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Abstract: Integrating spectral and spatial information is proved effective in improving the accuracy
of hyperspectral imagery classification. In recent studies, two kinds of approaches are widely
investigated: (1) developing a multiple feature fusion (MFF) strategy; and (2) designing a powerful
spectral-spatial feature extraction (FE) algorithm. In this paper, we combine the advantages of
MFF and FE, and propose an ensemble based feature representation method for hyperspectral
imagery classification, which aims at generating a hierarchical feature representation for the original
hyperspectral data. The proposed method is composed of three cascaded layers: firstly, multiple
features, including local, global and spectral, are extracted from the hyperspectral data. Next, a new
hashing based feature representation method is proposed and conducted on the features obtained in
the first layer. Finally, a simple but efficient extreme learning machine classifier is employed to get the
classification results. To some extent, the proposed method is a combination of MFF and FE: instead of
feature fusion or single feature extraction, we use an ensemble strategy to provide a hierarchical
feature representation for the hyperspectral data. In the experiments, we select two popular and one
challenging hyperspectral data sets for evaluation, and six recently proposed methods are compared.
The proposed method achieves respectively 89.55%, 99.36% and 77.90% overall accuracies in the three
data sets with 20 training samples per class. The results prove that the performance of the proposed
method is superior to some MFF and FE based ones.

Keywords: hashing ensemble; hierarchical feature; hyperspectral classification

1. Introduction

Hyperspectral sensors can provide images with hundreds of continuous spectral bands, which has
attracted a number of applications such as environmental monitoring and mineral prospecting [1–4].
Among many surveys about hyperspectral imagery (HSI) analysis, land cover accurate classification
is an important research topic. Supervised spectral classifiers are popular in the early research,
including multinomial logistic regression [5], support vector machines (SVMs) [6–8] and sparse
representation classifier [9].

During the last decade, a lot of endeavors have been devoted to extracting more representative
features from original HSI data. It is widely recognized that joint spectral and spatial information can
significantly improve the performance of HSI classification methods. Markov random field (MRF) is a
powerful tool that is able to model the spatial relationship around pixels. In [10,11], MRF was combined
with subspace multinomial logistic regression and Gaussian mixture model, respectively. In [12], MRF
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was used as a postprocessing to refine the classification maps obtained by SVM. Morphological profile
(MP) is another powerful tool to utilize the spatial contextual information. In [13], Benediktsson et al.
improved the original MP, and proposed the extended morphological profile (EMP) method for HSI
classification. Motivated by the promising performance of EMP, two improved methods, extended
attribute profile and extended multi-attribute profile, were proposed in [14].

Because a single kind of feature may not describe the integrated characteristics of HSI data,
multiple feature fusion (MFF) were proposed and used to improve the performance of HSI classification
models. MFF based methods can be roughly divided into four classes [15]: multiple kernel learning,
band selection, subspace feature extraction and ensemble based methods. Li et al. constructed a
series of generalized composite kernels where no weight parameters were required [16]. Gu et al.
employed multiple kernel learning to combine different spectral-spatial features [17–19]. Band selection
methods try to find the most discriminative hyperspectral channels while preserving their physical
meanings. In [20], discriminative sparse multimodal learning based method was proposed for multiple
feature selection. In [21], spectral and spatial information are utilized simultaneously to select the
representative bands. Different from band selection, subspace methods refer to transforming the
original multiple features to a new low-dimension sub-feature space. Zhang et al. introduced a patch
alignment and a modified stochastic neighbor embedding based methods for feature fusion [22,23].
In [24], a low-rank representation based feature extraction method was proposed for HSI classification,
where locally spatial similarity and spectral space structure were combined. In [15], Zhong et al.
conducted dimension reduction on multiple features by hashing methods. Ensemble learning is another
typical feature fusion method. Ensemble learning methods aim at achieving better generalization
capacity by integrating different features or individual learners [25]. SVM [26,27] and random
forest [28–30] based HSI classification methods were proposed in recent studies. In [31], Chen et al.
improved the classification accuracy by stacked generalization of magnitude and shape feature spaces.
In [32], Pan et al. combined spatial relationships in different scales via a weighted voting strategy.
In addition, feature fusion methods using different data sources have also been investigated [33,34].

Recently, deep learning based methods have attracted great interest in HSI classification,
e.g., [35–40]. The basic idea of these methods is to extract the “deep” feature from the original HSI
data, thus hierarchical network models are designed. This idea is promising and encouraging. In some
natural scene image classification tasks, deep learning methods have achieved even better results
than human level [41]. In [35], the deep learning method was firstly used in HSI classification, where
a stacked autoencoder was adopted. Subsequently, deep belief networks [42], convolutional neural
networks [39,43,44] and recurrent neural networks [38] were investigated. In order to improve the
computational efficiency, some simplified deep learning models were developed [36,37]. Most of these
methods have also considered the spatial relationship via 3D networks or neighborhood information.
However, the performance of deep learning methods is heavily dependant on abundant training
samples that are difficult to acquire from HSI data. Compared with traditional methods, deep learning
methods usually require more labeled samples. For example, in [35,36], about half of all the labeled
pixels were used for training. Although deep features could really improve the classification accuracy,
more research is required on finding a new way out of deep learning to extract hierarchical features.

Inspired by the ideas of MFF and deep learning, in this paper, we propose a novel hashing based
hierarchical feature (H2F) extraction method for HSI classification. The motivations of H2F come
from two aspects: (1) low-level features such as spectral variations, local texture and global texture
information, should be combined to produce a comprehensive feature set. This feature set could
serve as inputs of the next layer; (2) based on the obtained feature set, a further feature extraction
process should be followed, so as to generate a hierarchical feature. This hierarchical feature should
present better performance than every single feature. Different from traditional MFF based methods,
H2F is not a simple combination or voting of multiple features. Instead, H2F attempts to construct
more representative feature descriptor from the already extracted feature set.
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Based on the two motivations, we propose a cascaded feature extraction framework with two
major processes: the generation of spectral-spatial feature set and hashing based hierarchical feature
extraction. In the first process, we construct a feature set which is composed of spectral variations,
local and global textures. In this paper, we use rolling guidance filtering (RGF) [45], local binary pattern
(LBP) [46] and global Gabor filtering [47] to form the multiple features. Although many recent works
have demonstrated that there is information redundant in some popular HSI data sets [48–50], it may be
not appropriate to conclude that information redundant exists in all the HSI data. Therefore, different
from traditional feature fusion based methods, in this paper, we do not conduct dimension reduction
so as to better preserve the distinctive classification information. All these features are collected to a
feature set. In the second process, we design a hashing histograms based feature extraction strategy to
give a more representative description for the HSI data. To avoid complex computation, the feature set
is separated into several groups. The hashing histogram features in all the groups are concatenated
as the final feature expression. It is worth noting that H2F is actually an ensemble based method,
rather than deep learning based.

At last, an extreme learning machine (ELM) classifier [51] is used to determine the label of each
pixel. The most important reason of using ELM is to improve the computing speed. Usually, feature
fusion methods will generate relatively high-dimensional features, and this is more apparent in H2F
since dimension reduction is not adopted. ELM has a simple structure, and it can be trained very fast
because of its random weights generation in inputs and least squares solution in outputs. Furthermore,
some research has proven that ELM is effective for HSI classification [46,52,53]. We compare the
effectiveness and efficiency of ELM and several other classifiers in the experiments’ part.

The major contribution of this paper is that a hashing based hierarchical feature ensemble
method is developed. The ensemble strategy proposed in H2F could provide a new way to utilize
multiple features.

The reminder of this paper is organized as follows. In Section 2, we give a detailed description
about the proposed method. In Section 3, experiments and discussion on two popular and one
challenging data sets are provided. We conclude this paper in Section 4.

2. H2F Based Classification

The proposed H2F based HSI classification method can be divided into three steps: (1) multiple
features extraction; (2) hashing based hierarchical feature representation and (3) ELM based
classification. The flowchart of the proposed method is shown in Figure 1.

2.1. Multiple Features Extraction

Research has demonstrated that spectral-spatial joint information could significantly contribute
to the performance of HSI classification methods. However, it is hard to judge which feature extraction
approach performs best. Actually, each single feature has its unique emphasis. In this paper, we
select three disparate features that reflect different characteristics of HSI data to construct a feature set,
namely, RGF (for spectra), LBP (for local texture) and Gabor (for global texture). It is worth noting that
each feature will generate one or several sub-feature sets. Take Gabor feature for example. Suppose that
four wavelengths and four orientations are used. Then, for each pixel, there will be 16 sub-features.
If we set eight as the number of features in a sub-feature set, two groups of sub-feature sets could be
obtained. The following hierarchical feature representation operation is conducted on these subsets.
Using the whole feature set directly for hierarchical feature representation is not appropriate because
different types of features are heterogeneous.
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Figure 1. The flowchart of the H2F based method.

2.1.1. RGF

Although the raw pixel spectral vectors could directly be used for training and classification,
they do not perform well. Moreover, since we need sub-feature sets from spectral features, we must
extend the pixels spectra to a group of features. Motivated by the effectiveness of RGF and its
improvement in HSI classification [37], in this paper, we use RGF to obtain the sub-feature set using
spectral information.

Let Qp denote filtering result for the pth band of an hyperspectral image, we conduct guided
filtering [54] by

Qp
i = ap

k Gi + bp
k , ∀i ∈ ωk, (1)

where G is a guidance image, i is one of a pixel in G, ωk is a window around pixel i, k is one of a pixel
in ωk, and ap

k and bp
k are coefficients to be estimated. Usually, G is the first principal component of HSI

data. Please note that G only works as the guidance image, and it will not reduce the dimensionality
of the filtered results. Then, minimize the following energy function:

E(ap
k , bp

k ) = ∑
i∈ωk

((ap
k Gi + bp

k − Ip
i )

2 + εap
k

2
), (2)

where I is the input HSI data, and ε is a hyper-parameter. Equation (2) can be solved directly by linear
ridge regression [55]:

ap
k =

1
|w| ∑i∈ωk

Ip
i Gi − µkIp

k

σk
2 + ε

,

bp
k = Ip

k − ap
k µ

p
k ,

(3)

where µk and σk denote the mean value and standard variance of G in ωk, Ip
k is the mean value of I in

ωk, and |ω| is the number of pixels in ωk.
Equation (1) is the optimization problem in guidance filtering, and a and b are the values need

to be optimized. Equation (2) is the optimization object function, and Equation (3) is the solution.
Rolling operation refers to replace I by Q and conduct Equations (1) and (2) repeatedly. In each rolling,
we can obtain a new HSI data. Therefore, using RGF we are able to generate a series of features based
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on the original spectral vectors. Because RGF mainly reflects the spectral characteristics of HSI data,
these features can be considered as spectral sub-feature sets.

2.1.2. LBP

In HSI data, the spatial contextual information could be described by the local texture around
each pixel. LBP feature is a popular texture operator that has been investigated in [46]. The LBP map
for Ip can be obtained by

Lp(i) =
|ωk |−1

∑
k=1

U(Ip
k − Ip

i )2
i, (4)

where |ωk| is the number of pixels in the window ωk, and U(·) is a Heaviside step function with 1
for positive entries and 0, otherwise. In the LBP map, we can get a vector for each ωk by counting its
histogram. This vector is the new feature representation for pixel i. In this paper, uniform LBP is used.
If using 8-neighbor for uniform LBP, 59 bins will be obtained totally, i.e., there are 59 sub-feature sets
available based on LBP.

2.1.3. Gabor Filters

Besides local texture features, recent literature has reported that global spatial features of HSI
data will also contribute to the classification accuracy, e.g., Gabor filter [47,56,57]. Suppose (x, y) is a
pixel coordinate at Ip, then the output of an Gabor filter can be expressed by

GB(x, y) = exp(− x′2 + γ2y′2

2σ2 )exp(j(2π
x′

δ
+ ψ)), (5)

where
x′ = x cos θ + y′ sin θ, y′ = −x sin θ + y′ cos θ. (6)

γ, ψ and σ are hyper-parameters in Gabor filter, δ is the wavelength of the sinusoidal function,
and θ represents the orientation of the filter. Selecting different δ and θ, the original HSI data can be
transformed into many sub-feature sets.

Based on the RGF, LBP and Gabor filters, we can construct a new feature set containing many
subsets. Note that the dimensionality of features in the obtained set is the same with that of the original
HSI data. Traditional feature fusion based methods usually directly stack these features, or use a
weighted voting strategy. In this paper, we try to extract hierarchical features from HSI data, and this
feature set is used as the input of the next hierarchy.

2.2. Hashing Based Hierarchical Feature Representation

The major motivation of the proposed hashing based method is that extracting very sparse features
by increasing the feature dimensionality. For the obtained feature set, we first divide it into several
subsets with the same number of features. Suppose N is the number of features in a single subset, and
L is the dimensionality of features. Then, the illustration of hierarchical feature representation for this
subset can be exhibited by Figure 2. Generally, the hashing based hierarchical feature representation
method for a subset mainly includes three steps.
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Figure 2. An illustration for the hashing based hierarchical feature representation. This figure only
presents the process in one pixel and a single sub-feature set.

2.2.1. Step 1

For pixel i in position (x, y), we can obtain N features. Let sn
i ∈ R(L×1) denote the nth sub-feature,

we conduct locality-sensitive hashing (LSH) on sn
i , i.e.,

hn
i = sign(Dsn

i ), (7)

where D ∈ RL×L is a random matrix with zero-mean normal distribution, and hn
i is a binary vector.

Integrating all the N vectors, we get Si = [h1
i , h2

i , · · · , hn
i ] ∈ R(L×N).

2.2.2. Step 2

Coding Si by

ŝi(j) =
N

∑
`=1

2`−1Si(j, `), (8)

and ŝi ∈ R(L×1) is the coding output for pixel i. Based on Equation (8), the binary results are converted
to decimal vectors. Equation (8) can also indicate that the grouping strategy in H2F is necessary
because the range of the coding results is [0, 2N − 1].
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2.2.3. Step 3

Use a sliding window with size w × 1 to scan ŝi, and then collect all the patches. Calculate
the histogram features in all the patches (with 2N bins), and concatenate them into a single vector
fm

i , where m = [1, 2, · · · , M] denotes the mth sub-feature set, M is the number of sub-feature set,
and fm

i ∈ R2N(L−m+1)×1 if the step size of sliding window is set as 1. At last, the final hierarchical
feature for pixel i is determined by

fi = [f1
i , f2

i , · · · , fM
i ] ∈ R2N M(L−m+1)×1. (9)

Obviously, increasing the step size of sliding window could reduce the dimensionality of the
obtained features. Usually, 50% overlapping between patches is appropriate. Size of sliding window
also has some influence on the results. Theoretically, smaller w could enhance the sparsity of
the obtained features, but lead to very high dimensionality. In order to balance the sparsity and
computational cost of computer memory, we set the window size as 7× 1.

H2F could be considered as a hierarchical representation for the original HSI data. According to
our empirical experience, we do not recommend dimension reduction on H2F because it may lead to
loss of distinctive information. Instead, to reduce the computational cost and avoid overfitting, we use
a very simple classifier, ELM, to determine the final classification results.

2.3. ELM Based Classification

ELM [51] is a simple neural network with only three layers (input, hidden and output),
which performs well in small-scale data sets. ELM has two leadings characteristics: (1) the input and
hidden layers are connected randomly; and (2) the weights between hidden and output layers are
learned by a least squares algorithm.

Let F = [f1, f2, · · · , fnt] ∈ Rd×nt denote the training samples matrix, d is the dimension and nt is
the number of training samples. In ELM, the weights between input and hidden layers are obtained
randomly, denoted by W ∈ R(nh×d), where nh is the number of nodes in the hidden layer. Then, the
objective function of ELM can be described by

Bg(Wt · fi + bt) = Yi, (10)

where B ∈ R(C×nh) is the weights matrix connecting hidden and output layer, b ∈ Rnh×1 is the bias
vector in the hidden layer, g(·) is an activation function such as sigmoid function, C is the number of
classes, and Y ∈ RC×nt is the label matrix for all the training samples. Note that g(Wt · fi + bt) is the
output of the hidden layer for sample fi. Because W and b are randomly assigned, the outputs of the
hidden layer have been determined. Then, Equation (10) is actually equal to the following expression:

H · B = Y, (11)

where H is the outputs of the hidden layer. Obviously, Equation (11) can be solved by a simple least
squares method, i.e., B = H + Y.

In H2F, the final features are classified by ELM. Because the random matrix generation needs little
time, the major computational cost lies in Equation (11). As long as we restrict the number of hidden
nodes, the training operation could be very fast. In Algorithm 1, we provide a pseudocode for the H2F
based HSI classification method.
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Algorithm 1 The H2F based HSI classification method
Input:HSI data, ground truth

Initialize: training set, testing set
Multiple Features Extraction

1. RGF features based on Equations (1) and (2)
2. LBP features based on Equations (4)
3. Gabor features based on Equations (5) and (6)
4. Feature set generation

Hashing based Hierarchical Features
5. Separate the feature set into uniform subsets
6. For 1: Number of subsets

Hierarchical feature extraction by Equations (7) and (8)
End for

7. Final features generation by Equation (9)
ELM based Classification

8. Train ELM by Equations (10) and (11)
9. Classification by ELM

Output: Classification results

3. Experiments and Discussion

3.1. Experimental Setups

In this section, experimental analysis about the H2F based classification method are provided. H2F
is compared with six recently proposed methods, i.e., Gabor + ELM (GE) [47], LBP + Gabor + ELM
(LGE) [46], RGF + Network (RVCANet) [37], RGF + Ensemble (HiFi) [32], and another two methods,
edge-preserving filtering (EPF) [58] and intrinsic image (IIDF) [59] based methods. Among these
methods, GE and LGE directly concatenate multiple features without further operations. Thus, they
could be regarded as the baselines. RVCANet also tries to extract deep features from HSI data,
but it adopts a deep network manner. HiFi is a multiple feature fusion method where the results are
obtained by weighted voting. These methods have similar motivation as the proposed method, so we
use them for comparison. All the methods are compared on two popular (Indian Pines, Kennedy
Space Center (KSC) (Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes)) and one challenging (GRSS_DFC_2014 [60,61]) data set. We run the above
methods 50 times with randomly selected train and test samples, and the average accuracies and the
corresponding standard deviations are reported. Overall accuracy (OA), average accuracy (AA) and
kappa coefficient (κ) are selected for evaluation [62]. For the three data sets, 20 pixels per class are
used for training, and the rests for testing. Some classes (especially in Indian Pines data set) have a
total of nearly 20 samples. In this case, we directly use half of them for training and the others for
testing. In H2F, we construct nine sub-feature sets (six for LBP, two for Gabor and one for RGF) with
nine features per set, totally 81 features. Rolling times of RGF is set as 1–9 with ε = 1, wavelength δ

in Gabor is 16, orientation number is 18, and window size in LBP is 3 × 3. Under this setting, Indian
Pines/KSC/GRSS_DFC_2014 could be represented by 225792/198144/92160 dimensional features,
but only 1% around are non-zero. The hyper-parameters in ELM (linear kernel) is determined by
five-fold cross validation. The regularization coefficient is chosen from a set {1, 10, 100, 1000}, and the
hidden neuron number is chosen from {100, 200, · · · , 2000}. According to the results of cross validation,
1000 and 100 are appropriate for the above two parameters.

3.2. Data Sets

• Indian Pines: This data is widely used in HSI classification, which was gathered by airborne
visible/infrared imaging spectrometer (AVIRIS) in Northwestern Indiana. It covers the wavelengths
ranges from 0.4 to 2.5 µm with 20 m spatial resolution. In total, 145× 145 pixels are included

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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and 10,249 of them are labeled. The labeled pixels are classified into 16 classes. There are
200 bands available after removing the water absorption channels. A false color composite image
(R-G-B=band 36-17-11) and the corresponding ground truth are shown in Figure 3a,b.

• KSC: It is acquired by AVIRIS over the Kennedy Space Center, Florida, on March, 1996. It has 18 m
spatial resolution with 512× 614 pixels size and 10 nm spectral resolution with center wavelengths
from 400 to 2500 nm. In addition, 176 bands could be used for analysis after removing water
absorption and low SNR bands. There are 5211 labeled pixels available that are divided into
16 classes. A false color composite image (R-G-B=band 28-9-10) and the corresponding ground
truth are shown in Figure 3c,d.

• GRSS_DFC_2014: This is a challenging HSI data set covering an urban area near Thetford Mines
in Québec, Canada, and it is used in the 2014 IEEE GRSS Data Fusion Contest. It was acquired by
an airborne long-wave infrared hyperspectral imager with 84 channels ranging between 7.8 to
11.5 µm wavelengths. The size of this data set is 795× 564 pixels, and the spatial resolution is about
1 m. In total, 22,532 labeled pixels and a ground truth with seven land cover classes are provided.
Some research has indicated that this data set is more challenging for HSI classification [61]. A false
color composite image (R-G-B=band 30-45-66) and the corresponding ground truth are shown
in Figure 3e,f.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e) (f)

Figure 3. False color composite images of (a) Indian Pines; (c) KSC and (e) GRSS_DFC_2014 data sets
and the ground truths (b,d,f). Each color corresponds to a certain class.

3.3. Classification Results

Classification results by all the compared methods are shown in Figures 4–6 and Tables 1–3.
Since the H2F is a fusion approach of some spectral and spatial features, we especially chose the
methods that use single or combine two features for comparison [32,37,46,47], so as to validate the
effectiveness of the proposed fusion strategy.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Classification maps by compared methods for Indian Pines data set. (a) The ground truth
(b) GE (c) LGE (d) EPF (e) IIDF (f) RVCANet (g) HiFi (h) H2F.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Classification maps by compared methods for KSC data set. (a) the ground truth; (b) GE;
(c) LGE; (d) EPF; (e) IIDF; (f) RVCANet; (g) HiFi; (h) H2F.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Classification maps by compared methods for GRSS_DFC_2014 data set. (a) the ground truth;
(b) GE; (c) LGE; (d) EPF; (e) IIDF; (f) RVCANet; (g) HiFi; (h) H2F.
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Table 1. Classification accuracies of different methods on Indian Pines data set (%).

Class Samples Methods

Train/Test GE LGE EPF IIDF RCANet HiFi H2F

C1 20/26 99.42 ± 0.55 99.92 ± 0.54 98.84 ± 1.78 87.22 ± 14.9 99.00 ± 1.70 99.46 ± 1.35 100.0 ± 0.00
C2 20/1408 70.45 ± 7.42 80.89 ± 5.30 56.53 ± 11.1 80.45 ± 6.04 63.94 ± 6.85 81.91 ± 5.58 81.88 ± 5.29
C3 20/810 74.25 ± 7.71 85.61 ± 7.03 67.27 ± 10.5 75.89 ± 6.86 79.91 ± 7.05 91.49 ± 4.52 87.00 ± 5.86
C4 20/217 95.10 ± 4.59 99.40 ± 1.14 96.56 ± 4.60 66.03 ± 10.8 98.59 ± 2.22 96.78 ± 3.84 99.21 ± 1.30
C5 20/463 87.51 ± 5.18 92.13 ± 5.39 91.09 ± 4.56 93.49 ± 4.30 93.60 ± 3.02 90.06 ± 3.88 90.53 ± 4.21
C6 20/710 92.35 ± 4.19 94.99 ± 3.72 96.97 ± 3.93 97.67 ± 2.11 98.36 ± 1.10 97.92 ± 1.80 97.21 ± 2.11
C7 14/14 100.0 ± 0.00 100.0 ± 0.00 96.85 ± 3.58 54.08 ± 20.6 100.0 ± 0.00 96.75 ± 5.54 100.0 ± 0.00
C8 20/458 98.56 ± 2.30 99.83 ± 0.52 96.65 ± 5.47 99.91 ± 0.14 98.76 ± 0.63 99.39 ± 0.92 99.98 ± 0.10
C9 10/10 99.59 ± 0.35 100.0 ± 0.00 99.80 ± 1.41 44.83 ± 19.7 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

C10 20/952 73.53 ± 8.16 86.55 ± 5.72 83.09 ± 7.85 73.57 ± 8.49 87.43 ± 3.79 88.16 ± 6.63 88.97 ± 4.47
C11 20/2435 69.93 ± 8.38 79.21 ± 5.37 69.55 ± 9.23 92.37 ± 3.52 72.01 ± 6.49 79.82 ± 5.86 83.97 ± 5.30
C12 20/573 81.23 ± 7.01 85.11 ± 5.95 73.26 ± 10.1 79.13 ± 6.94 90.49 ± 4.08 93.31 ± 3.18 87.61 ± 5.72
C13 20/185 98.76 ± 1.28 99.58 ± 1.16 99.39 ± 0.32 99.54 ± 1.53 99.49 ± 0.31 99.41 ± 0.29 99.84 ± 0.31
C14 20/1245 87.16 ± 5.11 96.47 ± 3.63 88.51 ± 7.76 99.06 ± 1.04 94.24 ± 3.49 96.96 ± 2.79 96.70 ± 3.25
C15 20/366 90.80 ± 6.09 98.21 ± 2.83 81.44 ± 10.6 84.73 ± 11.1 90.65 ± 4.05 95.23 ± 2.72 98.46 ± 4.23
C16 20/73 98.65 ± 2.02 98.30 ± 2.45 96.93 ± 5.68 94.62 ± 6.86 99.06 ± 1.90 99.07 ± 0.65 99.75 ± 0.53

OA 79.38 ± 1.82 87.61 ± 1.48 77.54 ± 3.10 85.89 ± 1.88 83.06 ± 2.32 89.06 ± 1.70 89.55 ± 1.31
AA 88.58 ± 1.03 93.51 ± 0.69 87.04 ± 1.88 82.66 ± 2.22 91.56 ± 0.89 94.11 ± 0.77 94.44 ± 0.73

κ 76.60 ± 2.03 85.99 ± 1.64 74.66 ± 3.41 84.02 ± 2.11 80.87 ± 2.56 87.51 ± 1.90 88.15 ± 1.49
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Table 2. Classification accuracies of different methods on the KSC data set (%).

Class Samples Methods

Train/Test GE LGE EPF IIDF RCANet HiFi H2F

C1 20/741 93.54 ± 2.63 98.84 ± 1.87 99.43 ± 1.13 99.86 ± 0.22 97.80 ± 1.65 98.60 ± 1.06 99.97 ± 0.11
C2 20/223 68.04 ± 6.48 95.69 ± 5.98 89.65 ± 6.84 94.80 ± 5.55 95.74 ± 4.30 92.26 ± 5.02 97.04 ± 5.21
C3 20/236 84.24 ± 7.53 99.43 ± 1.70 97.39 ± 1.93 99.42 ± 0.91 98.33 ± 1.39 96.42 ± 3.31 99.88 ± 0.56
C4 20/232 75.14 ± 6.79 98.49 ± 3.04 93.84 ± 6.78 96.42 ± 3.19 94.17 ± 4.21 93.20 ± 3.50 97.10 ± 4.67
C5 20/141 99.06 ± 1.78 99.91 ± 0.43 86.45 ± 8.63 97.68 ± 3.11 95.57 ± 5.24 89.78 ± 6.69 99.58 ± 2.90
C6 20/209 93.25 ± 6.46 100.0 ± 0.00 97.96 ± 3.08 93.77 ± 4.61 94.71 ± 3.30 93.62 ± 7.67 100.0 ± 0.00
C7 20/85 98.49 ± 2.77 100.0 ± 0.00 99.97 ± 0.16 99.93 ± 0.49 100.0 ± 0.00 95.38 ± 7.14 100.0 ± 0.00
C8 20/411 78.00 ± 7.02 96.25 ± 5.49 98.54 ± 4.29 97.58 ± 4.47 98.27 ± 2.35 95.74 ± 4.47 96.43 ± 4.88
C9 20/500 94.05 ± 5.03 99.28 ± 3.42 99.21 ± 2.49 99.78 ± 0.15 98.33 ± 4.33 97.58 ± 1.51 99.79 ± 0.73

C10 20/384 91.85 ± 6.02 100.0 ± 0.00 98.81 ± 1.01 93.83 ± 7.04 98.66 ± 1.47 99.14 ± 1.07 99.79 ± 1.29
C11 20/399 89.73 ± 5.27 100.0 ± 0.00 99.30 ± 1.59 98.60 ± 1.37 99.51 ± 0.83 97.97 ± 3.18 100.0 ± 0.00
C12 20/483 91.61 ± 4.36 97.57 ± 5.27 96.28 ± 2.91 94.18 ± 4.34 97.97 ± 3.67 98.40 ± 1.46 99.80 ± 0.76
C13 20/907 95.09 ± 3.07 100.0 ± 0.00 99.92 ± 0.15 99.95 ± 0.30 100.0 ± 0.00 99.71 ± 0.40 100.0 ± 0.00

OA 89.74 ± 1.28 98.91 ± 0.64 97.84 ± 0.90 97.63 ± 0.56 98.12 ± 0.77 97.09 ± 0.84 99.36 ± 0.54
AA 88.62 ± 1.21 98.88 ± 0.65 96.67 ± 1.33 97.37 ± 0.69 97.62 ± 0.88 95.99 ± 1.19 99.18 ± 0.71

κ 88.56 ± 1.42 98.78 ± 0.72 97.58 ± 1.01 97.36 ± 0.62 97.91 ± 0.85 96.75 ± 0.93 99.28 ± 0.61
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Table 3. Classification accuracies of different methods on the GRSS_DFC_2014 data set (%).

Class Samples Methods

Train/Test GE LGE EPF IIDF RCANet HiFi H2F

C1 20/4423 91.56 ± 3.65 96.83 ± 3.24 95.86 ± 4.44 96.39 ± 1.91 93.42 ± 3.03 96.96 ± 2.14 98.47 ± 0.96
C2 20/1073 68.37 ± 6.93 41.29 ± 7.82 53.71 ± 17.8 37.33 ± 8.82 66.34 ± 5.88 64.94 ± 5.78 65.74 ± 12.1
C3 20/1834 62.72 ± 9.78 53.89 ± 8.80 49.13 ± 17.7 53.38 ± 8.32 61.57 ± 7.37 68.13 ± 7.49 63.59 ± 7.07
C4 20/2106 67.21 ± 6.62 61.79 ± 5.72 58.63 ± 18.3 60.91 ± 6.65 68.45 ± 7.39 62.62 ± 5.83 62.23 ± 10.1
C5 20/3868 59.75 ± 6.53 73.31 ± 7.77 55.67 ± 16.7 70.54 ± 6.91 69.45 ± 6.38 76.05 ± 4.34 80.84 ± 3.79
C6 20/7337 66.00 ± 8.46 92.37 ± 2.42 50.78 ± 13.7 93.37 ± 2.43 68.64 ± 7.35 67.40 ± 6.17 70.69 ± 8.22
C7 20/1751 77.08 ± 6.94 81.13 ± 9.59 58.76 ± 12.1 83.01 ± 9.17 90.58 ± 5.31 84.49 ± 5.96 90.86 ± 4.47

OA 70.79 ± 2.47 76.91 ± 2.79 61.90 ± 6.56 75.37 ± 3.00 74.68 ± 2.69 75.57 ± 4.34 77.90 ± 2.51
AA 70.38 ± 1.42 71.52 ± 2.02 60.36 ± 4.97 70.70 ± 2.55 74.06 ± 2.03 74.37 ± 6.17 76.06 ± 1.88

κ 64.69 ± 2.63 71.81 ± 3.17 54.76 ± 7.12 70.07 ± 3.41 69.15 ± 3.09 70.39 ± 5.95 73.09 ± 2.77
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3.3.1. Results on Indian Pines Data Set

Experiments on this data set appear in nearly all the HSI classification works. Maybe, it is because
this data set is a little more difficult for classification than some other popular ones such as Salinas or
KSC, especially when training samples number is limited. It can be seen from Table 1 that the seven
compared methods present various performance with only 20 training samples per class. H2F slightly
outperforms HiFi, and achieves 5–10% advantages over other methods. It is worth noting that, in some
classes with a large number of testing samples (such as classes 2, 3 and 11), all of the methods present
plunges. This is because such few training samples cannot fully represent the data distribution in these
classes. On the other hand, we can see from Figure 4 that the spatial consistency is roughly preserved
by every one of the methods. Since all of these methods have utilized joint spatial-spectral features,
Figure 4 demonstrates that spatial information is really beneficial to HSI classification.

3.3.2. Results on KSC Data Set

It is observed in Figure 5 and Table 2 that results in this data set are much better. Although only 20
samples per class are used for training, H2F presents above 99% accuracies, which achieves about 0.4%
advantage. Additionally, we find that H2F reports more than 96% accuracy in each class. Among all
of the 13 classes, H2F performs better in nine of them. However, we must recognize that, since most
methods have achieved better than 97% OA in this data set, it is not safe to conclude which one is the
best. Therefore, experiments on more challenging data sets are of vital importance.

3.3.3. Results on GRSS_DFC_2014 Data Set

Apparently, this data set is more difficult for classification. Although there are still 20 samples
per class used for training, accuracies by all the methods present an obvious decline, as shown in
Figure 6 and Table 3. The reason may be that the imaging quality in long-wave infrared channels is
relatively lower. However, H2F still outperforms other methods by about 2%. Comparison with LGE
is especially more meaningful because H2F could be regarded as an improvement of LGE, where we
extract the hierarchical features rather than a simple fusion. From Tables 1–3, we can find that H2F is
slightly better than LGE in all of the three data sets. These results may indicate that the hierarchical
strategy in H2F is effective.

3.4. Analysis and Discussion

Figure 7 shows the box plots of OAs by different methods. The box plot is a simple summary for
the data distribution. In this paper, we have conducted all the methods 50 times, and the results in each
running are displayed by box plots. In a box plot, the red line in the box denotes the median. The top
and bottom of a box are the 75th and 25th percentiles, respectively. Data outside the box are mild and
extreme outliers. Because LGE, HiFi and H2F present the closest accuracies in the three data sets, we
only show the box plots by these methods in Figure 7, and take OA for example. We can see that the
boxes of H2F are higher than the others in all the three data sets, and the advantage is more apparent
in GRSS_DFC_2014. Moreover, we use a paired t-test to further validate that the improvements by
H2F are statistically significant, which is defined as follows:

(a1 − a2)
√

n1 + n2 − 2√
( 1

n1
+ 1

n2
)(n1s2

1 + n2s2
2)

> t1−α[n1 + n2 − 2], (12)

where a1 and a2 are the OA of H2F and a compared method, s1 and s2 are the corresponding standard
deviations, n1 and n2 are the repetition running times, which is set as 50 here, and t1−α is the αth best
quantile of the Student’s law. Results indicate that the improvements by H2F is statistically significant
in all of the three data sets (at level 90%).
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(a) (b) (c)

Figure 7. Box plots of different methods on (a) Indian Pines; (b) KSC and (c) GRSS_DFC_2014 data sets.

It is worth noting that it is not necessary to tune the parameters in each single feature such as
Gabor and RGF. H2F needs to ensemble many groups of features, and setting different parameters
is a natural step to generate various sub-features. Therefore, the most important parameters in H2F
are the number of sub-feature sets M and the number of features N in each subset. In Figure 8,
we provide an analysis for M and N. The results are interesting. We find that, although M and N have
drastic changes, the OAs vary little in Indian Pines and KSC data sets. However, in Figure 8c, results
demonstrate that more features will contribute to better accuracy. The reason may be that, in the former
two data sets, the multiple features have already included some redundancy information. In other
words, it is not necessary to extract too many features in Indian Pines and KSC data sets. However,
it is not suitable for GRSS_DFC_2014 data set, where further increasing the multiple features would
continue improving the classification accuracies. Because GRSS_DFC_2014 is long wave infrared
data set, its quality is much lower than that of the other two. It is not appropriate to infer that
GRSS_DFC_2014 also has information redundancy. In this case, integrating more features may further
enhance the ability of feature representation in GRSS_DFC_2014. Results in Table 3 could also support
this opinion. Overall, the most important point we try to emphasize in Figure 8 is that information
redundancy does not exist in all of the HSI data. For some popular data sets such as Indian Pines and
KSC, maybe information redundancy really exists. However, not all the HSI data includes redundancy
information. It is not safe to conclude that dimension reduction could bring competitive or even better
classification accuracies. In addition, this is just why we try to extract hierarchical features.

(a) (b) (c)

Figure 8. The influence of parameters on OA (%) in H2F. Results on (a) Indian Pines; (b) KSC and
(c) GRSS_DFC_2014 data sets. M is the number of sub-feature sets, and N is the number of features in
each subsets.

Since the deep features extracted by H2F are usually of high dimension, some popular classifiers
such as SVM are time-consuming. In Table 4, we compare the training and testing time by ELM
and SVM. To be fair and avoid parameter tuning, linear kernel is adopted by both of them. Another
advantage of using linear kernel is that it could reduce the computational complexity. Furthermore,
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the OAs by ELM and SVM are also reported. Note that the running time in Table 4 is only composed
of the classifiers’ training and testing process, not including the feature extraction process. We can
see from Table 4 that ELM presents slightly better performance than SVM with lower computational
consumption. Because the selection of classifier is not the emphasis in H2F, we choose ELM according
to the results in Table 4.

Table 4. The OA (%)/running time (s) by ELM and SVM.

Indian Pines KSC GRSS_DFC_2014

ELM 89.55/4.07 99.36/1.55 77.90/2.64
SVM 88.98/128.3 99.21/45.9 77.75/45.1

Finally, we give an evaluation for the influence of training samples number in Figure 9.
Classes with totally 20 around samples are ignored because they have little influence on OA. Similar to
Figure 7, HiFi and LGE are used for comparison. As is expected, the accuracy improves with the
increase of training samples number. H2F outperforms the others in most cases. In particular, we note
that the gaps are more apparent when training samples are limited. This results may indicate that H2F
could provide more representative feature expression for the original HSI data.

(a) (b)

(c)

Figure 9. Influence of training samples number on (a) Indian Pines; (b) KSC and (c) GRSS_DFC_2014
data sets.

4. Conclusions

In this paper, we proposed a hierarchical feature extraction method for HSI classification.
The proposed method is inspired by the promising performance of multiple features fusion.
We hold the opinion that further utilization for the multiple features will contribute to the classification
accuracy, and this idea is similar to that of deep learning methods. Therefore, instead of data dimension
reduction or direct ensembling, in H2F, we propose a hierarchical feature extraction strategy based
on hashing, which attempts to explore the deep distinctive information among the original HSI data.
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Spectral as well as local and global spatial features are firstly extracted, and these low-level features
are further represented in a very sparse manner.

We compare H2F with some ensemble based or deep learning based methods in the experimental
part. Although the advantages are not apparent, a paired t-test has confirmed that our improvements
are statistically significant. In particular, the idea of extracting hierarchical information from basic
features may work as an inspiration for the further research.

In our future works, we will focus on improving the computational efficiency of the hierarchical
feature extraction process. Meanwhile, the relationships among different features should also
be investigated.
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