3.55% of all wavebands) were selected from all 2001 wavebands over the
400–2400 nm range using ISE-PLS. These findings suggest that ISE-PLS based on Vis-NIR diffuse
reflectance spectra can be used to estimate soil TC and TN contents in Madagascar with an improved
predictive accuracy.

Keywords: Acrisols; calibration; Ferralsols; first derivative reflectance; Oxisols; partial least squares
regression; spectral assessments; surface paddy soil

1. Introduction

Carbon (C) and nitrogen (N) contents in soils are two key parameters for sustaining soil and
environmental quality, as well as for improving crop productivity because of their involvement in a
number of natural processes related to soil health and fertility [1]. Moreover, monitoring C levels in soils
is increasingly needed because the depleted C levels, particularly in croplands, present an opportunity
for carbon sequestration through adequate management practices [2]. To efficiently manage C and
N in soils, a large number of soil samples must be evaluated for soil spatial variability [3]. However,
standard procedures for assessing the state of C and N in soils are costly and time consuming [4,5]
and require experienced operators. Thus, possible alternatives such as visible (Vis, 400–700 nm)
and near-infrared (NIR, 700–2500 nm) spectroscopy are gaining attention; both of these alternatives
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have been widely accepted as fast and non-destructive methods for estimating soil properties [6,7].
These techniques measure the radiation absorbed by various bonds of O-H, C-H, N-H, C=O, C-N, N-H,
or C=C, resulting in bending, twisting, stretching, or scissoring [8,9]. Diffusely reflected NIR radiation
is then correlated to measure material properties using various multivariate calibration techniques [10].
Among linear multivariate analyses, partial least squares (PLS) regression is the most commonly
used approach for soil spectral analyses. Using PLS regression analyses, many calibrations have been
conducted in recent decades to predict soil properties from Vis-NIR spectral data [11,12]. The infra-red
PLS method of soil property predictions was shown to be well suited for the characterization of
soils [13].

However, waveband selection can also refine the performance of PLS analysis not only for
the prediction of soil properties [14,15], but also for other chemical and physical properties, such
as forage in paddy fields [16], forest [17], and grassland [18,19], or for water quality in irrigation
ponds [20], food [21], and fuel [22]. The PLS regression method combines the most useful
information from hundreds of wavebands into the first several PLS factors (or latent variables),
whereas the less important factors might include background effects [17,23]. Thus, many approaches
for selecting wavebands or wavelength regions have been developed to eliminate useless (or to
select useful) wavebands/wavelength regions in PLS analyses; these approaches include iterative
stepwise elimination PLS (ISE-PLS) [24], uninformative variable elimination PLS (UVE-PLS) [25],
competitive adaptive reweighted sampling (CARS) [26], interval PLS (iPLS) [27], moving window PLS
(MW-PLS) [28], and genetic algorithm PLS (GA-PLS) [29]. Much of the literature has reported that
more accurate calibration models may be achieved by selecting the most informative spectral variables
instead of using the standard full-spectrum PLS (FS-PLS). In addition, waveband selection attempts to
reduce the complexity and thus improve the robustness of a calibration model [23,30,31]. For example,
Kawamura et al. [23] reported that removal of the redundant wavebands by ISE-PLS greatly improved
the estimation accuracy of herbage mass and forage chemical properties in pasture. The results also
suggested that ISE-PLS has the advantage of tuning the optimum bands for PLS regression with a
better predictive ability in pastures, although this method has not been applied to soil spectra and
soil properties.

In Madagascar, rice is important not only as the country’s staple food, but also as the major rural
income-generating resource. However, rice yield has been stagnant at less than 3 t ha−1 in recent
decades despite relatively favorable water conditions, with 70% of rice-cropping areas categorized
as irrigated in this country [32]. In a survey of several rice fields in Madagascar’s central highland,
Tsujimoto et al. [33] showed a significant and linear response of rice yield against the soil organic carbon
(SOC) content in relation to the N-supplying capacity of soils, which strongly indicates the importance
of soil fertility management for increasing regional rice yields. Extensive research on SOC has been
conducted using standard procedures, but most studies have focused on forest carbon stocks in the
context of carbon dynamics, global warming, and environmental degradation in Madagascar [34–38].
Extensive and field-based soil C and N evaluations concerning the development of appropriate soil
and nutrient management recommendations for the rice-cropping system, the country’s major land
use, are limited.

The aim of this study was to evaluate whether waveband selection by ISE-PLS would improve
the predictive ability of calibrations using laboratory Vis-NIR spectroscopy when predicting soil total
C (TC) and total N (TN) contents in Madagascar. The study compares the performance of ISE-PLS
with FS-PLS using a set of 59 soil samples collected from upland and lowland rice fields in the central
highland of Madagascar.
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2. Materials and Methods

2.1. Study Site and Soil Sampling and Chemical Analyses

The field survey was conducted in the central highland of Madagascar (Figure 1). This region
belongs to a subtropical climate with an altitude of 1000–1500 m above sea level. The mean temperature
is 14–17 ◦C in winter and 20–22 ◦C in summer. The average annual rainfall is 1100 mm (>80% occurs in
November–March) [33]. The area is dominated by inherently nutrient-poor soil types that are mainly
classified into Ferralsols and Acrisols [39] or into Oxisols of semiarid to humid climates [40].
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Figure 1. Locations of studied regions and soil sampling points.

Soil sampling was conducted in 55 rice fields from August to November in 2016, consisting of
eight upland and 47 lowland fields under various cropping systems (Figure 1). The sampling positions
were recorded with a handy GPS (Colorado300, Garmin, Ltd., Kansas, TX, USA). Surface soil samples
were collected from a 0–10 cm depth as composites of three to four cores in each field. Within three
fields, sub-surface samples (10–20 cm depth in a field; 10–20, 20–30, and 30–40 cm depth in two fields)
were also collected. Thus, 62 soil samples were obtained.

2.2. Soil Chemical Analyses

In the laboratory, soil samples were sieved to <2 mm and air dried for seven days. Earlier studies
compared the effect of samples sieved to 2 mm and ground to 200 µm and did not obtain highly
significant differences with respect to accuracy [41]. Thus, we worked with 2 mm crushed and sieved
soil samples (0.6 g) in this study.

The TC and TN contents of soils were determined using an automatic NC analyzer, the
SUMIGRAPH NC-220F (Sumika Chemical Analysis Service, Ltd., Osaka, Japan).

2.3. Vis-NIR Diffuse Reflectance Measurement

Laboratory soil reflectance measurements were conducted in a dark room at the Graduate School
of Agriculture, Kyoto University, Japan, on 12–13 December 2016, using a portable spectro-radiometer
(ASD FieldSpec 4 Hi-Res, ASD Inc., Longmont, CO, USA) and an ASD contact-probe (Figure 2).
The ASD FieldSpec measures spectral reflectance in the 350–2500 nm wavelength region with spectral
sampling of 1.4 nm in the 350–1000 nm range and 2 nm in the 1000–2500 nm range. The spectral
resolution (full-width-half-maximum; FWHM) was 3 nm in the 350–1000 nm range and 6 nm in the
1000–2500 nm range, which were calculated to 1 nm resolution wavelengths for output data using
the cubic spline interpolation function in ASD software (RS3 for Windows; ASD). The contact probe
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light source (halogen lamp) was aligned at 12◦ to the probe body, ensuring illumination at a fixed
angle without the influence of ambient light. The fiber optic cable of the ASD FieldSpec was attached
to the contact probe at a fixed measurement angle of 35◦. The sensed spot area had a diameter of
~1.1 cm with a field of view of 1.33 cm2. A Spectralon (Labsphere, Inc., Sutton, NH, USA) reference
panel (white reference) was used to optimize the ASD instrument prior to taking Vis-NIR reflectance
measurements for each sample.Remote Sens. 2017, 9, 1081  4 of 12 
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Figure 2. (a) The setup used to measure the soil reflectance in a dark room; (b) the use of a contact
probe that touches the surface of the soil sample; and (c) the five measuring spots on a soil sample.

Bulk soil samples were spread in optical-glass Petri dishes 85 mm in diameter and pressed to
form a layer ~19 mm tick. The soil surfaces were scanned 25 times with five replications for the soil
samples (see Figure 2c), and the spectral readings were averaged.

2.4. Preprocessing of Spectral Data

Spectral data in both edge wavelength regions (350–399 nm and 2401–2500 nm) were eliminated
because of low signal-to-noise ratios in the instrument. Thus, a total of 2001 spectral bands between
400 nm and 2400 nm were used for analyses.

First derivative reflectance (FDR) spectra were used to reduce baseline variation and enhance
spectral features [42]. The FDR was calculated using the Savitzky-Golay smoothing filter [43].
A third-order, 15-band moving polynomial was fitted according to the original reflectance signatures.
The parameters of this polynomial were subsequently used to calculate the derivative at the center
waveband of the moving spline window. In addition, a standard normal variate transform (SNV) was
employed to reduce the particle size effect [41].

To detect outliers, a principal component analysis was performed on spectral data for calculating
the Mahalanobis distance H, and samples with H > 3 were eliminated as outliers. As a result, three
samples were considered outliers, leaving 59 samples for further analyses.

2.5. Standard Full-Spectrum Partial Least Sqares (FS-PLS) Regression

PLS regression analyses were performed to estimate soil parameters using reflectance and FDR
datasets (n = 59). The standard FS-PLS regression equation is as follows:

y = β1x1 + β2x2 + . . . + βixi + ε (1)

where the response variable y is a vector of the soil parameters (TN and TC); the predictor variables
x1 to xi are the surface reflectance or FDR values for spectral bands 1 to i (400, 401, . . . , 2400 nm),
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respectively; β1 to βi are the estimated weighted regression coefficients; and ε is the error vector.
The latent variables were introduced to simplify the relationship between the response variables and
predictor variables. To determine the optimal number of latent variables (NLV), leave-one-out (LOO)
cross-validation was performed to avoid over-fitting of the model, which was based on the minimum
value of the root mean squared error of cross-validation (RMSECV) (see in Supplementary Materials:
Figure S1). The RMSECV was calculated as follows:

RMSECV =

√
∑n

i=1
(
yi − yp

)2

n
(2)

where yi and yp represent the measured and predicted soil parameters for sample i, respectively, and n
is the number of samples in the data sets (n = 59).

2.6. Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression

ISE-PLS is a PLS model that incorporates a waveband elimination algorithm. The ISE method
eliminates noisy variables and selects useful predictors. When PLS models include large numbers of
redundant variables or outliers, the models’ predictive abilities may perform poorly, while the ISE
method can overcome such problems. Performance depends on the importance of predictors (zi),
described as follows:

zi =
|βi|si

∑I
i=1|βi|si

(3)

where si is the standard deviation and βi is the regression coefficient; both si and βi correspond to the
predictor variable of the waveband i.

Initially, all available wavebands (2001 bands, 400–2400 nm) are used to develop the PLS
regression model. Then, to create a scope in which useless predictor variables are removed and the
predictive ability is improved, each predictor zi is evaluated, and the minimum values are eliminated
as less informative wavebands. Subsequently, the PLS model is re-calibrated with the remaining
predictors [44]. The model-building procedure is repeated until the final model is calibrated with the
maximum predictive ability.

2.7. Predictive Ability of the PLS Models

The predictive abilities of the FS-PLS and ISE-PLS models were assessed by calculating the
coefficient of determination (R2), RMSECV, and the residual predictive deviation (RPD) using LOO
cross-validation. High R2 and low RMSECV values indicate the best model for predicting the soil
parameters. The RPD has been defined as the ratio of standard deviation (SD) of reference data for
predicting RMSECV [45]. For the performance ability of calibration models, RPD was suggested to
be at least 3 for agriculture applications, while RPD values between 2 and 3 indicate a model with a
good prediction ability, 1.5 < RPD < 2 is an intermediate model needing some improvement, and an
RPD < 1.5 indicates that the model has a poor prediction ability [13].

To determine the significant wavelengths used in FS-PLS calibrations, the variable importance in
the projection (VIP) [46,47] was used and referred to the selected wavelength regions from ISE-PLS
models. The VIP score gives a summary of the importance of an x-variable (waveband) for an observed
y-variable and is calculated using the following equation:

VIPk(a) = m ∑
a

W2
ak

(
SSYa

SSYt

)
(4)

where VIPk(a) is the importance of the kth predictor variable based on a model with a factors, Wak
is the corresponding loading weight of the kth variable in the ath PLS regression factor, SSYa is the
explained sum of squares of y obtained from a PLS regression model with a factors, SSYt is the total
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sum of squares of y, and m is the total number of predictor variables. A high VIP score indicates an
important x-variable (waveband) [46,48].

All the data handling and linear regression analyses were performed using MATLAB software
ver. 9.0 (MathWorks, Sherborn, MA, USA).

3. Results and Discussion

3.1. Soil Properties (TC and TN) and Their Correlations with Each Waveband

Table 1 shows the descriptive analysis for soil TC and TN in the 59 samples. The mean (and SD)
values of TC and TN were 2.18% (±1.16%) and 0.17% (±0.08%), respectively. The soil samples yielded
a wide range of TC (coefficients of variation [CV] = 53.35) and TN values (CV = 48.08). The SD and
range of sample affect the accuracy of soil property predictions using Vis-NIR spectroscopy [11]. In the
present study, the ranges in soil TC and TN were considered sufficiently large to develop the calibration
models using PLS regression analyses.

Table 1. Descriptive statistics of soil sample data.

Soil Parameters n Min Max Mean SD CV

TC (%) 59 0.65 6.02 2.18 1.16 53.35
TN (%) 59 0.06 0.44 0.17 0.08 48.08

n, number of samples; SD, standard deviation; CV, coefficient of variation (=Mean/SD × 100%).

A significant correlation coefficient (r = 0.977, p < 0.001) was found between TC and TN in the soil
samples. The results revealed that the soil TC and TN showed a similar shape of correlation using
Vis-NIR reflectance and FDR spectra (see in Supplementary Materials: Figure S2). In the reflectance
data, reflectance values at 1413 and 2207 nm were highly correlated with the soil TC and TN contents.
A peak of negative correlation at 598 nm was also obtained in the Vis wavelength region. In a
previous study [49], soil reflectance in the NIR wavelength region was characterized by well-defined
absorption features associated with overtones of O-H and H-O-H stretch vibrations in free water (1455
and 1915 nm) and overtones and combinations of O-H stretch and metal-OH bends in a clay lattice
(1415 and 2207 nm).

3.2. Comparison between FS-PLS and ISE-PLS Models

Figure 3 shows changes in the RMSECV and R2 values with iterative stepwise elimination
procedures of redundant wavebands in the prediction of TC and TN using FDR. The RMSECV
decreased as wavebands were removed but increased rapidly after more than 1749 and 1930 wavebands
had been removed for TC and TN, respectively. Similarly, the R2 value tended to increase slowly until
the maximum value was obtained when 1749 and 1930 wavebands had been removed. The remaining
252 (=2001 − 1749) and 71 (=2001 − 1930) wavebands were considered useful wavelengths for
estimating TC and TN, respectively. The selected number of wavebands (NW) and the selected NW as
a percentage of the full spectrum (NW% = NW/whole waveband [N = 2001]) are presented in Table 2,
with the values of NLV, R2, RMSEC/CV, and RPD from the FS-PLS and ISE-PLS models using the
FDR dataset. The optimum NLV ranged between 7 and 15, determined as the lowest RMSECV values
calculated from LOO cross-validation to avoid over-fitting of the model.
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Figure 3. Changes in RMSECV (black line) and R2 values (red line) in models to estimate total carbon
(TC) (a) and total nitrogen (TN) (b) with the stepwise removal of redundant wavebands. The minimum
value of the root mean squared error of cross-validation (RMSECV) (blue dotted line) was obtained
when 1749 and 1930 wavebands were removed for TC and TN, respectively.

Table 2. Optimum number of latent variables (NLV), coefficient of determination (R2), root mean
squared errors of calibration (RMSEC) and cross-validation (RMSECV), and residual predictive values
(RPD) from full-spectrum PLS (FS-PLS) and iterative stepwise elimination PLS (ISE-PLS) models with
a selected number of wavebands (NW) and their percentages of the full spectrum (NW%).

Soil
Parameter

Regression
Method

Calibration Cross-validation
NW NW%

NLV R2 RMSEC R2 RMSECV RPD

Total carbon FS-PLS 14 0.996 0.076 0.893 0.379 3.064
252 12.59(TC, %) ISE-PLS 12 0.995 0.084 0.972 0.194 5.995

Total
nitrogen FS-PLS 9 0.960 0.016 0.837 0.033 2.480

71 3.55
(TN, %) ISE-PLS 7 0.974 0.013 0.949 0.019 4.416

FS-PLS, full-spectrum partial least squares; ISE-PLS, iterative stepwise elimination PLS; NLV, number of latent
variables: RMSEC (or RMSECV), root mean squared error of calibration (or cross-validation); NW, number of
wavebands; NW%, number of waveband percentages of all available bands (=NW/2001 bands × 100%).

Considering the difference in model accuracies between the FS-PLS and ISE-PLS (Table 2),
better predictive accuracies were obtained in ISE-PLS than FS-PLS for both soil TC (R2 = 0.972,
RMSECV = 0.194) and TN (R2 = 0.949, RMSECV = 0.019), with RPDs of 5.995 and 4.416, respectively.
Figure 4 shows the relationships between the observed and cross-validated predicted values of soil TC
and TN from ISE-PLS using FDR data. These results indicate that the soil TC and TN can be rapidly
and accurately predicted from Vis-NIR diffuse reflectance spectroscopy using PLS regression. Selecting
a subset of wavebands related to soil chemical properties and removing unrelated wavebands further
improved the PLS regression results. Moreover, based on RPD > 3, the quality and future applicability
of our results could be considered to have an excellent predictive ability. The remaining NW (NW%) of
TC and TN was 252 (12.59%) and 71 (3.55%), respectively, suggesting that over 87% of the waveband
information from the soil reflectance spectrum was redundant and did not contribute to or disturb the
prediction of soil TC and TN.
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Figure 4. Observed and predicted values of soil total carbon (TC) and soil total nitrogen (TN)
contents using ISE-PLS models with first derivative reflectance (FDR) data (n = 59). The coefficient of
determination (R2), root mean squared error of cross-validation (RMSECV), and residual predicted
value (RPD) are cross-validated (leave-one-out cross-validation method) coefficient of determination,
root mean squared error, and residual predictive values, respectively (see Table 2).

These results agree with previous results indicating that the most useful information in the
Vis-NIR region (400–2400 nm) was less than 20% for predicting forage [18,19] and water parameters [20].
These findings also support previous results showing that the performance of PLS models can be
improved through waveband selection. Yang et al. [14] suggested that reducing large spectral datasets
is valuable for more efficient storage, computation, and transmission, as well as for the ease of spectral
analysis [50]. In addition, when fewer wavebands are used, simpler and cheaper spectro-radiometer
processes can be developed.

3.3. Selected Wavebands from ISE-PLS Models

The selected wavebands from ISE-PLS using FDR spectra to estimate soil TC and TN are shown in
Figure 5, with VIP score values from FS-PLS. Based on the VIP score (>1), the wavelengths centered near
418, 470, 760, 1408, 1912, 2255, 2314, and 2339 nm were identified as common important wavelengths
for estimating soil TC and TN. Most of the VIP peak regions were selected in the final ISE-PLS
models. Although they did not perfectly fit with previously known absorption wavelength regions,
some of the wavelengths were revealed within 30 nm of known absorption features. For soil TC
prediction, the final model included Vis wavelength regions (400–480 and 640–700 nm), which are
associated with soil color and had a huge influence on model calibration. Soil becomes darker as soil
organic matter (SOM) increases; thus, several researchers have tried to use soil color information to
estimate SOM [9,51]. However, soil darkness is only a useful discriminator within limited geological
variation. In general, soil reflectance decreases with increasing organic matter content [49] and water
content [52]. Absorptions of approximately 400, 450, 510, 550, 700, 870, and 1000 nm are characterized
by the presence of ferrous and ferric iron oxides and are due to the electronic transitions of the iron
cations [53]. A spectral band of 2100–2500 nm contributes to the model calibration of C and N in
soils [54].
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partial least squares (ISE-PLS) with variable importance in the prediction (VIP) score (blue line) from
full-spectrum PLS (FSPLS) models.

Martin et al. [55] reported that the NIR spectroscopy-based prediction of TN may be indirect due
to a close correlation with TC, and that the calibration accuracy is higher for TC than for TN. Chang and
Laird [56] confirmed that the NIR spectroscopy determination of TN does not always rely on a strong
correlation with TC and can determine TN directly. Brunet et al. [41] hypothesized that, depending
on the studied dataset, TN can be predicted based on its correlation with TC when the correlation
is high; otherwise, it can be predicted directly. In our result, soil TC data showed a high correlation
with soil TN data (r = 0.977), and calibrations obtained a better predictive accuracy for TC (R2 = 0.972,
RMSECV = 0.194) than for TN (R2 = 0.949, RMSECV = 0.019). Within the selected wavebands of soil TN
(Figure 5), 90.1% (=64/71 bands × 100%) overlapped with the selected wavebands of soil TC, whereas
different wavebands in TC calibration were revealed mainly in the NIR region (707, 717–719, 774 nm).
These results indicated that TN prediction using our dataset was affected by strong correlations with
TC data but might be directly estimated.

Lastly, we note that this study was carried out on heterogenous sample data sets, which were
collected at upland and lowland soils under various rice-based cropping systems, including wide
ranges of soil types in Madagascar. However, several researchers consider the reliability of the
prediction questionable when studying heterogeneous sample sets [41]. Particle size and arrangement
might also affect the calibration due to the light transmission path [57]. Moreover, to map the carbon
stock at a larger spatial scale in Madagascar, evaluating an appropriate spatial scale with a larger data
set is required [58]. In future study, thus, more information concerning the effect of a heterogeneous
data set on the accuracy of NIRS predictions at different scales is needed in order to apply the
methodology to soil characterization of the whole island of Madagascar.

4. Conclusions

We investigated the performance of waveband selection in the spectral estimation of soil TC
and TN using Vis-NIR reflectance data. The results indicated that soil TC and TN in Madagascar
can be more accurately estimated by ISE-PLS than by standard FS-PLS using laboratory Vis-NIR
spectroscopy. ISE-based wavelength selection in PLS calibration suggested that the important
wavebands for estimating soil TC and TN were, respectively, 12.59% and 3.55% of all 2001 wavebands
in the 400–2400 nm range. Based on selected FDR wavelengths in the ISE-PLS model, soil TC and
TN were determined to provide excellent predictions (RPD > 3), with 0.194% and 0.019% error,
respectively. The use of PLS with ISE waveband selection in Vis-NIR reflectance spectra is promising
for the spectral assessment of soil TC and TN in Madagascar. Furthermore, the waveband selection
procedure refined the predictive ability expected by optimizing the wavelength subset using ISE-PLS.
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Such timely and accurate soil TC and TN predictions might efficiently provide useful insights into
fertilizer management.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/10/1081/s1,
Figure S1: Changes in RMSE (grey circle/line) and RMSECV (black circle/line) based on the number of latent
variables (NLV) in models to estimate soil total carbon (TC) (a,c) and total nitrogen (TN) (b,d) using FS-PLS and
ISE-PLS regressions. The optimal NLV (red vertical line) was determined the minimum value of RMSECV, Figure
S2: Correlation coefficients (r) between soil chemical parameters (total carbon (C) and total nitrogen (TN)) at each
wavelength: (a) reflectance and (b) first derivative reflectance (FDR).

Acknowledgments: This research was supported by the Science and Technology Research Partnership
for Sustainable Development (SATREPS), Japan Science and Technology Agency (JST)/Japan International
Cooperation Agency (JICA). We would like to give our special thanks to Naoki Moritsuka, Graduate School of
Agriculture, Kyoto University in Japan, for his support in soil spectral measurement and for valuable comments
on this manuscript.

Author Contributions: Kensuke Kawamura, Yasuhiro Tsujimoto, and Tovohery Rakotoson designed this study
and the field work; Yasuhiro Tsujimoto, Michel Rabenarivo, Hidetoshi Asai, and Andry Andriamananjara
performed the fieldwork and carried out the soil chemical analyses; Kensuke Kawamura performed laboratory
spectral measurements and the data processing, and wrote the manuscript; and all the authors revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Weil, R.; Magdoff, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in
Sustainable Agriculture; Mangdoff, E., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; p. 412.

2. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [CrossRef]
3. Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil

properties using a vis–nir sensor. Soil Tillage Res. 2007, 93, 13–27. [CrossRef]
4. Conant, R.T.; Ogle, S.M.; Paul, E.A.; Paustian, K. Measuring and monitoring soil organic carbon stocks in

agricultural lands for climate mitigation. Front. Ecol. Environ. 2011, 9, 169–173. [CrossRef]
5. Sinfield, J.V.; Fagerman, D.; Colic, O. Evaluation of sensing technologies for on-the-go detection of

macro-nutrients in cultivated soils. Comput. Electron. Agric. 2010, 70, 1–18. [CrossRef]
6. Conforti, M.; Castrignanò, A.; Robustelli, G.; Scarciglia, F.; Stelluti, M.; Buttafuoco, G. Laboratory-based

vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting
spatial variation of soil organic matter content. Catena 2015, 124, 60–67. [CrossRef]

7. Islam, K.; Singh, B.; McBratney, A. Simultaneous estimation of several soil properties by ultra-violet, visible,
and near-infrared reflectance spectroscopy. Soil Res. 2003, 41, 1101–1114. [CrossRef]

8. Miller, C.E. Chemical principles of near-infrared technology. In Near Infrared Technology in the Agricultural
and Food Industries, 2nd ed.; Williams, P.C., Horris, K.H., Eds.; American Association of Cereal Chemists: St.
Paul, MN, USA, 2001; pp. 19–37.

9. Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid
infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.
Geoderma 2006, 131, 59–75. [CrossRef]

10. Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component,
partial least squares and back propagation neural network analyses for accuracy of measurement of selected
soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [CrossRef]

11. Kuang, B.; Mouazen, A.M. Calibration of visible and near infrared spectroscopy for soil analysis at the field
scale on three european farms. Eur. J. Soil Sci. 2011, 62, 629–636. [CrossRef]

12. Fystro, G. The prediction of C and N content and their potential mineralisation in heterogeneous soil samples
using vis–nir spectroscopy and comparative methods. Plant Soil 2002, 246, 139–149. [CrossRef]

13. 13 D’Acqui, L.P.; Pucci, A.; Janik, L.J. Soil properties prediction of western mediterranean islands with
similar climatic environments by means of mid-infrared diffuse reflectance spectroscopy. Eur. J. Soil Sci.
2010, 61, 865–876. [CrossRef]

14. Yang, H.; Kuang, B.; Mouazen, A.M. Quantitative analysis of soil nitrogen and carbon at a farm scale using
visible and near infrared spectroscopy coupled with wavelength reduction. Eur. J. Soil Sci. 2012, 63, 410–420.
[CrossRef]

www.mdpi.com/2072-4292/9/10/1081/s1
http://dx.doi.org/10.1016/j.geoderma.2004.01.032
http://dx.doi.org/10.1016/j.still.2006.03.009
http://dx.doi.org/10.1890/090153
http://dx.doi.org/10.1016/j.compag.2009.09.017
http://dx.doi.org/10.1016/j.catena.2014.09.004
http://dx.doi.org/10.1071/SR02137
http://dx.doi.org/10.1016/j.geoderma.2005.03.007
http://dx.doi.org/10.1016/j.geoderma.2010.03.001
http://dx.doi.org/10.1111/j.1365-2389.2011.01358.x
http://dx.doi.org/10.1023/A:1020612319014
http://dx.doi.org/10.1111/j.1365-2389.2010.01301.x
http://dx.doi.org/10.1111/j.1365-2389.2012.01443.x


Remote Sens. 2017, 9, 1081 11 of 13

15. Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Determination of soil properties with visible to near-
and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma 2014, 223, 88–96. [CrossRef]

16. Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based
on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [CrossRef]

17. Bolster, K.L.; Martin, M.E.; Aber, J.D. Determination of carbon fraction and nitrogen concentration in tree
foliage by near infrared reflectance: A comparison of statistical methods. Can. J. For. Res. 1996, 26, 590–600.
[CrossRef]

18. Kawamura, K.; Watanabe, N.; Sakanoue, S.; Lee, H.-J.; Inoue, Y.; Odagawa, S. Testing genetic algorithm as a
tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a
mixed sown pasture using partial least squares regression. Grassl. Sci. 2010, 56, 205–216. [CrossRef]

19. Kawamura, K.; Watanabe, N.; Sakanoue, S.; Lee, H.-J.; Lim, J.; Yoshitoshi, R. Genetic algorithm-based partial
least squares regression for estimating legume content in a grass-legume mixture using field hyperspectral
measurements. Grassl. Sci. 2013, 59, 166–172. [CrossRef]

20. Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of chlorophyll-a and total
suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based
on field hyperspectral measurements in irrigation ponds in higashihiroshima, Japan. Remote Sens. 2017,
9, 264. [CrossRef]

21. Fan, W.; Shan, Y.; Li, G.; Lv, H.; Li, H.; Liang, Y. Application of competitive adaptive reweighted sampling
method to determine effective wavelengths for prediction of total acid of vinegar. Food Anal. Meth. 2012, 5,
585–590. [CrossRef]

22. Cramer, J.A.; Kramer, K.E.; Johnson, K.J.; Morris, R.E.; Rose-Pehrsson, S.L. Automated wavelength selection
for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares.
Chemom. Intell. Lab. Syst. 2008, 92, 13–21. [CrossRef]

23. Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y. Estimating forage biomass and quality in a mixed
sown pasture based on pls regression with waveband selection. Grassl. Sci. 2008, 54, 131–146. [CrossRef]

24. Boggia, R.; Forina, M.; Fossa, P.; Mosti, L. Chemometric study and validation strategies in the
structure-activity relationships of new cardiotonic agents. Quant. Struct.-Act. Relatsh. 1997, 16, 201–213.
[CrossRef]

25. Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of
uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [CrossRef] [PubMed]

26. Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling
method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [CrossRef] [PubMed]

27. Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval partial least-squares
regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy.
Appl. Spectrosc. 2000, 54, 413–419. [CrossRef]

28. Jiang, J.H.; Berry, R.J.; Siesler, H.W.; Ozaki, Y. Wavelength interval selection in multicomponent spectral
analysis by moving window partial least-squares regression with applications to mid-infrared and
near-infrared spectroscopic data. Anal. Chem. 2002, 74, 3555–3565. [CrossRef] [PubMed]

29. Leardi, R. Application of a genetic algorithm to feature selection under full validation conditions and to
outlier detection. J. Chemom. 1994, 8, 65–79. [CrossRef]

30. Yoshida, H.; Leardi, R.; Funatsu, K.; Varmuza, K. Feature selection by genetic algorithms for mass spectral
classifiers. Anal. Chim. Acta 2001, 446, 483–492. [CrossRef]

31. Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared
spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [CrossRef] [PubMed]

32. GriSP (Global Rice Science Partnership). Rice Almanac, 4th ed.; International Rice Research Institute: Los
Banos, Philippines, 2013; p. 298.

33. Tsujimoto, Y.; Horie, T.; Randriamihary, H.; Shiraiwa, T.; Homma, K. Soil management: The key factors for
higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of
madagascar. Agric. Syst. 2009, 100, 61–71. [CrossRef]

34. Grinand, C.; Maire, G.L.; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M. Estimating
temporal changes in soil carbon stocks at ecoregional scale in madagascar using remote-sensing. Int. J. Appl.
Earth Obs. Geoinf. 2017, 54, 1–14. [CrossRef]

http://dx.doi.org/10.1016/j.geoderma.2014.01.013
http://dx.doi.org/10.1016/j.rse.2012.08.026
http://dx.doi.org/10.1139/x26-068
http://dx.doi.org/10.1111/j.1744-697X.2010.00196.x
http://dx.doi.org/10.1111/grs.12026
http://dx.doi.org/10.3390/rs9030264
http://dx.doi.org/10.1007/s12161-011-9285-2
http://dx.doi.org/10.1016/j.chemolab.2007.11.007
http://dx.doi.org/10.1111/j.1744-697X.2008.00116.x
http://dx.doi.org/10.1002/qsar.19970160303
http://dx.doi.org/10.1021/ac960321m
http://www.ncbi.nlm.nih.gov/pubmed/21619260
http://dx.doi.org/10.1016/j.aca.2009.06.046
http://www.ncbi.nlm.nih.gov/pubmed/19616692
http://dx.doi.org/10.1366/0003702001949500
http://dx.doi.org/10.1021/ac011177u
http://www.ncbi.nlm.nih.gov/pubmed/12139068
http://dx.doi.org/10.1002/cem.1180080107
http://dx.doi.org/10.1016/S0003-2670(01)00910-2
http://dx.doi.org/10.1016/j.aca.2010.03.048
http://www.ncbi.nlm.nih.gov/pubmed/20441862
http://dx.doi.org/10.1016/j.agsy.2009.01.001
http://dx.doi.org/10.1016/j.jag.2016.09.002


Remote Sens. 2017, 9, 1081 12 of 13

35. Ramifehiarivo, N.; Brossard, M.; Grinand, C.; Andriamananjara, A.; Razafimbelo, T.; Rasolohery, A.;
Razafimahatratra, H.; Seyler, F.; Ranaivoson, N.; Rabenarivo, M.; et al. Mapping soil organic carbon
on a national scale: Towards an improved and updated map of madagascar. Geoderma Reg. 2017, 9, 29–38.
[CrossRef]

36. Razakamanarivo, R.H.; Grinand, C.; Razafindrakoto, M.A.; Bernoux, M.; Albrecht, A. Mapping organic
carbon stocks in eucalyptus plantations of the Central Highlands of Madagascar: A multiple regression
approach. Geoderma 2011, 162, 335–346. [CrossRef]

37. Andriamananjara, A.; Hewson, J.; Razakamanarivo, H.; Andrisoa, R.H.; Ranaivoson, N.; Ramboatiana, N.;
Razafindrakoto, M.; Ramifehiarivo, N.; Razafimanantsoa, M.-P.; Rabeharisoa, L.; et al. Land cover impacts
on aboveground and soil carbon stocks in malagasy rainforest. Agric. Ecosyst. Environ. 2016, 233, 1–15.
[CrossRef]

38. Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van
Breugel, M. A universal airborne lidar approach for tropical forest carbon mapping. Oecologia 2012, 168,
1147–1160. [CrossRef] [PubMed]

39. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil
Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports
No. 106; FAO: Rome, Italy, 2015.

40. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Cnservation Service: Washington,
DC, USA, 2014.

41. Brunet, D.; Barthès, B.G.; Chotte, J.-L.; Feller, C. Determination of carbon and nitrogen contents in alfisols,
oxisols and ultisols from africa and brazil using nirs analysis: Effects of sample grinding and set heterogeneity.
Geoderma 2007, 139, 106–117. [CrossRef]

42. Reeves, J.; McCarty, G.; Mimmo, T. The potential of diffuse reflectance spectroscopy for the determination of
carbon inventories in soils. Environ. Pollut. 2002, 116, S277–S284. [CrossRef]

43. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

44. Forina, M.; Lanteri, S.; Oliveros, M.C.C.; Millan, C.P. Selection of useful predictors in multivariate calibration.
Anal. Bioanal. Chem. 2004, 380, 397–418. [CrossRef] [PubMed]

45. Williams, P.C. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and
Food Industries, 2nd ed.; Williams, P.C., Norris, K.H., Eds.; American Association of Cereal Chemists Inc.: St.
Paul, MN, USA, 2001; pp. 145–169.

46. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst.
2001, 58, 109–130. [CrossRef]

47. Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present.
Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [CrossRef]

48. Li, B.; Liew, O.W.; Asundi, A.K. Pre-visual detection of iron and phosphorus deficiency by transformed
reflectance spectra. J. Photochem. Photobiol. B 2006, 85, 131–139. [CrossRef] [PubMed]

49. Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short
wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 1997,
61, 1–15. [CrossRef]

50. Viscarra Rossel, R.A.; Lark, R.M. Improved analysis and modelling of soil diffuse reflectance spectra using
wavelets. Eur. J. Soil Sci. 2009, 60, 453–464. [CrossRef]

51. Viscarra Rossel, R.A.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron
contents. Biosyst. Eng. 2008, 100, 149–159. [CrossRef]

52. Whiting, M.L.; Li, L.; Ustin, S.L. Predicting water content using gaussian model on soil spectra. Remote Sens.
Environ. 2004, 89, 535–552. [CrossRef]

53. Ben Dor, E.; Irons, J.R.; Epema, J.F. Soil reflectance. In Manual of Remote Sensing: Remote Sensing for the Earth
Sciences; John Wiley & Sons: New York, NY, USA, 1999; Volume 3, pp. 111–188.

54. Yang, H. Spectroscopic calibration for soil N and C measurement at a farm scale. Proc. Environ. Sci. 2011, 10,
672–677. [CrossRef]

55. Martin, P.D.; Malley, D.F.; Manning, G.; Fuller, L. Determination of soil organic carbon and nitrogen at the
field level using near-infrared spectroscopy. Can. J. Soil Sci. 2002, 82, 413–422. [CrossRef]

http://dx.doi.org/10.1016/j.geodrs.2016.12.002
http://dx.doi.org/10.1016/j.geoderma.2011.03.006
http://dx.doi.org/10.1016/j.agee.2016.08.030
http://dx.doi.org/10.1007/s00442-011-2165-z
http://www.ncbi.nlm.nih.gov/pubmed/22033763
http://dx.doi.org/10.1016/j.geoderma.2007.01.007
http://dx.doi.org/10.1016/S0269-7491(01)00259-7
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1007/s00216-004-2768-x
http://www.ncbi.nlm.nih.gov/pubmed/15349711
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.chemolab.2004.12.011
http://dx.doi.org/10.1016/j.jphotobiol.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/16890448
http://dx.doi.org/10.1016/S0034-4257(96)00120-4
http://dx.doi.org/10.1111/j.1365-2389.2009.01121.x
http://dx.doi.org/10.1016/j.biosystemseng.2008.02.007
http://dx.doi.org/10.1016/j.rse.2003.11.009
http://dx.doi.org/10.1016/j.proenv.2011.09.108
http://dx.doi.org/10.4141/S01-054


Remote Sens. 2017, 9, 1081 13 of 13

56. Chang, C.-W.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167,
110–116. [CrossRef]

57. Chang, C.W.; Laird, D.; Mausbach, M.J.; Hurburgh, C.R.J. Nearinfrared reflectance spectroscopy-principal
components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [CrossRef]

58. Saiano, F.; Oddo, G.; Scalenghe, R.; La Mantia, T.; Ajmone-Marsan, F. DRIFTS sensor: Soil carbon validation
at large scale (Pantelleria, Italy). Sensors 2013, 13, 5603–5613. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/00010694-200202000-00003
http://dx.doi.org/10.2136/sssaj2001.652480x
http://dx.doi.org/10.3390/s130505603
http://www.ncbi.nlm.nih.gov/pubmed/23624691
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site and Soil Sampling and Chemical Analyses 
	Soil Chemical Analyses 
	Vis-NIR Diffuse Reflectance Measurement 
	Preprocessing of Spectral Data 
	Standard Full-Spectrum Partial Least Sqares (FS-PLS) Regression 
	Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression 
	Predictive Ability of the PLS Models 

	Results and Discussion 
	Soil Properties (TC and TN) and Their Correlations with Each Waveband 
	Comparison between FS-PLS and ISE-PLS Models 
	Selected Wavebands from ISE-PLS Models 

	Conclusions 

