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Abstract: Global change affects vegetation cover and processes through multiple pathways.
Long time series of surface land surface properties derived from satellite remote sensing give unique
abilities to observe these changes, particularly in areas with complex topography and limited research
infrastructure. Here, we focus on Nepal, a biodiversity hotspot where vegetation productivity is
limited by moisture availability (dominated by a summer monsoon) at lower elevations and by
temperature at high elevations. We analyze the normalized difference vegetation index (NDVI)
from 1981 to 2015 semimonthly, at an 8 km spatial resolution. We use a random forest (RF) of
regression trees to generate a statistical model of the NDVI as a function of elevation, land use, CO2

level, temperature, and precipitation. We find that the NDVI increased over the studied period,
particularly at low and middle elevations and during the fall (post-monsoon). We infer from the
fitted RF model that the NDVI linear trend is primarily due to CO2 level (or another environmental
parameter that is changing quasi-linearly), and not primarily due to temperature or precipitation
trends. On the other hand, interannual fluctuation in the NDVI is more correlated with temperature
and precipitation. The RF accurately fits the available data and shows promise for estimating trends
and testing hypotheses about their causes.
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1. Introduction

Vegetation is being impacted globally by widespread stressors and changes, including land
conversion to human uses, climate change leading to heat and moisture stress, CO2 fertilization,
nitrogen deposition, and the spread of pests and invasive species. While methods such as in situ
inventories, atmospheric trace-gas measurement, and numerical modeling can provide valuable
insights into quantifying and attributing impacts [1–5], remote sensing of the land surface offers
a unique avenue for observing changes in vegetation cover over large areas and timespans of days to
decades. The normalized difference vegetation index (NDVI), based on the relative surface reflectance
in red and near-infrared wavelengths, is well correlated with cover of healthy vegetation [6], and
regional and global products based on different satellite sensors are available [7,8]. The NDVI is
negatively affected by drought in warm regions [9–11] but has increased in response to warming in
many temperate and Arctic areas, which has resulted in longer growing seasons there [12–14]. For East
and Central Asia, the NDVI was found to have increased from approximately 1982 to 1996 as a result of
longer growing seasons, and it then decreased from 1997 to 2006 as a result of worsening aridity [15,16].
Urbanization, irrigation and fertilization can also change the NDVI [17,18]. Because the trends in most
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places are small in magnitude, remote sensing data needs to be carefully processed to remove artifacts
due to, for example, degradation of the satellite sensors over the course of a mission [19].

Here, we study trends in the vegetation cover in Nepal (located at 26°N–31°N, 80°E–89°E) a least
developed country for which the majority of the population is engaged in agriculture and that is
highly vulnerable to climate change. Nepal is a biodiversity hotspot, as a result, in part, of the wide
topographic and climatic range found over relatively short distances, ranging from the Indo-Gangetic
Plain in the south to the Himalayan peaks and the Tibetan Plateau to the north [20]. Several studies of
NDVI trends in the broader region have previously been conducted. A generally increasing trend in
the spring NDVI over the Hindu Kush–Himalayan region was found between 1982 and 2006 in [21].
The NDVI seasonality was analyzed in [22] between 1982 and 2006 for the Himalayan region, including
Nepal, and it was found that the start date of the growing season trended earlier, while the end date
did not change. Cluster analysis was conducted in [23] to identify patterns in the mean and maximum
warm-season NDVI between 2001 and 2016; mostly increasing trends (greening) were found, and
decreasing trends (browning) were most common between 4 and 5 km elevation. Similarly, a study
of NDVI trends in Yarlung Zangbo Grand Canyon Nature Reserve, Tibet between 1999 and 2013 [24]
found that greening was concentrated at the lower elevations, below 3 km. Delayed green-up in alpine
grasslands of the western Tibetan Plateau may be due to declines in spring precipitation [25,26].

Limited research has been carried out on NDVI trends specifically in Nepal. Forest types in the
Manaslu Conservation Area were mapped and NDVI trends and correlations with temperature and
precipitation from a nearby meteorological station were computed for 2000–2008 in [27]. A significant
increasing trend in the warm-season NDVI over the Koshi River Basin for 1982–2006 was found in [28],
although with a decline between 1994 and 2000.

This research, therefore, has two main objectives. First, we describe trends in the NDVI in Nepal
by elevation and season on the basis of a long-term remote sensing data product. Second, we attempt to
attribute trends and interannual variability to changes in the climate, land use, and CO2 concentration.

2. Methods

2.1. Data

2.1.1. NDVI

NDVI data was obtained from the NDVI3g.v1 time series, an update of the earlier NDVI3g.v0 [29],
which provides NDVI values twice a month on a 1/12 degree (approximately 8 km) grid from
July 1981 to December 2015. This dataset is derived from measurements by over a dozen advanced
very high resolution radiometers (AVHRRs) that orbited on different satellites for parts of this
time period. It has been extensively processed to correct for artifacts resulting from causes such
as instrument and orbit drift and volcanic eruptions, so as to be suitable for analysis of climate change.
The formula for the NDVI is (NIR − RED)/(NIR + RED), where NIR refers to reflectance in the
AVHRR near-infrared band (channel 2; 0.725–1.10 µm) and RED, to reflectance in the AVHRR red band
(channel 1; 0.58–0.68 µm) [30]. Missing or suspect data in NDVI3g.v1 was flagged and filled in either
by spline interpolation or from an average of other years.

Despite quality control steps used to derive this product, we found occasional NDVI values that
were quite different from those at adjacent time periods, and which were therefore likely to be due to
satellite instrument or viewing condition artifacts [31]. We therefore smoothed the NDVI3g.v1 series
by subtracting the median seasonal cycle, applying a three-point median filter, and adding the seasonal
cycle back.

2.1.2. Elevation

Elevation was obtained at 3 arcsecond (approximately 80 m) resolution from the United States
Geological Survey (USGS) and World Wildlife Foundation (WWF) hydrological data and maps based



Remote Sens. 2017, 9, 986 3 of 15

on the Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) project. HydroSHEDS is
derived from spaceborne radar images with extensive quality control and corrections of artifacts [32].
We computed the average and standard deviation of the elevation over each 1/12° grid cell in Nepal as
possible predictors of the NDVI. The mean pixel elevations ranged from 60 to over 6000 m (Figure 1a),
with an average of 2078 m.
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Figure 1. Mean pixel (a) elevation, (b) temperature, and (c) precipitation.
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2.1.3. Climate

The monthly mean temperature and precipitation were obtained on a 1° grid. The precipitation
was from the Global Precipitation Climatology Center (GPCC) combined Full Version 7 and Monitoring
Version 4 product, which is based on quality-controlled data from thousands of stations globally
(including data contributed by Nepal through the World Meteorological Organization) that is
interpolated to fill in gaps in coverage [33–35]. The temperature was from the Berkeley Earth (BEST)
dataset, which uses several times the number of station records compared to other gridded temperature
datasets. Station records undergo automated quality control and are weighted using geostatistics
methods to produce spatial fields [36].

The 1° resolution of these available products does not fully resolve the topography-driven
climate variability in Nepal. We mitigated this shortcoming, to some extent, by applying downscaling
adjustments. We downscaled the temperature data within each 1° cell to 1/12° by applying a lapse
rate of 6 K/km as an additive adjustment. This lapse rate was approximately that inferred from
the temperature difference between adjacent BEST pixels, which was found to be approximately the
same for all seasons. We downscaled the precipitation data within each 1° cell to 1/12° by applying
a multiplicative conversion factor based on the higher-resolution gridded APHRODITE product,
available for 1951–2007 in a public version at 0.25° resolution and, courtesy of the Nepal Department
of Hydrology and Meteorology, at the original 0.05° interpolation resolution [37]. These adjustment
factors were the same for each month, so that time trends were not affected and the 1° mean values
from BEST and GPCC were preserved.

The mean temperature and precipitation obtained, along with the mean elevation, for each 1/12°
NDVI pixel are shown in Figure 1.

2.1.4. Land Cover

Land cover classifications for 1990, 2000, and 2010 were obtained from the International Centre for
Integrated Mountain Development (ICIMOD) [38]. These were generated using public domain Landsat
Thematic Mapper 30 m images and an object-based classification algorithm, and they were validated
and refined using aerial photographs and field observations. The land cover classes were forest, shrub,
grass, agricultural, barren, lake, river, snow/glacier, and urban. We computed the percentage in each
cover category for each 1/12° pixel and year. Land cover was imputed by pixel and year via linear
interpolation between the three available years. Before 1990 and after 2010, we assumed the land cover
to have remained constant at the earliest/latest available value.

The obtained land cover classification showed that forest (at almost half the area) and agriculture
(at about a quarter) were the dominant categories (Table 1). Agriculture dominated in the lowest
elevations in the south, while forest dominated in the middle elevations, and grassland, snow and
glaciers were found at high elevations in the north (Figure 2). Forest cover decreased by several
percentage points between 1990 and 2000, while agricultural and barren areas increased, before
stabilizing between 2000 and 2010 (Table 1).

Table 1. Area coverage (%) of Nepal by land cover category and year.

Year Forest Shrub Grass Farm Barren Lake Snow/Ice Urban

1990 45.2 2.2 11.7 25.3 6.8 0.6 7.9 0.2
2000 41.7 2.4 11.4 27.7 9.5 0.5 6.5 0.3
2010 42.1 2.3 10.5 27.3 8.6 0.5 8.4 0.4
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Figure 2. Land cover map of Nepal in 2010.

2.1.5. CO2 Concentration

Yearly carbon dioxide dry air mixing ratios from Mauna Loa, Hawai’i (at 20° North, close to
Nepal’s latitude) were obtained from the United States Government Earth System Research Laboratory,
Global Monitoring Division. These were transformed to logarithms and can represent the impact of
increasing local carbon dioxide levels on the plant gas exchange and carbon fixation. This time series is
also highly correlated to the summed anthropogenic greenhouse gas forcing [39], the global warming
trend [40], and other monotonic trends over recent decades, such as that of global population [41,42].

2.2. Regression Model

We expect the relationship of the NDVI with such variables as temperature, precipitation and
elevation to be nonlinear. There also may well be interactions between potential explanatory variables,
for example, the effect of precipitation increase could vary depending on elevation and season.
A random forest (RF) of regression trees [43] is a method of empirically constructing a predictive model
that is well suited for handling such complexity. As such, RFs have been used in many environmental
mapping applications, including for wetland cover from radar imagery [44], water table dynamics and
depth to groundwater [45,46], and ecosystem light-use efficiency [47]. Here, the training data were
half of the available 1,429,443 NDVI values from Nepal (1955 pixels for 828 time periods, excluding
12% interpolated data). The half the available data not used to train the model (test data) provided a
test of its ability to capture the NDVI patterns consistently found by remote sensing. The RF model
run included 100 regression trees, and other parameter settings were kept at default values from the R
randomForest package [48].

The predictors in the RF model fell into the following categories: (1) Interannually constant
seasonal and geographic factors: month of year, pixel longitude, pixel latitude, pixel mean elevation,
and pixel standard deviation of elevation. (2) Mean temperature (°C) for 0–0.5, 0.5–1.5, 1.5–3, 3–6,
6–12, 12–24, and 24–48 months prior to the end of each semimonthly period. (3) Precipitation rate
(mm/month) over the same periods as for temperature. (4) Land cover: percentage of pixels in each of
eight land cover categories. (5) Logarithm of atmospheric CO2 concentration. The total number of
predictors in the model was therefore 5 + 7 + 7 + 8 + 1 = 28.
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We then used the fitted model to predict the NDVI trends if only one factor (temperature,
precipitation, land use, or CO2) changes with time, while the others are held at average values
for the period (in the case of temperature and precipitation, seasonally specific averages). To the extent
that these factors have different time histories so that their effects on the NDVI can be separated by the
RF model, this would allow us to estimate how much of the NDVI trends and interannual variability
over Nepal could be attributed to each factor.

2.3. Analysis

For each grid cell and (semimonthly) time of year, we computed the NDVI trend as the slope
obtained from linear regression, using only non-interpolated values. The trends were similarly
computed for the RF-predicted NDVI. The Nash–Sutcliffe coefficient [49] (NSC), applied to different
transformations of the data, is used to quantify how well the RF models fit test data based on either the
full set of forcings or sets that include only one time-changing factor. NSCall is based directly on the
observed and modeled NDVI values (using only the test data), and NSCdetrend is based on the same
NDVI values, but after subtracting the linear trend (calculated using both training and test data) for
each pixel and time of year, which also removes the mean spatial and seasonal NDVI patterns from
consideration. NSCtrend is based on the linear trends, and measures how well the RF model is able to
capture the observed trend across space and season.

Figure 3 shows graphically the overall workflow followed, including the relationship between
data processing and RF modeling.

Figure 3. Overall structure of data and analysis workflow.

As one way of visualizing the results, we computed the time series of the mean NDVI over Nepal
by averaging across the pixels at each (bi-monthly) time step, using either the filled-in NDVI or the
RF predictions. The mean seasonal cycle was subtracted to obtain a deseasonalized time series for
computing trends and detrended variability. We also computed the mean NDVI values and trends by
season and elevation, using a smoothing spline [50] to estimate the mean elevation dependence.

3. Results

The mean NDVI was near zero in the dry, cold, high-elevation north of Nepal, which has little
vegetation. It was somewhat lower in the low plains near the Indian border, compared to middle
elevations, peaking at about 0.65 over the elevation range of 500–2000 m (Figure 4).
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Figure 4. Mean normalized difference vegetation index (NDVI) by pixel over Nepal.

The time series of the mean NDVI is dominated by the seasonal cycle, although interannual
variability is also evident (Figure 5). The mean NDVI seasonal cycle nationally and at elevations under
∼4000 m was influenced more by moisture than by temperature, with peak values immediately after
the monsoon in early October. The NDVI declined through winter, as water availability decreased,
and reached a nadir in late April (Figure 5b; Figure 6a). At higher elevations (4000–5000 m), the peak
occurs earlier (late September) and the lowest values are in late February, consistent with a greater role
of cold temperature in controlling vegetation cover.
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Figure 5. (a) Time series of mean Nepal normalized difference vegetation index (NDVI). (b) Mean
seasonal cycle of NDVI. (c) NDVI anomaly (subtracting the mean seasonal cycle) and its least-squares
linear fit.
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Figure 6. (a) Mean normalized difference vegetation index (NDVI; unitless), and (b) 1981–2015 linear
trend in NDVI (10−3 per year) for Nepal, by season and elevation.
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The NDVI overall showed an increasing linear trend, averaging 0.448 × 10−3 units per year, over
the recording period. This trend varied across seasons and elevations, however. It was strongest in late
August through October, near the annual peak, and in the lower elevations, below 2000 m (Figure 6b).
The NDVI at 4000–5000 m actually showed a slight declining trend.

The RF model was able to represent most of the observed variability in NDVI (Figure 7a), with an
NSCall value of 0.959 for the test data. However, most of this reflects skill at capturing the mean annual
cycle (Figure 7b) and its spatial variation rather than trends and year-to-year variability, so that even
with no interannually varying forcings, the NSCall value was still 0.941. Out of the single forcings, CO2

and precipitation contributed most to improving NSCall, and temperature contributed least (Table 2).
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Figure 7. The same as Figure 5, but using mean normalized difference vegetation index (NDVI) as
predicted by the random forest regression model.
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Interannual variability in the NDVI after detrending was less well captured by the RF model
(Figure 7c), with a NSCdetrend value of 0.288 for the test data. As expected, with no interannually
varying forcing, none of this variability was captured. Out of the single forcings, precipitation
contributed most to NSCdetrend, and temperature played a lesser role that was similar in importance to
that of the slowly varying CO2 and land use (Table 2).

The pattern of trends in the NDVI across location and season was better captured by the RF
model, with a NSCtrend value of 0.793. With no interannually varying forcing, the trend was uniformly
zero, as opposed to the true positive mean value seen, resulting in a slightly negative NSCtrend value.
Out of the individual forcings, CO2 as well as land cover, which both changed quasi-linearly with
time, explained the trends best, and trends in temperature and precipitation showed smaller positive
NSCtrend values (Table 2).

Averaged over all of Nepal, the mean NDVI trend from the fitted RF model was
0.422 × 10−3 per year, just 5% less than the 0.448 × 10−3 calculated from the observation dataset.
(Including all pixels and months, also those missing from the observations, increases the mean trend
calculated from the fitted RF model slightly to 0.449 × 10−3 per year.) This mean trend is indicated as
being due essentially to a rising CO2 level, which by itself raises the NDVI by 0.509 × 10−3 per year.
Land cover had a net negative influence on the NDVI trend, while precipitation and temperature
trends had small positive influences (Table 2).

Table 2. Nash–Sutcliffe coefficients (NSC) and mean trend for random forest (RF) predictions of the
normalized difference vegetation index (NDVI). The full RF model includes all time-varying factors.
The other predictions are with either interannually constant factors or only one time-varying factor.
The mean trend is in 10−3 units per year. For comparison, the mean trend calculated from observations
is 0.448 × 10−3 per year.

NSCall NSCdetrend NSCtrend Trend

Full RF 0.959 0.288 0.793 0.422
Constant 0.941 −0.000 −0.068 0.000

CO2 0.946 0.053 0.344 0.509
Land cover 0.945 0.034 0.238 −0.135

Precipitation 0.946 0.102 0.043 0.020
Temperature 0.943 0.035 0.051 0.026

Figure 8 shows the modeled NDVI trend by season and elevation, which can be compared with
the observation-based trend in Figure 6b. CO2 change is the dominant factor for most of the affected
seasons and elevations. Land-use change seems to have had the largest impacts, which varied by
season, above 2000 m. Precipitation trends impacted the NDVI primarily during the monsoon season
of summer and early fall. Temperature trends increased the NDVI in the spring and fall at around
3000–4500 m.
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Figure 8. Modeled 1981–2015 linear trend in normalized difference vegetation index (NDVI;
10−3 per year) for Nepal, by season and elevation, with (a) all forcings, (b) only CO2-level change,
(c) only land-use change, (d) only precipitation change, and (e) only temperature change.

4. Discussion

We found an overall increasing trend in the NDVI for Nepal over 1981–2015. The RF analysis
suggests that this trend is not primarily due to changes in climate (temperature and precipitation),
but correlates best with an increasing atmospheric CO2 level, although precipitation and temperature
are more important for explaining the interannual NDVI variability. Similarly, ecosystem models
suggest that most of the observed increase in the seasonal amplitude of atmospheric CO2, indicative of
increasing plant growth in the Northern Hemisphere over recent decades, is due to CO2 fertilization,
and climate and land-use changes play secondary roles [5]. An increasing trend in global net primary
productivity, particularly in tropical forests, has also been identified on the basis of satellite imagery
for 1982–1999 and is attributed primarily to CO2 fertilization [2]. On the other hand, in boreal areas,
warming has been a major driver of longer growing seasons and higher productivity [51,52], while in
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arid and semiarid areas, moisture availability is a primary modulator of vegetation growth [15,53–55].
The small positive impact of precipitation on NDVI trends, concentrated during and after the summer
monsoon, is consistent with the increasing trend in monsoon precipitation found for recent decades
over much of Nepal [56], although dry spells have also increased [57,58].

Land-cover change is inferred to have made a negative contribution to the NDVI trend. This is
plausible insofar as the land cover data show a net decrease in the forest area and an increase in
the agricultural area, where forest often has a higher and more constant NDVI than agricultural
land [59]. Although the importance of anthropogenic land-cover change as a driver of ecological
impacts is widely recognized [60–62], studies of global and regional NDVI trends over recent decades
have generally concentrated on climate drivers without explicitly accounting for the contribution of
land-cover change. A RF model offers one method to distinguish the influence of all these factors,
which operate simultaneously around the world.

The work presented here has several significant limitations. The NDVI trends attributed to CO2

level in the RF model could well also reflect contributions from other factors that have been changing
quasi-linearly and whose quantitative evolution was not incorporated in the RF model. These may
include, for example, nitrogen fertilization as a result of direct application and deposition, irrigation,
change in crops planted, management of grasslands and forests, and changes in cloud and aerosols.
For most of these terms, more work is needed to understand how they are changing over different
parts of Nepal. Additionally, the quality of some of the inputs used could be improved. Land-cover
change could be evaluated from Landsat imagery before 1990 and after 2010. A precipitation product
at higher resolution, which could be based on remote sensing calibrated to available weather stations,
would better resolve the sharp elevation and orographic gradients within Nepal and thus help to
clarify the impact of moisture stress [63–65].

5. Conclusions

We found that the NDVI increased over the studied period in Nepal, which is consistent with
global trends. The increases were uneven and concentrated at low and middle elevations during the
fall (post-monsoon). We inferred from the fitted RF model that the NDVI linear trend was primarily
due to CO2 level (or another environmental parameter that changes quasi-linearly), and not primarily
due to temperature or precipitation trends. On the other hand, the interannual fluctuation in the
NDVI was correlated more with temperature and particularly with precipitation. The RF accurately fit
the available data and shows promise for estimating trends in incompletely sampled spatiotemporal
remote sensing data, such as the gridded NDVI, and for testing hypotheses about their causes.
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