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Abstract: The use of Interferometric Synthetic Aperture Radar (InSAR) data has great potential
for monitoring large scale forest above ground biomass (AGB) in the tropics due to the increased
ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have
been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height
data is crucial for the development of large scale forest monitoring programs. This study provides
an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands.
The primary objective was to assess the accuracy of a model linking AGB with InSAR height from
WorldDEM after the subtraction of ground heights. The secondary objective was to assess the
possibility of obtaining InSAR height for field plots when the terrain heights were derived from
global navigation satellite systems (GNSS); i.e., as an alternative to using airborne laser scanning
(ALS). The results revealed that the AGB model using InSAR height had a predictive accuracy
of RMSE = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS.
The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB
was improved when compared to a previous study using TanDEM-X for a sub-area of the area of
interest and was of similar magnitude to what was achieved in the same sub-area using ALS data.
Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for
large scale AGB modelling in tropical woodlands.

Keywords: InSAR; TanDEM-X; above ground biomass; tropical woodlands; LiDAR; forest monitoring;
REDD+

1. Introduction

Forests play a critical role in the global carbon budget with deforestation accounting for 10% of the
anthropogenic carbon emissions, as estimated in the fifth assessment report of the Intergovernmental
Panel on Climate Change (IPCC) [1]. As a result, the United Nations Framework Convention on
Climate Change (UNFCCC) established a program aimed at reducing emissions from deforestation
and land degradation in tropical countries (i.e., REDD+ program) [2]. In order to ensure a successful
implementation of REDD+, the UNFCCC has proposed a system based on financial compensations
for reducing emissions. A critical aspect in this system lies in the development of robust methods
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for measuring, reporting and verifying carbon stock changes [3]. In order to become operational,
these methods in addition to being robust and precise should also be cost-efficient. Thus, in the past
decade, great effort has been dedicated to better understanding the possibility of using remotely sensed
data for monitoring changes in forest carbon and above ground biomass (AGB) in tropical countries [4].
Of the variety of data sources, 3D remotely sensed data are increasingly being used due to their ability
to describe the vertical structure of the forest canopy and the high correlation between AGB and canopy
height. Within the different 3D remotely sensed data available nowadays, Interferometric Synthetic
Aperture Radar (InSAR) data have the advantage of providing large area coverage even under cloud
cover, hence their use in tropical countries for monitoring changes in forest resources. One approach
to using InSAR for forest monitoring is through complex correlation, i.e., the coherence magnitude
for a pair of SAR acquisitions. Relationships between coherence and forest height or biomass have
been demonstrated with repeat-pass L-band acquisitions with PALSAR [5] and single-pass X-band
acquisitions with TanDEM-X [6,7]. An advantage of this approach is that a digital terrain model (DTM)
is not required, however, the performance depends on the season and saturation effects may occur.
Another approach not requiring a DTM is to acquire dual-band InSAR data, i.e., combining a short
and a long wavelength, where the long-wavelength digital elevation model (DEM) will represent the
terrain elevation [8]. However, this approach is not feasible for large scale monitoring. In the case
where a high quality DTM is available it has been demonstrated that forest height and biomass can
be estimated either based on the height of the phase centre above the ground [9] or based on a more
sophisticated approach utilizing the ground-corrected complex coherence [10]. Although the height
of the phase centre in a tropical forest appears to be fairly stable between acquisitions [11], weather
conditions, phenology [12–14], terrain steepness and ascending or descending mode acquisitions
can cause differences in height [15]. One particular approach to overcome these limitations is to
monitor height changes rather than heights, which would not require a DTM, and to combine several
acquisitions. The use of DEMs such as the WorldDEM may be particularly suitable as it is based on
repeated acquisitions.

Within the REDD+ context the main interest lies in the estimation and mapping of AGB changes
over time as this allows for the quantification of the reduction in emissions and corresponding financial
compensations. Solberg et al. [16,17] proposed a methodology using multi-source InSAR data to
monitor changes in forest AGB, possibly providing inputs to the global carbon budget and REDD+.
One of the major advantages of this method is that it does not require any spatially continuous terrain
information (i.e., a digital terrain model). This is because the AGB change is derived by applying
a proportional relationship between AGB and InSAR height together with height changes between
two InSAR digital elevation models (DEMs). As a first step, the relationship between InSAR height
above ground (H) and AGB is estimated for a sample of field inventory plots at one point in time using
a regression model through the origin (i.e., β0 = 0).

AGB = β1H + e (1)

The parameter estimate β1 is then used as the proportionality factor for estimation of AGB change
(∆AGB) and the corresponding emission (E) given height change (∆H) per meter as an alternative to
the widely used fixed emission factors per area unit given an area (A) according to the equation:

E = A× ∆H × β1 (2)

This approach requires that the model is valid at both points in time as reported by Solberg et al. [16]
who proved that InSAR data produced reasonably accurate ∆AGB predictions in boreal forest using
InSAR DEMs from the Shuttle Radar Topography Mission (SRTM) and a DEM from TanDEM-X
with a root mean square error (RMSE) value of 55 t·ha−1 (43% of the mean AGB). However, careful
processing is required when using SRTM DEMs, which have biases of several meters varying at
the continental scale [18] as well as artifacts in the form of stripes [19]. Studies in tropical forests
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have yielded variable results. Neeff et al. [20] obtained a similar relationship for a virgin rainforest
in Brazil. Gama et al. [21] obtained a curvilinear relationship, while for African tropical forests
Solberg et al. [15,17] obtained noisier results having RMSE values of 40 t·ha−1 (78% of the mean
AGB) and 203 t·ha−1 (44% of the mean AGB) in Tanzanian miombo woodlands and dense tropical
forests, respectively. The latter cases suffered from small and few field inventory plots, not taking into
account the large size of single trees in those forests, thus the applicability of models like Equation (1)
remains uncertain. Moreover, the potential accuracy of InSAR depends on the quality of the algorithms
used for InSAR processing and DEM mosaicking, and it is likely that the WorldDEM is a more
consistent and seamless DEM than the single TanDEM-X acquisitions used in previous research studies.
Further studies in tropical forests are required in order to improve the understanding and accuracy of
the relationship between high quality InSAR height data and AGB in tropical forests.

Accurate terrain information (i.e., ground heights) is required for the sample of field inventory
plots used for the estimation of the parameter β1. Airborne laser scanning (ALS) is an excellent source
of ground heights, however these data are rarely available in tropical areas. Hence, it would be greatly
beneficial if the ground height of the field plots could be recorded in the field using global navigation
satellite systems (GNSS).

Objectives

The primary objective of this study was to describe the relationship between AGB and InSAR
height in a tropical miombo woodland. Specifically, the aim was to use improved data compared to
Solberg et al. [17] by using more accurate InSAR height data, i.e., the WorldDEM, and by applying
a larger field inventory data set. A secondary objective was to determine the possibility to establish this
relationship without the need of any ALS terrain information, hence increasing the area of application
of the developed methods.

2. Materials and Methods

2.1. Study Area

The area of interest (AOI) was located in Liwale District (9◦52′–9◦58′S, 38◦19′–38◦36′E) and
covers a total of 15,867 km2. The area is characterized by a mosaic of agricultural areas and miombo
woodlands. The miombo woodlands in the AOI are composed of several forest types, ranging from
dry to wet sub-types. A rich species composition characterizes the AOI including species related to
Brachystegia sp., Julbernadia sp. and Pterocarpus angolensis.
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The area has been part of previous research thus further description of the study area can be
found in Mauya et al. [22] and Ene et al. [23,24]. An overview of the AOI is provided in Figure 1.

2.2. Field Data

A total of 513 field plots were available for this study. These were grouped in 65 clusters
with 8 field plots each forming an L-shape (see Figure 2). These represented a subset of the
field plots acquired within the national forestry resource monitoring and assessment of Tanzania
(NAFORMA) program [25]. The NAFORMA program represents the first effort to harmonize and
update forest inventory in Tanzania. Its objective is to produce information to support national and
international policy processes in regard to sustainable forest management (SFM), the reduction of
emissions from deforestation and forest degradation (REDD+), and greenhouse gas (GHG) emissions.
The NAFORMA inventory adopts a two-phase stratified systematic cluster design with double
sampling for stratification [26]. In the first phase, L-shaped clusters were selected according to
a grid of 5 km × 5 km and assigned to a stratification based on: (1) plots’ accessibility; (2) predicted
forest growing stock; and (3) slope. Furthermore, in the second phase the stratum-specific sampling
intensities were defined using optimal allocation [27]. The distance between consecutive plots within
a cluster was 250 m. Further details on the sampling design can be found in Tomppo et al. [26,28].
In this study the field dataset used by Solberg et al. [17] and by Næsset et al. [29] increased nearly five
times, thus providing the possibility to better understand the effect of the increased sample size on the
AGB models.
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Figure 2. Overview of the the national forestry resource monitoring and assessment of Tanzania
NAFORMA cluster with detail on a single field plot. According to the NAFORMA field plot design the
trees’ diameters at breast height (DBH) for all trees with DBH >1, 5, 10 and 20 cm were recorded on
concentric plots with radii of 2, 5, 10 and 15 m, respectively.

Field plot measurements were carried out in February–June 2012 and included the measurements
in concentric circles with diameters of 2, 5, 10 and 15 m from trees with diameter at breast height (DBH)
of >1, 5, 10 and 20 cm, respectively. DBH measurements were performed for each tree according to the
abovementioned concentric thresholds while tree height was measured for every fifth tree. For those
trees that did not include height measurement, tree height was predicted using diameter-height
models fitted using the height sample trees. A tree was measured if it was taller than or equal to
1.35 m and, according to the Food and Agriculture Organization Global Forest Resources Assessment
(FAO FRA) definitions [30], if it was capable of reaching 5 m in height in situ. Cactuses, palms,
bamboos and shrubs were not recorded as trees. The choice of the concentric plots was driven by the
need to increase the accuracy of the measurement and sampling intensity of large trees, while also
saving time. The radii of the concentric circles and respective thresholds for DHB measurements were
defined subjectively according to local knowledge and practical reasons [26]. Overall, measured tree
heights were on average 9.3 m and ranged from 1 to 41 m, while the DBH was 17.4 cm on average
and ranged between 1 cm and 210 cm. Above ground biomass was then obtained using DBH and
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height as input in the allometric models by Mugasha et al. [31] developed for miombo woodlands
in Tanzania. Summary statistics (i.e., mean, range and standard deviation) for AGB are reported
in Table 1. Additional differential dual-frequency global positioning system and global navigation
satellite systems (DGNSS) measurements were acquired in 2014 and for most of the plots (n = 500)
sub-meter accuracy measurements were performed using a DGNSS antenna mounted on a 2.9 m pole
located in the plot center. Field plots where DGNSS measurements were not available (n = 13) were
discarded from further analysis as DGNSS measurements were required for the purpose of this study.
As reported by Ene et al. [24], the estimated precision of the planimetric coordinates was 0.132 m
on average.

Table 1. Summary statistics for above ground biomass (AGB; t·ha−1) for the AOI and the sub-area of
the AOI.

Number of Observations Mean Range Standard Deviation

AOI 500 61.1 0–350.3 48.6
Sub-area AOI 88 51.3 0–213.4 45.9
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Figure 3. Overview of the field measurements and forest types for some of the measured field plots.
In particular the photos illustrate: (a) field plot center with equipment used for dual-frequency global
positioning system and global navigation satellite systems (DGNSS) measurements; (b) agroforestry system
including some palms; (c) field plot with large tree density; (d) field plot on a slope and with large above
ground biomass (AGB) values; (e) field plot with medium tree density; (f) field plot with open canopy cover.

To provide a thorough comparison between the results of the present study against previous
research by Solberg et al. [17] and Næsset et al. [29], we used the 88 field plots from those studies
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located in a sub-area of the present AOI. Half of these were a subset of the total number of plots
(i.e., the 513 plots previously described), while the other half were part of a new set of plots acquired
by doubling the clusters’ sampling intensity (see Figure 1). The field data for the sub-area were acquired
two years after (i.e., 2014) the acquisition of the field data used for the entire AOI (i.e., 2012). A further
description of this additional field plot dataset can be found in Næsset et al. [29]. Table 1 summarizes
AGB for the entire AOI and for the sub-area of the AOI, while Figure 1 illustrates the sampling design
in the entire AOI and in the sub-area used for further validation. In Figure 3, the pictures taken during
the field campaign illustrate different forest structures included in the field measurements.

2.3. TanDEM-X WorldDEM

The WorldDEM is a global DEM available as a commercial product [32] in various spatial
resolutions; the 30 m × 30 m resolution version was used in this study. The DEM is based on
repeated acquisitions with various across-track baselines from the TanDEM-X mission. TanDEM-X
is a mission with two satellites moving in formation and acquiring single-pass X-band SAR data for
interferometric applications, in particular DEM processing [33].

2.4. ALS Data

Leaf-on ALS data were acquired in February–March 2012 using a Leica ALS-70 sensor. The average
pulse density over the entire area was 1.9 pulses m−2. The ALS data acquisition obtained partial
coverage of the entire AOI by means of 32 parallel strips (i.e., in the east–west direction). These strips
covered the entire set of field plots. A further description of the ALS data can be found in Ene et al. [23].
In this study ALS data was used exclusively for extraction of ground elevation information, thus all
points classified as non-ground were discarded from any further analysis.

2.5. Normalization of TanDEM-X Height

Prior to fitting a model linking AGB and TanDEM-X height, the latter was normalized,
i.e., converted from heights above the ellipsoid to heights above the ground (∆z), or by subtracting the
ground height from the TanDEM-X height. The TanDEM-X height value for each plot was extracted as
the pixel value coinciding with the plot center. The possibility of replacing ALS data as a source of
ground height information with DGNSS measurements was assessed by comparing the AGB model
fitted with TanDEM-X data normalized using ALS ground height (∆zALS) to an alternative model
using TanDEM-X data normalized with DGNSS (∆zDGNSS). The high Pearson’s correlation coefficient
between the DGNSS height and ALS height (r = 0.99997) justified the use of the former as an alternative
to ALS (see Figure 4). Even though there was a high correlation between the DGNSS and ALS
ground heights, the differences between the two values ranged between −4.3 m and 5.6 m (Figure 4).
Such differences may be partly attributable to differences in the measurement of DGNSS and ALS
ground height values, where the former were obtained by single measurement of the plot center and
the latter by averaging plot level ground values. However, because of the lack of additional higher
precision measurements of the ground height, it was not possible to determine which dataset was
more precise.

2.6. Model Fitting

Two simple linear regression models though the origin were fitted using either ∆zALS or ∆zDGNSS
and the field measured AGB. Previous studies by Solberg et al. [16,17] demonstrated that the adoption
of a no-intercept model compared to an intercept model has little effect on the performance of the
model and is biologically reasonable by predicting zero biomass for zero InSAR height. Furthermore,
by setting β0 = 0 the β1 parameter can be directly interpreted as the emission factor, hence it simplifies
further use of the relationship between InSAR height and AGB.

The models’ predictive accuracy was assessed by performing a leave-one-cluster-out cross
validation (LOCOCV), according to which each cluster was removed iteratively and the observations
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within the cluster used as validation. The root mean square error (RMSE, t·ha−1) and RMSE as
percentage of the mean field AGB (RMSE%) were calculated and adopted as a measure of the accuracy
of the predictions. Given a sample of n field plots the RMSE was calculated as:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(3)

Further assessment of the models’ performance included the visual inspection of the residuals.
Lastly, the study adopted the same methodology to the sub-area of the AOI where 88 field plots were
available. Because of the lack of a large sample in this case, a leave-one-plot-out cross validation was
conducted to obtain RMSE and RMSE%.
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The histogram on the right shows the distribution of the differences between DGNSS height and
airborne laser scanning (ALS).

3. Results

The results revealed that both models (i.e., using either ∆zALS or ∆zDGNSS) performed very
similarly. The model based on ∆zDGNSS resulted in the estimation of a slightly smaller β1 (11.7) than
the alternative one fitted using ∆zALS (12.1). Given the overlap in the confidence intervals (see Figure 5)
and according to a two-sided t-test this difference was not significant (p-value < 0.05).Remote Sens. 2017, 9, 984  8 of 13 
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The predictive accuracy of the cross validated models was similar between ∆zALS and ∆zDGNSS
models (see Figure 6), with RMSE and RMSE% values equal to 24.1 t·ha−1 (38.8%) and 24.8 t·ha−1

(39.9%) for the models using ∆zALS and ∆zDGNSS, respectively.Remote Sens. 2017, 9, 984  9 of 13 
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∆zDGNSS (right).

The visual analysis of the scatterplot of the residuals (Figure 6) revealed the presence of
heteroscedasticity for both ∆zALS and ∆zDGNSS models. Furthermore, effects of saturation were
detectable for plots with AGB larger than approximately 186 t·ha−1, i.e., all the plots with AGB larger
than approximately 186 t·ha−1 were under-predicted.

The results of the comparison of the ∆zALS AGB model fitted using only the plots located in
the sub-area of the AOI are reported in Table 2. These revealed that the ∆zALS model presented in
the current study had a predictive accuracy of similar magnitude to a model where seven predictor
variables from ALS data were used. The comparison with the study by Solberg et al. [17] revealed
that the use of TanDEM-X WorldDEM at medium resolution (i.e., 30 m × 30 m pixels) resulted in
a smaller β1 estimate (11.0) and in a decrease in RMSE compared to higher resolution TanDEM-X data
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(i.e., 10 m × 10 m pixels). Furthermore, compared to the other remotely sensed data sources compared
by Næsset et al. [29], the use of TanDEM-X WorldDEM always led to a reduction in the RMSE.

Table 2. Comparison of the results for ∆zALS AGB model fitted in the current study against previous
ones conducted in the sub-area of the AOI using alternative auxiliary data. The comparison included
the number of predictor variables and the predictive accuracy using leave-one-plot-out cross validation
(i.e., RMSE and RMSE% ).

Study Auxiliary Data n. Predictor Variables β1 RMSE∗ (t·ha−1) RMSE∗% (%)

Current study TanDEM-X WorlDEM™ 1 1.0 30.4 59.2
Næsset et al. 2016 ALS 7 - 31.8 62.0
Næsset et al. 2016 RapidEye 4 - 34.2 66.6
Solberg et al. 2015 TanDEM-X 1 14.1 41.3 80.5
Næsset et al. 2016 Global Landsat maps 1 - 44.6 86.9
Næsset et al. 2016 Global PALSAR maps 2 - 46.6 90.7

RMSE∗ and RMSE∗% = RMSE and RMSE% values obtained using a leave-one-plot-out cross validation.

4. Discussion

This study aimed at assessing the possibility of using InSAR data from TanDEM-X DEM to
model AGB in tropical woodlands. The biggest contribution of this study is that it provided new
and complementary knowledge to an AOI which had been the object of extensive research efforts in
the past five years. In addition to the large field data, several remotely sensed data including ALS,
RapidEye, Landsat 8 and global forest maps were acquired as part of this effort. As a result, previous
studies conducted in the same area provided us with a unique opportunity to compare our results
using alternative remotely sensed auxiliary data.

Overall, the current study reported unique figures in terms of the predictive accuracy of the models.
The RMSE and RMSE% values found were smaller (RMSE = 24.1–24.8 t·ha−1; RMSE% = 38.8–39.9%)
than a previous study by Solberg et al. [17] where TanDEM-X normalized data (i.e., ∆zALS) was used to
model AGB in the same AOI but using a subset of 88 field plots (RMSE = 40 t·ha−1; RMSE% = 78.0%).
The improved accuracy obtained in the present study is likely a result of the use of combined and
repeated TanDEM-X acquisitions with both small and large across-track baselines in the WorldDEM,
whereby random errors and phase unwrapping problems are reduced. Furthermore, it is likely that
the software developed by German Aerospace Center (DLR) for the production of the WorldDEM
allows obtaining more accurate data than that which is achievable for researchers using commercial
software (e.g., SARscape) thanks to enhanced block-adjustment and seamless mosaicking of single
acquisitions. The accuracy of the parameter estimate is also improved (i.e., reduced standard error
of the estimated β1 parameter) in the present study in comparison with that of Solberg et al. [17]
because the sample size was increased by approximately 5.7 times. The lower spatial resolution of the
present TanDEM-X data might have had a minor influence on the accuracy, although this could be
further studied by redoing the present study with the WorldDEM at 12 m resolution. Furthermore,
the results of the current study were also directly comparable with the results by Ene et al. [23] who
fitted a linear mixed-effects model using the same AGB observations used in this study but using
ALS variables as predictors. It was encouraging to see that the RMSE values found in this study
were smaller than in Ene et al. [23] who reported a RMSE of 31.16 t·ha−1 (47.4% of the mean AGB).
The validity of this comparison is also confirmed by the findings by Næsset et al. [29] who, in the
sub-area of our AOI, found larger cross-validated RMSE than the model presented in this study both
for ALS (31.8 t·ha−1; 62.0%) and RapidEye data (34.2 t·ha−1; 66.6%). Despite the consistency of these
findings across the entire AOI and in the sub-area of the AOI, it was somewhat surprising to see that
medium-resolution TanDEM-X WorldDEM data could yield smaller RMSE and RMSE% (30.4 t·ha−1;
59.2%) than ALS data. Generally, the use of remotely sensed data at a resolution coarser than the field
observations (e.g., TanDEM-X WorldDEM) can result in the spatial mismatch between the remotely
sensed signal and the field observation because of a different geographical location and extent of the
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two measures. Such a mismatch often results in a degradation of the correlation between remotely
sensed data and field plots, especially when there are large variations in forest structures. In this study
it is possible that the AGB model based on TanDEM-X WorldDEM did not suffer to a great extent from
such an effect because the canopy height in the miombo woodlands is rather uniform. It is possible
that the lower resolution of the TanDEM-X WorldDEM data was a minor issue compared to other
problems that affected the comparison with the results of ALS models by Næsset et al. [29].

As described by Næsset et al. [29] one of the main sources of uncertainty in their ALS models
may have been derived from the use of concentric field plots. If on one hand the use of concentric
plots can be efficient, on the other hand it may be unsuitable when using ALS data. In the study
by Næsset et al. [29], ALS data were extracted for plots of fixed radius (i.e., 15 m) while AGB was
measured using variable radii. In this regard, Næsset et al. [29] noted that for some plots small trees
were found in the outer part of the plots (thus were not measured in the field) while no or few small
trees were present in the the plot center. In these specific cases, the ALS point cloud included pulses
from those small trees on the outer edge while the corresponding biomass was not measured in the
field. It is likely that such an issue may have introduced undesired noise in the relationship between
ALS variables and AGB, thus degrading the quality of the model’s predictions. This effect could have
been further aggravated by the fact that certain species (for example cactuses, palms, bamboos and
shrubs) were not measured but may have accounted for part of the ALS returns. Such noise due to
small trees in the outer part of the field plot and other species present in the dominated canopy layer
was possibly alleviated when using InSAR data as these data mainly describe the top of the canopy
(i.e., dominant layer). It is therefore evident that further studies adopting fixed-radius plots are needed
for a fair evaluation of TanDEM-X WorldDEM against ALS data.

Despite the need of confirming these results in other forest types and with more suitable sampling
designs, the findings of this study suggest that TanDEM-X WorldDEM data can indeed provide
valuable AGB explanatory variables. The comparison with alternative space-borne remotely sensed
data indicated that AGB models using TanDEM-X WorldDEM data had a larger predictive accuracy
than other models using either RapidEye, global Landsat maps [34], or global PALSAR maps [35]
for which Næsset et al. [29] reported RMSE values of 32.2 t·ha−1 (62.7%), 43.6 t·ha−1 (85.0%) and
45.3 t·ha−1 (88.3%), respectively. Consistent with studies conducted in similar forest types, the present
one reported effects of saturation for field plots with AGB >186 t·ha−1. This effect manifests itself as the
under-prediction of large AGB values and is a common drawback when modelling forest volumetric
properties using remotely sensed data especially in complex forest types. Furthermore, it is important
to mention that despite the fact that saturation was observed, it was limited to 14 plots (2.8% of the
sample size) hence its overall effect for large-scale AGB models might be negligible.

Concerning the β1 parameter estimate linking AGB with ∆zALS or with ∆zDGNSS (i.e.,
proportionality factor or emission factor), the current study reported slightly smaller values (11.9–11.5)
than what was previously found by Solberg et al. [17], which is attributable to a larger uncertainty
in that study as a result of being based on fewer field plots. The β1 parameter estimate found in the
sub-area object of study was 27% smaller than what was found by Solberg et al. [17], which may be
due to the coarser resolution of the auxiliary data used in this study, which resulted in a reduction of
local height variations. Despite the loss in height variations, the use of TanDEM-X WorldDEM data
led to a smaller standard error for the β1 estimate (0.87 t·ha−1·m−1) compared to Solberg et al. [17]
(1.08 t·ha−1·m−1). Thus, because of the larger precision of the estimate and the improvements in the
processing of the TanDEM-X data, it is reasonable to believe that the β1 estimate reported in this study
is more reliable than the estimate reported by Solberg et al. [17]. The difference of the estimated β1

value between ∆zALS and ∆zDGNSS was 0.4 t·ha−1·m−1, however this difference was not significant.
One finding that was highlighted by this study is that DGNSS data collected in the field campaign

can indeed provide reliable information on the ground elevation, thus enabling the normalization of
TanDEM-X data. This opens the possibility to apply this methodology to areas where accurate digital
terrain models from ALS are not available, which is often the case in tropical areas. Among the reasons
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that hinder the acquisition of the availability of ALS data in tropical areas, some of the most prominent
limitations relate to the landscapes (i.e., vast areas with lack of infrastructure), the weather conditions
(i.e., cloud cover) and the logistics (i.e., lack of readily available technology). In order to obtain accurate
DGNSS measurements, high-grade GNSS receivers and base stations are required, and this could
prove to be challenging when conducting forest inventories in tropical countries. In addition, obtaining
accurate GNSS positioning in tropical forests can be considerably more challenging than in this study,
which was conducted in a predominantly open woodland area. Future research should therefore
address the effect of positional errors, especially in regard to the z coordinate on the models linking
AGB with ∆zDGNSS.

5. Conclusions

Despite the simplicity of the statistical analysis, this study sheds new light on the possibility of
using 3D data from TanDEM-X WorldDEM data for modelling AGB in tropical forests. The findings
from this study were some of the first in the literature suggesting that TanDEM-X WorldDEM data
may provide similarly accurate AGB predictions to ALS data in tropical woodlands. These results
are strongly encouraging for the future use of these data, however more research is needed to better
understand the potential to use TanDEM-X WorldDEM data to model AGB in a variety of forest types.
To answer this need, research efforts are underway to explore the potential of TanDEM-X WorldDEM
data to model AGB in forest types including woodland forest in other regions, tropical rainforest and
boreal forests. Furthermore, future research should address the possibility to apply the proportional
relationship between AGB and InSAR height derived in this study to height differences between
multi-temporal InSAR data in order to estimate AGB changes over time.
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