
remote sensing  

Article

A 33-Year NPP Monitoring Study in Southwest China
by the Fusion of Multi-Source Remote Sensing and
Station Data

Xiaobin Guan 1, Huanfeng Shen 1,2,*, Wenxia Gan 3, Gang Yang 4, Lunche Wang 5 ID ,
Xinghua Li 6 ID and Liangpei Zhang 2,7

1 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, Hubei, China;
guanxb@whu.edu.cn

2 Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, Hubei, China; zlp62@whu.edu.cn
3 School of Resource and Civil Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, China;

charlottegan@whu.edu.cn
4 Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211,

Zhejiang, China; love64080@163.com
5 Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences,

Wuhan 430074, Hubei, China; wang@cug.edu.cn
6 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China;

lixinghua5540@whu.edu.cn
7 The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, Hubei, China
* Correspondence: shenhf@whu.edu.cn; Tel.: +86-27-6877-8375

Received: 24 July 2017; Accepted: 20 October 2017; Published: 24 October 2017

Abstract: Knowledge of regional net primary productivity (NPP) is important for the systematic
understanding of the global carbon cycle. In this study, multi-source data were employed to conduct
a regional NPP study in southwest China, with a 33-year time span and a 1-km scale. A multi-sensor
fusion framework was applied to obtain a new normalized difference vegetation index (NDVI) time
series from 1982 to 2014, combining the advantages of different remote sensing datasets. As another
key parameter for NPP modeling, the total solar radiation was calculated utilizing the improved
Yang hybrid model (YHM), based on meteorological station data. The accuracy of the data processes
is proved reliable by verification experiments. Moreover, NPP estimated by fused NDVI shows
an obvious improved accuracy than that based on the original data. The spatio-temporal analysis
results indicated that 67% of the study area showed an increasing NPP trend over the past three
decades. The correlation between NPP and precipitation was significant heterogeneous at the monthly
scale; specifically, the correlation is negative in the growing season and positive in the dry season.
Meanwhile, the lagged positive correlation in the growing season and no lag in the dry season
indicated the important impacts of precipitation on NPP. What is more, we found that there are three
distinct stages during the variation of NPP, which were driven by different climatic factors. Significant
climate warming led to a great increase of NPP from 1992 to 2002, while NPP clearly decreased
during 1982–1992 and 2002–2014 due to the frequent droughts caused by the precipitation decrease.

Keywords: net primary productivity; multi-sensor information fusion; regional scale; long-term time
series; spatio-temporal analysis; climate control

1. Introduction

As a key component of the global carbon cycle, the terrestrial ecosystem is the main force that can
uptake free carbon from the atmosphere and convert it into organic compounds [1,2]. An improved
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understanding of the terrestrial ecosystem carbon cycle is important under the background of intense
global climate change [3–5]. Net primary productivity (NPP), which is the residual amount of
organic matter produced by vegetation photosynthesis minus its autotrophic respiration consumption,
is an important ecological indicator for the status of a terrestrial ecosystem carbon budget [6,7].
NPP can be precisely acquired by field measurements at a site level, but it is not feasible for regional
or larger scales, as it costs a lot and is unable to obtain spatially full coverage and continuously long
time series. In this case, model-based estimation is an efficient approach, and a large number of
models have been proposed in previous studies [8]. With the development of remote sensing, satellite
data-based models have been extensively applied to terrestrial NPP researches. The reason for the
popularity of the satellite data-based models is that remote sensing images can provide continuous,
dynamic, and comprehensive land-surface information for any region around the earth [9–11]. Satellite
land-cover data and spectral vegetation index products (i.e., the normalized difference vegetation
index, NDVI) are the most commonly used core data when modeling NPP of a large region [8].

Numerous studies have explored the spatio-temporal patterns of NPP based on
moderate-resolution satellite NDVI datasets [12–14], such as the Advanced Very High Resolution
Radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration (NOAA)
satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra/Aqua
satellites [15,16]. However, the related studies have mostly concentrated on the variation of NPP at
global or continental scales [13,17–19]. Although some research has concerned the regional carbon
cycle [20–22], the in-depth studies are still lacking. Nevertheless, regional terrestrial ecosystem carbon
budgets are important, because the characteristics of NPP can highly vary in space and time due to
different natural environments and human landscapes [23,24]. Further study of regional carbon cycles
is therefore necessary for the systematic understanding of the global carbon cycle, since an integrated
and dense carbon observation and analysis system is urgently required [25].

In regional carbon cycle studies with satellite data-based models, remote sensing data quantity
and quality are the determinants for a significant and in-depth analysis. MODIS datasets have been
applied in many studies of the spatio-temporal variations of regional NPP and its potential causal
factors, at spatial resolutions of 250 m to 1 km [24,26–28]. Although these studies have captured the
spatial information of NPP, they have been unable to analyze the NPP variation and its relationship
with environmental factors in the long run, because only data covering the last decade are available,
and no data are available before the year 2000. The same limitation also exists in the studies with
Satellite Pour l’Observation de la Terre (SPOT) Vegetation products [29–31]. Studies using Landsat data
can offer even more detailed spatial information, but it is difficult to acquire a continuous long-term
series, because of its poor temporal resolution and the influence of cloud cover [32–34]. Since the
1980s, AVHRR datasets have been extensively employed to study the regional NPP of a long time
period [20,35–37], but they have been generally used for much larger regions, due to the coarse spatial
resolution of 8 km. Furthermore, it has been proven in many papers that a coarse resolution can
lead to an obvious accuracy loss when modeling NPP, as a result of the spatial heterogeneity of the
data [38–40]. In general, further study of the regional carbon cycle is limited by the inter-inhibitive
characteristics of the different sensors. In this condition, integrating remote sensing data from different
sensors would be an efficient way to settle the problem [41–43]. Related attempts have been made to
relieve the trade-off between the temporal and spatial resolutions in NPP study [44–46], which proved
the feasibility of applying multi-source remote sensing data. However, the insufficient characteristics of
spatial resolution and time span have not been solved previously, which would be more important for
NPP studies. Thus, it is of great significance to obtain a long-term NPP series with suitable resolution
by combing multi-source data.

Yunnan province, located in the most southwestern part of China, is one of the most important
carbon sinks in the continent [47]. However, this region has suffered from more and more frequent
droughts in recent decades [48,49]. A continuous four-year extreme drought occurred from 2009 to 2012,
which severely impacted up to 56% of the region [50]. Although a number of studies have investigated
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the drought impacts in recent years [50,51], meritorious research into the long-term variation of the
regional carbon cycle and its relationship with climatic factors is extremely rare. As a result, to address
these issues, the main objectives of this paper are: (1) to develop an innovative framework for the
generation of a continuous 33-year NPP time series for Yunnan province at a 1-km spatial resolution
with the Carnegie-Ames-Stanford Approach (CASA) model by fusing multi-source remote sensing data
and station data; and (2) to carry out an in-depth analysis of the spatial and temporal characteristics of
the terrestrial ecosystem carbon cycle in the study area, as well as its relationships with the climate.

2. Data Sources

2.1. Study Area

Yunnan province, which is located in southwest China between 21.13◦–29.25◦N and
97.52◦–106.18◦E, was chosen as the study area in this research (Figure 1). Yunnan covers a total
area of 394,000 km2, and mountainous landforms occupy more than 90% of the region. The unique
mountainous landforms lead to its diverse climate characteristic and provide conditions for the growth
of many different vegetation species. Vegetation covers most of the area (approximately 94%), and the
rich and varied vegetation types range from tropical species to frigid species [52]. Most of the territory
is located in the subtropical or tropical zones, with the Tropic of Cancer running through its southern
part. The synergistic effects of the tropical/subtropical climate, the monsoon climate, and the mountain
climate lead to highly complex climate patterns in the area. Although the temperature is moderate
and rainfall is abundant, the uneven intra-annual allocation usually results in wet summers and
dry winters [50].
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2.2. Data Sources

2.2.1. NDVI Datasets

The Global Inventory Modelling and Mapping Studies 3rd generation (GIMMS3g) NDVI product
from the NOAA/AVHRR and MODIS monthly NDVI collection (MOD13A3) were selected as the
basis to composite the 33-year NDVI time series at a 1-km scale. The GIMMS3g dataset from 1982 to
2012 was obtained from the National Aeronautics and Space Administration (NASA) Ames Ecological
Forecasting Lab. The spatial resolution of this dataset is 8 km, and the time interval is half a month.
The dataset has been proven to have a better availability and quality than other AVHRR-based NDVI
products [53]. The MOD13A3 collection from 2000 to 2014 (no data are available for January 2000)
was acquired from the NASA Earth Observing System (EOS) program, at a spatial resolution of 1 km.
The data, which are obtained based on the spectral bands (red band and near-infrared band) that are
primarily designed for the study of vegetation and the land surface [54], have been widely applied in
numerous vegetation studies [14]. In this study, the maximum value compositing (MVC) technique
was employed to obtain the monthly GIMMS3g NDVI, to match the time interval of the MODIS data.

2.2.2. Meteorological Datasets

The meteorological datasets over the study period of 1982–2014 were obtained from the China
Meteorological Administration (CMA), including monthly and daily precipitation and air temperature,
and daily surface pressure, air relative humidity, and sunshine duration from the 29 uniformly
distributed meteorological stations (Figure 1b). In addition, radiation datasets of the five specified
radiation stations (Figure 1b) were also compiled. The station records were carefully interpolated
into the same spatial resolution as the MODIS NDVI (1 × 1 km), using the Australian National
University SPLINe (ANUSPLIN) package [55], with elevation or slope data as the independent
covariates. This package can be used to undertake professional meteorological interpolation using the
thin plate smoothing splines surface-fitting technique. The use of independent covariates can further
improve the precision. After repeated attempts, it was concluded that elevation was the optimal
covariate for temperature, and slope was the optimal covariate for precipitation and radiation.

2.2.3. Other Data

The WESTDC2.0 land-cover map was derived by the Chinese Academy of Sciences (CAS)
Environmental and Ecological Science Data Center for West China (WESTDC) [56]. The map takes full
advantage of the 1:100,000 land resources data surveyed by CAS, and is integrated with multi-source
satellite classification information. In this study, the data were synthesized into eight classes: evergreen
broadleaf forest (EBF), deciduous broadleaf forest (DBF), needle-leaf forest (NF), mixed forest (MF),
shrub, grass, crop, and other land covers.

The measurement-based biomass/NPP datasets from Luo’s study [57], which have been used
in many studies [51,58], were employed as the validation data in this study. All the records over the
study area were from the Yunnan Ministry of Forestry for the year of 1983. The data include the forest
biomass/NPP for most of the plant components, and the location and dominant species of each site.
As the records of NPP were provided with the unit of dry matter (t DM ha−1 year−1), a conversion
factor of 50 was needed to change this into carbon content (gC m−2 year−1) [58,59].

3. Method

3.1. CASA Model

The Carnegie-Ames-Stanford Approach (CASA) model, which was developed on the basis of
light-use efficiency, served to estimate the monthly NPP in the study area [60,61]. The calculation of
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NPP can be expressed as the product of absorbed photosynthetic active radiation (APAR, MJ m−2)
and the light-use efficiency (ε, gC MJ−1), as follows:

NPP(x, t) = APAR(x, t)× ε(x, t), (1)

where NPP(x, t) is the total fixed NPP of pixel x in month t, APAR(x, t) is the total amount of
absorbed photosynthetic active radiation over the period, and ε(x, t) is the actual light-use efficiency.
The calculation of APAR and ε is shown below:

APAR(x, t) = Rs(x, t)× 0.5× FPAR(x, t), (2)

ε(x, t) = ε∗(x, t)× T1(x, t)× T2(x, t)×W(x, t), (3)

where Rs(x, t) is the total solar radiation of pixel x in month t; the coefficient 0.5 is the approximate
ratio of photosynthetic active radiation (0.4–0.7 µm) to total solar radiation; and FPAR(x, t) is the
fraction of photosynthetic active radiation absorbed by the vegetation canopy, which is determined by
the NDVI and vegetation types:

FPAR(x, t) = min[(SR(x, t)− SRmin)/(SRmax − SRmin), 0.95], (4)

SR(x, t) = [1 + NDVI(x, t)]/[1− NDVI(x, t)], (5)

where SR(x, t) is the simple ratio of NDVI; SRmax and SRmin are the constants related to the vegetation
type, which is shown in Table 1 [62].

Table 1. The value of maximum light utilization efficiency (ε∗), SRmin, SRmax for different
vegetation types.

Vegetation Type EBF DBF NF MF Shrub Grass Crop

ε∗ (gC MJ−1) 0.985 0.692 0.485 0.768 0.429 0.542 0.542
SRmin 1.050 1.050 1.050 1.050 1.050 1.050 1.050
SRmax 5.170 6.910 6.630 4.670 4.490 4.460 4.460

Note: ε∗ is the maximum light-use efficiency; SRmin is the factor SR for unvegetated land areas; SRmax approximates
the values of SR when all solar radiation is intercepted; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf
forest; NF: needle-leaf forest; MF: mixed forest.

In Equation (3), ε∗(x, t) is the maximum light-use efficiency, the value of which varies with the
vegetation type according to the previous study of ecosystems in China (Table 1) [62]; T1(x, t) and
T2(x, t) are the temperature stress factors; and W(x, t) is the moisture stress factor:

T1(x, t) = 0.8 + 0.02× Topt(x)− 0.0005× Topt(x)× Topt(x), (6)

T2(x, t) = 1.1814/{1 + e[0.2(Topt(x)−10−T(x,t))]}/{1 + e[0.3(−Topt(x)−10+T(x,t))]}, (7)

W(x, t) = 0.5 + 0.5EET(x, t)/PET(x, t), (8)

where Topt(x) is the temperature when NDVI reaches its maximum for the year; T(x, t) is the monthly
mean temperature; EET(x, t) and PET(x, t) are the soil properties derived from the sub-model of
regional evapotranspiration [63].

The spatial and temporal resolution of the NPP from the CASA model is determined by the
resolution of the NDVI. Thus, in Section 3.2, image processing algorithms are introduced to integrate
the respective advantages of the MODIS and GIMMS3g datasets, to obtain a long-term NDVI time
series with a suitable resolution. In addition, in Section 3.3, the total solar radiation is precisely
calculated by the improved YHM model. The overall workflow of NPP estimation is depicted in
Figure 2.
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Figure 2. The workflow of NPP estimation.

3.2. Generation of the 33-Year NDVI Time Series at a 1-km Scale

The three processes described below were adopted to eliminate the problems with regard to data
quality, sensor differences, and the coarse spatial resolution, for the NDVI datasets.

3.2.1. NDVI Filtering

The application of NDVI time-series data is usually limited by the existence of unwanted noise
and errors caused by the cloud presence and other atmospheric contamination [64]. In order to obtain
a high-quality NDVI time series, the moving weighted harmonic analysis (MWHA) [65] method
was employed to correct these contaminated values in the GIMMS3g and MODIS NDVI datasets.
The algorithm was proposed based on a modification of the harmonic analysis method, which has
been proved to be a better strategy for different NDVI datasets with various time intervals, and is
reliable for pixels in the vegetation dormancy period [65]. The effects of the filter process are shown
in Figure 3, where it can be observed that the sudden abnormal drops in the NDVI time series have
been exactly adjusted. After the filtering, the time series show much more similar variation curves
approaching the actual vegetation variation.

Remote Sens. 2017, 9, 1082  6 of 23 

 

calculated by the improved YHM model. The overall workflow of NPP estimation is depicted in 
Figure 2. 

 
Figure 2. The workflow of NPP estimation. 

3.2. Generation of the 33-Year NDVI Time Series at a 1-km Scale 

The three processes described below were adopted to eliminate the problems with regard to data 
quality, sensor differences, and the coarse spatial resolution, for the NDVI datasets. 

3.2.1. NDVI Filtering 

The application of NDVI time-series data is usually limited by the existence of unwanted noise 
and errors caused by the cloud presence and other atmospheric contamination [64]. In order to obtain 
a high-quality NDVI time series, the moving weighted harmonic analysis (MWHA) [65] method was 
employed to correct these contaminated values in the GIMMS3g and MODIS NDVI datasets. The 
algorithm was proposed based on a modification of the harmonic analysis method, which has been 
proved to be a better strategy for different NDVI datasets with various time intervals, and is reliable 
for pixels in the vegetation dormancy period [65]. The effects of the filter process are shown in Figure 
3, where it can be observed that the sudden abnormal drops in the NDVI time series have been exactly 
adjusted. After the filtering, the time series show much more similar variation curves approaching 
the actual vegetation variation. 

 

Figure 3. Effects of the MWHA method in filtering the NDVI time series. An example pixel of the 
MODIS and AVHRR NDVI data located at (25.32°N, 103.53°E), from 2007 to 2008. 

Figure 3. Effects of the MWHA method in filtering the NDVI time series. An example pixel of the
MODIS and AVHRR NDVI data located at (25.32◦N, 103.53◦E), from 2007 to 2008.



Remote Sens. 2017, 9, 1082 7 of 23

3.2.2. Normalization

A large gap between the NDVI of the two sensors for the specific pixel can be observed in Figure 3,
and the NDVI values of MODIS are generally lower than GIMMS3g, with a mean difference of 0.07
in the study area. This is likely to be caused by the disparity in the characteristics of the two sensors,
and the fact that no atmospheric correction has been applied to the GIMMS3g data [66,67]. Fensholt
and Proud concluded that the temporal trends derived from the GIMMS NDVI agree well with the
MODIS data [68], overall, so a unary linear regression normalization model can be used to express
the relationship between the two datasets. In this study, the GIMMS3g data were normalized to
be consistent with MODIS using a pixel-by-pixel linear regression method, at the original spatial
resolution of the GIMMS3g data (8 km). For each pixel, a linear relationship was obtained based on the
data in the mutual time period from February 2000 to December 2012 (155 pairwise images). Then it
was applied to the GIMMS3g data for the corresponding pixels before the year 2000. Thus, the data
time series from 1982 to 1999 can be considered as MODIS-like NDVI, with data values consistent with
MODIS, but with the same resolution as GIMMS3g.

3.2.3. Multi-Sensor Fusion

Although the sensor differences were removed, gaps still existed in the spatial resolution between
the MODIS NDVI and the obtained MODIS-like time series. On account of the 8-km resolution being
too coarse, which can lead to overestimation when modeling NPP [38,39], multi-sensor fusion was
an effective way to improve the spatial resolution of the MODIS-like data [69–71]. Many vegetation
studies have applied the spatial and temporal adaptive reflectance fusion model (STARFM) and the
extended STARFM (ESTARFM) to vegetation index fusion and prediction [41,72–75]. In this study,
a spatio-temporal information fusion method based on a non-local means filter was employed to
improve the spatial resolution of the MODIS-like data [76].

Multi-sensor fusion can be used to predict the MODIS NDVI value at t1 based on the MODIS-like
data at t1 and the reference MODIS and MODIS-like images acquired at t0. The prediction of the
fine-resolution NDVI before the year 2000 can be expressed as:

F
(

xp/2, yp/2, t1

)
=

p

∑
i=1

ωi × (F(xi, yi, t0) + C(xi, yi, t1)− C(xi, yi, t0)), (9)

where F and C represent the fine-resolution and coarse-resolution NDVI, respectively; t0 is the
acquisition date of the reference data; t1 is the prediction date;

(
xp/2, yp/2

)
is the location of the

predicted pixel; (xi, yi) denote the pixel location; p is the size of the moving window; and ωi is the
spatial weighting function. The innovation of the applied fusion algorithm is the more reasonable
calculation of ωi, which takes full consideration of the spatial relationship between pixels based on
the concept of the non-local means filter. Considering the seasonal inconsistency of NDVI patterns,
the fine-resolution NDVI of each month from 1982 to 1999 was predicted referring to the MODIS data
for the corresponding month in the nearest year.

3.3. Accurate Calculation of Total Solar Radiation with the Improved YHM Model

The surface total solar radiation (Rs) is an indispensable parameter of the CASA model. However,
the sparse distribution of the Rs observation stations (five in the study area) resulted in it being difficult
to interpolate accurate raster radiation data [77]. Therefore, the improved Yang hybrid model (YHM)
was employed to calculate the Rs of the 29 climatological stations in Yunnan province [77], using the
daily climatological records. The model considers the attenuation from each atmospheric component
when solar radiation passes through the atmosphere. The model can be described as follows:

Rs = τc

∫
∆t

(τb,clear + τd,clear)I0dt, (10)
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where I0 is the solar irradiance at the top of atmosphere; ∆t is the time period of the calculated solar
radiation; τb,clear and τd,clear are the solar beam radiative transmittance and the solar diffuse radiative
transmittance under clear skies, respectively, which were determined by the transmittances of ozone,
water vapor, gas mixture, the Rayleigh effect, and aerosols in the atmosphere; and τc is the radiative
transmittance of cloud, which is a linear function of sunshine duration. The improved estimation of
parameter τc was undertaken according to the method proposed by Wang et al. [78].

4. Results

In this part, the reliability of estimated NPP was firstly verified in Section 4.1, as well as the
accuracy of NDVI fusion and total solar radiation calculation. Then, in Section 4.2, the spatial and
temporal variation of NPP in Yunnan was characterized. In order to unveil the climatic impacts on
NPP, their correlations were analyzed at an annual and a monthly scale, respectively in Sections 4.3.1
and 4.3.2 Then the lagged effects of precipitation were also considered in Section 4.3.3. Finally,
in the Section 4.4, the dominating climate factor for NPP variation was found for different time
stages in the past three decades.

4.1. Results Validation

4.1.1. Simulated Validation of the Multi-Sensor Fusion

In order to validate the feasibility of the multi-sensor fusion process in long-term NDVI prediction,
simulated experiments were conducted based on the MODIS and GIMMS3g datasets for the mutual
time period of 2000 to 2012. For each month, the fine-resolution NDVI (NDVIfusion) from 2000 to 2011
was simulated with reference to the MODIS and MODIS-like images for the corresponding month
in the year 2012. The predicted fusion data (NDVIfusion) were then validated with the true MODIS
NDVI, both qualitatively and quantitatively. The statistics of root-mean-square error (RMSE) and
mean absolute difference (MAD) for each year were computed and are shown in Figure 4. The fused
NDVI presents an absolute error of less than 0.06 compared with the original MODIS data, and the
RMSE is around 0.07. Most importantly, the fine fusion results maintain a stable accuracy as the years
between the prediction date and reference date increase. It is, therefore, reasonable to predict the
fine-resolution monthly NDVI before the year of 2000 using the multi-sensor fusion method. What is
more, a qualitative comparison of the results for April 2000 is shown in Figure 5 as an example,
where it can be observed that the spatial resolution of the predicted NDVI has been clearly improved.
The spatial distribution of the data is highly consistent, and only slight differences can be found.
As shown in the two green rectangles in Figure 5e,f, although some regions with low NDVI have been
overestimated in the fusion result, the vegetated land area is well predicted. It means that the fusion
results are useable in the vegetation related studies.
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Figure 5. Qualitative comparison of the fusion method for April 2000: (a) resampled result of the
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areas with differences.

4.1.2. Cross-Validation of the Total Solar Radiation Calculation

Cross-validation experiments were applied to examine the accuracy of the YHM model based on
the quality-controlled monthly solar radiation measurements (Rstation) [79], of five stations in Yunnan
(station numbers 56651, 56739, 56778, 56959 and 56985, respectively). The records of four stations were
used to obtain parameter τc and the model solar radiation (Rmodel), and then the Rstation records of the
remaining one station (test station) were applied to validate the calculated Rmodel of the corresponding
site. The experiment was undertaken five times until every station was tested. The statistics of the
correlation coefficient (r), RMSE, and mean absolute relative difference (MARD, the mean absolute
value of the ratio between the error and true data) are listed in Table 2. The results show that the
modeled solar radiation has a good consistency with the observed records, with r above 0.83 and
MARD at around 8%.

Table 2. Statistics for the cross-validation of the improved YHM model.

Test Station No. r RMSE (MJ m−2) MARD (%)

56651 0.88 48.24 7.31
56739 0.84 52.76 8.71
56778 0.94 48.60 7.67
56959 0.85 46.86 7.96
56985 0.83 53.72 8.41

Note: Test station No. is the station number that used to validate the solar radiation calculated by the other four
stations; RMSE is the root mean square error; and MARD denotes the mean absolute relative difference, which is
the mean absolute value of the ratio between the error and true data.
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4.1.3. Validation of the Estimated NPP with in situ Data

The reliability of the estimated NPP products was verified using the in situ data measured by the
Yunnan Ministry of Forestry [57]. Totally 59 plots were picked for validation, through matching the
vegetation type with the land-cover map used in this study. As displayed in Figure 6, the estimated
NPP shows fine consistency with the in situ data, with r reaching 0.79 (p < 0.001). Moreover,
the good consistency also could be observed among different vegetation types, as shown in Table 3.
The estimated NPP demonstrates the similar statistics with the in situ data, including the mean value,
data range and standard deviation. The overall MAD is 99 gC m−2 month−1 and the bias is 67 gC m−2

month−1. Although there are some disagreements, the scale effect and representative errors might
be the major reason for it. In general, the estimated NPP shows an overall good consistency with the
in situ data, with high r and low difference, which demonstrates its usability in analyzing the NPP
patterns in Yunnan province.
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Table 3. Statistics of the estimated NPP performances at 59 field sites.

Vegetation Types Measured Value (gC m−2 year−1) In This Study (gC m−2 year−1)

Mean Range STD Mean Range STD MAD Bias

EBF 996 524–1233 161 1080 675–1474 213 63 14
DBF 778 693–864 121 774 685–862 125 5 −5
NF 536 313–854 152 611 428–779 80 105 74

ALL 563 313–1233 184 633 428–1474 122 99 67

Note: STD is the standard deviation; MAD is the mean value of the absolute difference for the modelled NPP and
observed data; Bias is the mean value of the modeled data minus observed data.

4.2. NPP Spatial Distribution and Variation Trends

4.2.1. NPP Spatial Distribution

The spatial distribution of the mean annual NPP for the past 33 years is shown in Figure 7a.
Generally, the NPP in Yunnan province gradually decreases from the southwest to the northeast.
The mean annual NPP is generally higher than 1000 gC m−2 year−1 in most of the southwest area,
which is located close to the frontier, where the latitude and altitude are relatively low. The lack
of human activities and the warm climate in this area benefit the growth of vegetation. However,
the mean annual NPP is less than 500 gC m−2 year−1 in extensive regions of northwest Yunnan,
which is a part of the Qinghai–Tibet Plateau, with elevations mostly higher than 4000 m. The cold and
harsh climate in this area limits the vegetation growth, which is also the reason for the low NPP in the
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northeast area. There are also many regions with an NPP of less than 500 gC m−2 year−1 in central
Yunnan, such as the provincial capital of the city of Kunming, as a result of urban construction and
expansion. In general, most of Yunnan shows a relatively high NPP exceeding 800 gC m−2 year−1,
but some regions have lower NPP values due to the harsh climate or human activities.
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4.2.2. Annual NPP Variation

The inter-annual changes of the mean annual NPP in Yunnan province are shown in Figure 8a.
Overall, the mean annual NPP showed fluctuating growth from 1982 to 2014, with a total increasing
trend of 0.98 gC m−2 per year (r = 0.38, p < 0.05). However, the inter-annual variation of NPP was
not consistent over the entire study period, but three distinct stages were found after filtering the
variation curve, with break points at 1992 and 2002. It can be clearly observed in the figure that the
NPP experienced a decreasing trend from 1982 to 1992 (slope = −3.04 gC m−2 year−1); it then sharply
increased at a rate of 5.70 gC m−2 year−1 until 2002; and finally slightly decreased again between 2002
and 2014 (slope = −2.22 gC m−2 year−1). Therefore, the increasing trend of the NPP over the study
period was mainly due to the increment from 1992 to 2002, because the NPP in the other two stages
presented completely opposite variation trends.

The spatial pattern of the annual NPP trends (the slope of the NPP inter-annual variation) in the
past 33 years is shown in Figure 7b. The trends are calculated by the robust regression of iteratively
reweighted least squares [80], which could eliminate the impacts of outliers. The annual NPP increased
in 67.16% of the study area, which was more than twice the region with decreased NPP. In particular,
37.32% of the area showed a significantly increased NPP trend (r > 0, p < 0.05), while the rate for
the significantly decreased area was only 9.48% (r < 0, p < 0.05). Almost all of southwest Yunnan
showed increasing trends, with values higher than 2 gC m−2 per year. This indicates that the NPP
in southwest Yunnan is not only high, but has also presented a significant increasing trend over the
past 33 years. Obvious increasing trends also occurred in large regions in the northeast, which shows
a relatively low NPP. Meanwhile, there are also regions showed decreasing trends, mostly in the
high-altitude district in the northwest and the urban area in central Yunnan. The hostile climate and
urban expansion might be the reason for the NPP decline. It is found that 91.02% of these areas have
suffered from a decreased precipitation or temperature in last three decades, especially area with
decreased temperature occupied 75.75%.
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4.3. Relationship between NPP and Climate

4.3.1. Correlations between NPP and Climatic Factors at an Annual Scale

The interaction between NPP and climatic factors is one of the most important issues for carbon
cycle research. The inter-annual changes of mean temperature and accumulated precipitation for the
study area are shown in Figure 8b,c, and are divided into the three stages with the same break points
in NPP annual variation. It can be seen that the temperature steadily increased in all stages, with an
overall increasing trend of 0.039 ◦C per year (r = 0.81, p < 0.01), and the total increment reached 1.28 ◦C
from 1982 to 2014. The benefit of continuous climate warming was responsible for the overall growth
in NPP [12]. Temperature also showed a significant positive correlation with NPP at an annual scale,
with r = 0.41 (p < 0.05). Precipitation presented three completely parallel stages to NPP, with trends of
−14.61 mm year−1, 15.28 mm year−1 and −12.56 mm year−1, respectively. The relative magnitudes of
the variation trends for the three stages also agreed with the NPP. However, the precipitation showed
an overall variation trend that was the opposite to NPP, with a decreasing trend of −4.79 mm per
year (r = −0.43, p < 0.05). An abnormally negative correlation was observed between annual NPP
and precipitation, in spite of the fact that the relationship was not significant (r = −0.22, p > 0.1).
This indicates that increased precipitation led to reduced NPP for vegetation in Yunnan province.
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4.3.2. Correlations between NPP and Climatic Factors at a Monthly Scale

In order to conduct further studies of the relationships between NPP and climatic factors,
the intra-annual variations of monthly NPP, climatic factors, and their correlations are shown in
Figure 9, as well as the important parameter of total solar radiation. It can be seen that there was an
obviously higher NPP in summer and low accumulation in winter, with the NPP difference as large as
60 gC m−2 per month. This characteristic of NPP is the result of the similar uneven distribution of
precipitation and temperature at a monthly scale. The mean temperature in summer was more than
the double that in winter, with a difference of more than 10.46 ◦C. The heterogeneous intra-annual
distribution of precipitation was even greater. The half-year from May to October featured 82.88%
of the annual precipitation. The suitable temperature and abundant precipitation provide good
conditions for vegetation growth from May to October, while the cold and dry climate suppresses
photosynthesis and leads to low NPP in the other months. According to the previous vegetation study
in Yunnan [81], the period from May to October is the “growing season”, with high NPP and a superior
hydrothermal environment, and the other six months can be called the “dry season”, with low NPP
and a harsh climate.
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between NPP and precipitation and total solar radiation are observed in the intra-annual variation, 
and completely antipodal distributions are found between them. Total solar radiation fully controls 
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0.97 (p < 0.01). The relationship in May is also significant (r = 0.69, p < 0.01). In contrast, precipitation 
shows a significant negative impact on the vegetation growth in the six months of the growing season. 

Figure 9. The intra-annual variation of: (a) monthly NPP; (b) monthly precipitation and its correlation
with NPP; (c) monthly temperature and its correlation with NPP; and (d) monthly total solar radiation
and its correlation with NPP. The histogram is the averaging amount of NPP or climatic factors for
all the 33 years in a given month, and the red dashed line is the correlation coefficient for the annual
variation of NPP and climatic factors in a given month.

Figure 9 also shows the difference in the correlation coefficients (r) between monthly NPP and
the climatic variables for each month. Temperature presents a relatively stable positive correlation
with NPP throughout the year, with a relatively weaker impact in summer when the warm climate
is at the optimum level for photosynthesis. Nevertheless, highly fluctuating correlation coefficients
between NPP and precipitation and total solar radiation are observed in the intra-annual variation,
and completely antipodal distributions are found between them. Total solar radiation fully controls
the change of NPP from June to October, with amazingly high correlation coefficients of greater than
0.97 (p < 0.01). The relationship in May is also significant (r = 0.69, p < 0.01). In contrast, precipitation
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shows a significant negative impact on the vegetation growth in the six months of the growing season.
This phenomenon is the reason for the negative correlation between precipitation and NPP at an annual
scale. Due to NPP in the growing season amounts to 65.7% of the annual amount, the significant
negative impacts of precipitation during this period might dominated the weak negative correlation at
an annual scale.

The negative impact of precipitation on NPP in the growing season is the result of the warm
temperature and abundant precipitation during this period, whose mean values are 18.61 ◦C and
200.31 mm per month. The least rainfall in the growing season occurred in the year 2011, but the
average amount was still as high as 67.09 mm per month. In this condition, total solar radiation,
as the energy source of photosynthesis, certainly dominates the growth of vegetation, with a very close
correlation to NPP. However, due to the rainfall already being abundant for photosynthesis during this
period, more precipitation cannot benefit the vegetation and actually suppresses its growth. This is
because the increased precipitation means more overcast skies, which prevents the transfer of sunlight
and lessens the total amount of solar radiation arriving at the vegetation canopy. After verification,
the precipitation and total solar radiation show a significant negative mean correlation during the
period, with r = −0.64 (p < 0.01). Therefore, the increase of precipitation in the growing season does
not promote the growth of vegetation, but instead weakens the photosynthesis by cutting down the
energy source from solar radiation.

On the other hand, precipitation shows a positive influence on the variation of NPP in the
dry season. This is the result of the extreme lack of water for vegetation growth in these months,
when the mean precipitation is 42.58 mm per month, less than one-fifth the level of the growing
season. Thus, precipitation replaces radiation as the main limitation for photosynthesis, as increased
precipitation could certainly promote vegetation growth by providing the necessary element of water.

4.3.3. Lagged Impact of Precipitation on NPP

The delayed effect of precipitation on NPP should also be considered, and time lags of 0–3 months
were considered according to previous studies [82]. From January to December, the correlations
between monthly NPP and precipitation in the same month or 1–3 months previous were calculated
and compared, as shown in Figure 10. Although NPP in the growing season shows a significant
negative correlation with precipitation, optimal positive correlations (meaning the highest correlation
coefficients) can be observed with the precipitation of one or two months before. Except for August,
during which the optimal time lag is two months, the NPP of the other months in the growing season
all show one month lag with precipitation. This indicates that increased precipitation in the previous
one or two months can promote the growth of vegetation, because soil can store water from rainfall
and provide water to the vegetation in the following months. Meanwhile, this phenomenon cannot be
found for the dry season months, during which the optimal correlation between NPP and precipitation
appears in the identical month, without lag. This might be the result of the urgent demand for
water in these dry months, so vegetation immediately responds to the precipitation, without time lag.
This indicates that precipitation has an important impact on the variation of NPP in the study area,
even though a negative correlation is observed in the growing season.
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4.4. Driving Forces for the Inter-Annual Variation of NPP in the Three Stages

Although precipitation presented three completely parallel stages to NPP, it was not enough to
explain the three-stage inter-annual variation of NPP. The variation of NPP in the growing season
and dry season was therefore calculated to further study the driving forces for NPP change in the
three stages, as shown in Figure 11. It can be seen that the changes of annual NPP in the three
periods were dominated by the amounts in the different seasons. For the stage from 1982 to 1992,
the decline of annual NPP was apparently dominated by the NPP change in the growing season
(slope = −3.34), and the NPP increment from 1992 to 2002 was caused by the NPP variation in the dry
season (slope = 4.67). Meanwhile, the decrease of NPP from 2002 to 2014 was the result of the decreased
NPP in both the growing season (slope = −1.39) and the dry season (slope = −0.68). The variation
trends of the climatic factors in the related seasons and stages were calculated to find the reasons for
the NPP change, as shown in Table 4. For the time periods of the growing season from 1982 to 1992 and
the two seasons from 2002 to 2014, precipitation showed the same decreasing variation trends as NPP
(−8.25, −9.83, −7.43 mm per year, respectively). Precipitation did not show an obvious decreasing
trend in the dry season from 1992 to 2002 (only −1.52 mm per year) when the NPP increased. Instead,
temperature presented a very significant growth of 0.15 ◦C per year in this period, which was much
greater than the temperature rise in the other stages.
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Table 4. Variation trends of NPP and climatic factors in the related seasons and stages.

Time Period Season NPP (gC m−2 Year−1) Precipitation (mm Year−1) Temperature (◦C Year−1)

1982–1992 Growing
season −3.34 −8.25 −0.014

1992–2002 Dry season 4.67 −1.52 0.15

2002–2014
Growing
season −1.39 −9.83 0.054

Dry season −0.68 −7.43 0.021

The variation trends of NPP and climatic factors at the pixel level were also calculated and
analyzed for the four groups of data. For the area where NPP showed the same variation trends as the
mean seasonal NPP, statistics of the climate variation trends were calculated and are shown in Table 5.
Taking the example of the growing season from 1982 to 1992, the percentage of area with increased
or decreased precipitation/temperature was counted among the pixels with decreased NPP. For the
growing season of the period from 1982 to 1992, 95.54% of the study area showed a decreased NPP in
total. Among these regions, 78.63% showed decreased precipitation, with a mean trend of −12 mm per
year. The continuous reduction in precipitation was likely responsible for the reduction of NPP, because
it would cause persistent droughts. The growth of vegetation was also affected by the continuous
decline of temperature in 72.66% of the area, due to the decreased biological activity. The decrease of
precipitation would also be the reason for the decline of NPP from 2002 to 2014. Especially in the dry
season, 99.07% of the area with a decreased NPP presented a precipitation decrease, with a mean trend
of −7.80 mm season−1. The value was 19.21% of the monthly precipitation amount in that period.
The percentage of area and mean trend in the growing season also reached 63.41% and −12.22 mm
per year. The significant precipitation decreases in each season have caused frequent droughts during
this period, which were the reason for the NPP decline, most notably the four-year extreme drought
from 2009 to 2012. Meanwhile, for the dry season from 1992 to 2002, although the mean seasonal
precipitation slightly decreased, more rainfall occurred in 41.08% of the area. As a result, the rapidly
increasing temperature trend of 0.15 ◦C per year greatly promoted the vegetation growth. The climate
warming benefited the vegetation even more in the dry season, when the temperature was relatively
low, with a mean value of only 11.03 ◦C. In general, it can be concluded that the increment of NPP
from 1992 to 2002 was mainly caused by the growth of the dry season due to the significant climate
warming, and the decline in NPP from 1982 to 1992 and from 2002 to 2014 was due to the frequent
droughts caused by the precipitation decrease during these periods.

Table 5. The percentage of decreased and increased pixels of precipitation and temperature within the
area showing the same variation trends as the seasonal NPP.

Time Period Season NPP Trend
Decreased Pixels (%) Increased Pixels (%)

P T P T

1982–1992 Growing Decreasing 78.63 72.66 21.37 27.34
1992–2002 Dry Increasing 58.92 0 41.08 100

2002–2014
Growing Decreasing 63.41 5.95 36.59 94.05

Dry Decreasing 99.07 26.98 0.93 73.02

Note: P denotes the precipitation; T denotes the temperature.

5. Discussion

NDVI is one of the core parameters in modeling NPP at regional or larger scales, which decides
the characteristics of the NPP result. Due to the inter-inhibitive characteristics of current sensors,
none of the previous researches could conduct a NPP study with ideal time span and spatial resolution
at the same time. Thus, we proposed a new framework to obtain a long-term and suitable resolution
NPP series, through fusing multi-source remote sensing NDVI datasets. In this section, we would like
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to discuss the uncertainties of the fusion results in estimating NPP comparing to the original NDVI
data, as well as its applicability to other regions.

5.1. Uncertainties of the Fused NDVI in Estimating NPP

Since the fusion process is the core to estimate NPP, it is necessary to discuss the uncertainties
of NPP caused by the fused NDVI. Therefore, the NPP calculated by the fused NDVI (NPP_fused)
was compared with the NPP calculated by the original MODIS (NPP_MODIS) and GIMMS3g NDVI
(NPP_GIMMS3g), respectively. First of all, the comparison of NPP_fused and NPP_MODIS was
conducted in 2011, when the fused NDVI showed a relatively worse result in Figure 4. The result
indicated that the NPP_fused shows strong consistency with NPP_MODIS, both in the spatial
distribution and the intra-annual variation. The spatial correlation coefficient of the two data reaches
0.94, and the mean absolute difference (MAD) is only 4.16 gC m−2 month−1. Moreover, their temporal
variations are also almost the same, with r as high as 0.99. It means that the fused NDVI has the
almost same performances with the true MODIS data in estimating NPP. It is a result of the good data
consistency showed in Figures 4 and 5. The two kinds of NDVI data essentially showed little differences,
after the multiple operations of CASA model, the NPP results would be even more consistent.

Meanwhile, in order to demonstrate the impacts of the NDVI data processes in NPP estimation,
the NPP based on the original GIMMS3g NDVI (NPP_GIMMS3g) and the MODIS-like NDVI (NPP_like)
were also calculated and validated with the in situ data in 1983. As shown in Figure 12, and compared
to the performances of NPP_fused in Figure 6, the NPP_fused is obviously more accurate than the
other two results. The NPP_GIMMS3g is the worst one, with overestimation in almost all the plots
(r = 0.33). The performance of the NPP_like is better (r = 0.44), due to the NDVI being normalized to
be consistent with the MODIS data, which is more accurate with lower values. The promoted spatial
resolution would be the reason for the better accuracy of NPP_fused, because it could reduce the
overestimation and precision loss caused by the spatial heterogeneity when modeling NPP.
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In general, according to the evaluations above, the fused NDVI would not bring extra uncertainties
in estimating NPP. The fused NDVI showed the extremely similar performances with true MODIS
data in estimating NPP, and could obtain a much more accurate NPP than the original GIMMS3g
NDVI data.

5.2. Applicability of the Fusion Method to Other Regions

This study only applied the new framework to estimate NPP in Yunnan province, to investigate
the regional NPP patterns and its relation to the complex climate. Thus, it is necessary to discuss the
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applicability of the new framework to estimate NPP in other regions. The core of the framework is the
generation of a new long-term NDVI time series with higher spatial resolution, by fusing multi-source
remote sensing data. Thus, we can prove the feasibility of our framework, if the fusion processes are
applicable in other regions. In this case, we additionally selected the typical and important terrestrial
ecosystem in Qinghai-Tibet Plateau and Amazon area, as the testing region, and the same NDVI
processes in Section 3.2 was conducted. The tile numbers of the MODIS data are ‘h11-v09’ and
‘h24-v05’, respectively. After the fusion processes, the same simulated validation in the Section 4.1.1
was applied. The quantitative evaluation is shown in Figure 13, and we could observe the same
conclusions as in the study area of Yunnan. The fused NDVI presents good consistency with the true
MODIS data, and the fine results maintain a stable accuracy as the years between the prediction date
and reference date increase. The value of the statistics shows small differences, which would be the
result of the different levels of NDVI value in different regions. Besides, also similar to the conclusions
in Yunnan, the qualitative comparisons indicate a clearly improved spatial resolution for the fused
NDVI, and showing a highly consistent spatial distribution with the true MODIS data. From the
experiments above, it can be concluded that the fusion processes could obtain fine results in different
regions with different surface conditions. Therefore, the same framework described in this paper
should be applicable in other regions, to obtain the long-term NPP series with higher spatial resolution.
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In summary, this study proposed an efficient data-processing framework to map a long-term NPP
with enhanced spatial resolution, at regional scale. The method would not add extra uncertainties,
but could improve the NPP accuracy by weakening the error caused by spatial heterogeneity. It agrees
to the previous studies, which have proved that coarse resolution can lead to an obvious overestimation
and accuracy loss when modeling NPP [38–40]. Furthermore, the three stages of the NPP annual
variation in this study also agree to the result of Liang et al. [83], some differences in break points
and trends value would be the result of the different study regions. However, further efforts should
be made to investigate the more detailed spatial and temporal patterns of NPP in such complex
terrain, such as the specific variation trends and the response of NPP to climate in different elevation
zones. Furthermore, the relationships between NPP and more environmental factors (i.e., land surface
parameters, other climatic factors, atmospheric condition, land-use/land-cover changes, disaster
disturbance, human activities, and so on) also need to be investigated, comprehensively considering
the linear and non-linear relationships or trends, in order to obtain a better understanding of the
influencing mechanism of the regional carbon cycle.

6. Conclusions

In this paper, we conducted a study on the regional carbon cycle in Yunnan province of southwest
China, from 1982 to 2014, at a 1-km scale. As a core parameter for NPP estimation, the NDVI time
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series were innovatively obtained by fusing the GIMMS3g data and MODIS data to combine their
respective advantages. The comprehensive evaluations demonstrated that the fused NDVI is as
accurate as the MODIS NDVI for NPP estimation, and could greatly improve the NPP accuracy
compared to the original AVHRR NDVI. The final estimated NPP presented good consistency with the
field measurements, both in all (r = 0.79) and in each vegetation types.

We analyzed the NPP series and got some interesting conclusions. NPP generally decreased from
southwest to northeast in spatial terms, and more than 67% of the study area showed an increasing
NPP in the last 33 years. The Annual NPP variation could be separated to three distinct stages, and its
overall increasing trend was mainly contributed to by the growth during 1992–2002. There was a
significantly negative correlation between precipitation and NPP in the growing season, but one or two
months lagged positive correlations were observed. However, in the dry season, the correlations were
positive without time lag. This huge seasonal heterogeneity led to a non-negative correlation at the
annual scale, because NPP in the growing season it was far greater than in dry season. Furthermore,
the frequent droughts caused by the precipitation decrease led to the NPP decline during 1982–1992 and
2002–2014; and NPP rapidly increased from 1992 to 2002 due to the significant climate warming, when
the precipitation varied only slightly. Finally, we discussed the uncertainties and the transferability of
the fusion framework in estimating NPP; the result indicated that the framework could improve NPP
accuracy by enhancing the spatial resolution and could be efficiently applied in other regions.
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