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Abstract: The ionospheric bias and the combined observation noise are two crucial factors affecting
the reliability of the triple-carrier ambiguity resolution (TCAR). In order to obtain a better reliability
of TCAR, a new ionosphere-free and variance-restricted TCAR method is proposed through
exploring the ambiguity link between each step of TCAR. The method constructs an ionosphere-free
combination and simultaneously restricts the combined observation noise with respect to the
wavelength to a sufficiently low level for each step of TCAR. The performance of the proposed
method is tested by the datasets from the BeiDou navigation satellite system (BDS), with the baseline
varying from 7.7 km to 68.8 km. Comparing with the state-of-the-art TCAR methods, the experimental
results indicate that the proposed method can obtain a better performance of ambiguity resolution,
even though the double-differenced ionospheric delay increases up to 72.4 cm at the baseline of
68.8 km.

Keywords: triple-carrier ambiguity resolution (TCAR); ionosphere-free; carrier phase; precise
positioning; BeiDou navigation satellite system (BDS)

1. Introduction

Integer ambiguity resolution is the key technique for high-precision relative positioning using
carrier phase observation such as real-time kinematic (RTK) [1]. With the modernization of global
navigation satellite system (GNSS), significant efforts have been made to achieve reliable ambiguity
resolution by using the triple-frequency signals. The triple-carrier ambiguity resolution (TCAR)
method proposed by the authors of [2,3] is one of the widely-used approaches for resolving the
triple-frequency ambiguity in a short baseline case so that the ionospheric error can be neglected.
When the ionospheric bias cannot be neglected, especially in medium and long baseline cases, much
research has also been done to improve its performance [4–7]. A common conclusion is that both
the ionospheric bias and combined observation noise are two crucial factors for the reliability of
TCAR [4,8]. Therefore, it is very necessary to eliminate the ionospheric bias and restrict the combined
observation noise level simultaneously to improve the reliability of TCAR.

Considering these two crucial factors for TCAR, the ionosphere-estimated method can be
used to compensate the effect of ionospheric bias without amplifying the observation noise [6,9].
However, the performance of the ionosphere-estimated method depends on the precision of the
ionospheric model, which includes a functional and stochastic model. Moreover, the increased
ionosphere-related parameters will reduce the strength of the estimated-model [10]. The rate of total
electrical content (TEC) corrections can be utilized to improve the strength of the ionosphere-estimated
model, and it has proven to be efficient for different latitudes and ionospheric conditions [11,12].
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In addition to the ionosphere-estimated method, most studies of TCAR focus on choosing the optimal
combination coefficients among triple-frequency observations. These studies aim at suppressing
the effect of ionospheric bias and combined observation noise [4,5,8,13,14]. The coefficients can be
determined based on different categories to suppress these two kinds of observation errors. The
widely-used category includes the ionosphere-free combination [13,15–17] and the ionosphere-reduced
combination [4]. The ionosphere-free combination ensures the absence of ionospheric bias, but
the combined observation noise is largely amplified, which will worsen ambiguity resolution
performance [18,19]. Therefore, a moving average method has to be used to restrict the effect of
combined observation noise [7,13,17,20,21]. Furthermore, the ionosphere-reduced combination can
also be applied because it is in essence a trade-off between the ionospheric effect reduction and
observation variance restriction. It aims at suppressing the effect of ionospheric bias and combined
observation noise simultaneously [4]. Nevertheless, the residual of ionospheric delay is still a threat
for the reliability of TCAR.

The ionosphere is difficult to be predicted or modeled precisely because it is subjected to
undetermined variation in temporal and spatial dimensions [22]. Therefore, the reliability of the
ionosphere-estimated method has its limitations. In contrast, the observation combination method has
enormous potential in mitigating the effect of ionospheric bias so that the reliability of TCAR can be
improved [5,8,13]. Typically, the ionosphere-free combination is usually used for eliminating the effect
of ionospheric bias on TCAR. However, the current ionosphere-free combined methods still suffer
from the contradiction between eliminating ionospheric bias and suppressing combined observation
noise. The contradiction is reflected by the fact that, if the ionospheric bias is eliminated, the combined
observation noise will be amplified. If the combined observation noise is restricted, the ionospheric bias
is difficult to be eliminated for the traditional TCAR methods. Although the traditional ionosphere-free
combination method takes the advantage of ambiguity-corrected observations from previous steps to
restrict the combined observation noise with respect to the wavelength, the corresponding combination
still does not successfully restrict the noise with respect to the wavelength to a sufficiently low
level [13,17]. To restrict the combined observation noise level under the ionosphere-free combination,
we propose an ionosphere-free and variance-restricted (IFVR) TCAR method in this contribution.
“Variance-restricted” means the combined observation noise with respect to the wavelength can be
restricted to a sufficiently low level so as to achieve reliable ambiguity resolution. The method takes
into account the available information of the ambiguity link between different steps, which can be used
to build a relationship between observations with respect to different frequencies. This relationship
can provide an opportunity to form an optimal combination method so that the ionospheric bias can be
eliminated and the combined observation noise can be restricted simultaneously. Taking advantages
of ambiguity links between each step of TCAR for the proposed method, a better ambiguity resolution
performance can therefore be anticipated.

The remaining parts of the paper are organized as follows: the detail derivation of the novel TCAR
method is introduced in Section 2. The performance of the proposed TCAR method is extensively
examined in Section 3. Finally, the conclusion remarks are summarized in Section 4.

2. Methodology

In order to demonstrate the proposed TCAR method, we will briefly review the general linear
combinations between the double-differenced code and carrier phase observations, shown by [4]. p(i,j,k) =

i· f1 p1+j· f2 p2+k· f3 p3
i· f1+j· f2+k· f3

= ρ + β(i,j,k) I1 + γ(i,j,k)εp

φ(i,j,k) =
i· f1φ1+j· f2φ2+k· f3φ3

i· f1+j· f2+k· f3
= ρ− β(i,j,k) I1 + λ(i,j,k)N(i,j,k) + γ(i,j,k)εφ

(1)

where combination coefficients (i, j, k) ∈ Z are the arbitrary integer and ft (t = 1, 2, 3) denote BDS three
frequency signals, i.e., f 1 = 1561.098 MHz, f 2 = 1207.140 MHz and f 3 = 1268.520 MHz, respectively; p and
φ represent code and phase observations in meters, respectively; ρ describes the non-dispersive terms
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including geometric distance and the tropospheric delay in meters; I1 is the first-order ionospheric
delay on frequency f 1 in meters; λ(i,j,k) and N(i,j,k) are wavelength in meters and ambiguity in cycles
for different coefficients combination; εp and εφ represent noise of double-differenced code and phase
observations, respectively. The ionospheric scale factor β(i,j,k), the noise scale factor γ(i,j,k), wavelength
λ(i,j,k), and ambiguity N(i,j,k) based on the combination, are defined as (Feng 2008)

β(i,j,k) =
f 2
1 ·(i/ f1+j/ f2+k/ f3)

i· f1+j· f2+k· f3

γ2
(i,j,k) =

(i· f1)
2+(j· f2)

2+(k· f3)
2

(i· f1+j· f2+k· f3)
2

λ(i,j,k) =
c

(i· f1+j· f2+k· f3)

N(i,j,k) = i · N1 + j · N2 + k · N3

(2)

where c is the speed of light.
Similar to the traditional TCAR methods, the proposed TCAR method comprises three steps:

extra-wide-lane (EWL), wide-lane (WL) and narrow-lane (NL) ambiguity resolution. EWL ambiguity
can be reliably resolved by previous studies [4,6,7], but rapid and reliable WL and NL ambiguity
resolution is still challenging because of both ionospheric bias and the combined observation noise [6].
Therefore, the proposed TCAR method focuses on finding a better WL and NL combination method
to eliminate ionospheric bias and restrict combined observation noise simultaneously. To simplify
the quantitative analysis below, we assume all un-differenced observations are independent with
each other, the observations among different frequencies have the same precision, i.e., un-differenced
code and phase precision take 30 cm and 3 mm, respectively. Thus, the standard deviations (STD)
of corresponding double-differenced observations are σp = 60 cm and σφ = 6 mm, respectively. The
proposed TCAR method can be implemented by the following three-step procedure.

2.1. EWL Ambiguity Resolution

The widely-used EWL combination can be expressed as [4,6]

φEWL = φ(0,−1,1) − p(0,1,1)
= λEWLN(0,−1,1) + γ(0,−1,1)εφ − γ(0,1,1)εp

(3)

where φEWL represents EWL combination: the corresponding wavelength is λEWL ≈ 4.88 m. Based
on the assumed observation precision, the ratio of the noise to the wavelength is σEWL/λEWL ≈ 0.09
cycles. The sufficiently low σEWL/λEWL indicates the success rate of EWL ambiguity resolution by
using the constructed EWL combination is close to 100%.

2.2. WL Ambiguity Resolution

When the EWL ambiguity is correctly resolved, EWL resolved ambiguity
^
N(0,−1,1) can be used

in WL ambiguity resolution. First, two widely-used WL combinations φ(1,−1,0) and φ(1,0,−1) are
constructed [20,23], and then the ambiguity link between EWL and WL ambiguities can be formed as

N(1,−1,0) = N(1,0,−1) +
^
N(0,−1,1) (4)

Using (4), φ(1,−1,0) and φ(1,0,−1) contain the same ambiguity values N(1,0,−1). The characteristic
provides a new WL ionosphere-free combination method, shown by

φWL1 = a1φ(1,−1,0) + a2φ(1,0,−1) − a1λ(1,−1,0)

^
N(0,−1,1)

= ρ + (a1λ(1,−1,0) + a2λ(1,0,−1))N(1,0,−1) + a1γ(1,−1,0)εφ + a2γ(1,0,−1)εφ

(5)
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where φWL1 denotes WL ionosphere-free combination. In order to eliminate the ionospheric bias

and retain the geometry terms, the values of coefficient set a1 = −
β
(1,0,−1)

β
(1,−1,0)−β

(1,0,−1)
≈ −19.66 and a2 =

β
(1,−1,0)

β
(1,−1,0)−β

(1,0,−1)
≈ 20.66. The corresponding wavelength and noise are λWL1 = a1λ(1,−1,0) + a2λ(1,0,−1) ≈

4.52 m and σWL1 ≈ 114.4 σφ, respectively.
In the new WL combination, it can be found that the ratio of the noise to the wavelength

σWL1/λWL1 is only 0.15 cycles, although the noise has been amplified by about 114.4 times. Therefore,
the new WL combination method can sufficiently restrict the combined observation noise under
ionosphere-free combination, which is able to obtain a better ambiguity resolution performance.

Because of the presence of geometry terms, the rank deficiency issue exists for (5). Therefore,
additional ionosphere-free combination should be constructed. Furthermore, the combination to be
constructed and φWL1 must be mutually independent. One option is to construct an ionosphere-free
combination by using code observations [19]. In view of the lower precision of code observations,
the STD of combined observation noise using the code observation will be enlarged to meter level,
e.g., the noise of ionosphere-free combination would reach up to 1.74 m by using f 1 and f 2 code
observations [4,19]. In order to avoid the enlarged observation noise under the ionosphere-free
combination, another new WL ionosphere-free combination contained WL ambiguity N(1,0,−1) is

constructed taking full advantage of EWL ambiguity-corrected observation
^
φ (0,−1,1) = φ(0,−1,1) −

λ(0,−1,1)
^
N(0,−1,1), written as

φWL2 = p(l,m,n) + b1

^
φ (0,−1,1) + b2φ(1,0,−1)

= ρ− b2λ(1,0,−1)N(1,0,−1) + γ(l,m,n)εp + b1γ(0,−1,1)εφ + b2γ(1,0,−1)εφ

(6)

where φWL2 denotes another WL ionosphere-free combination; (l,m,n) ∈ Z represents combined
coefficients of code observation. In order to construct ionosphere-free combination and retain

geometry terms, the coefficients set b1 =
β
(l,m,n)

β
(0,−1,1)−β

(1,0,−1)
and b2 = −

β
(l,m,n)

β
(0,−1,1)−β

(1,0,−1)
. The

corresponding wavelength and noise are λWL2 = b2λ(1,0,−1) ≈ 2.84β(l,m,n) m and σWL2 =√
(89.4β

(l,m,n)σφ)
2 + (γ

(l,m,n)σp)
2, respectively.

The new φWL2 eliminates the rank deficiency issue of (5), which is independent with φWL1 because
of the introduction of code observations. Meanwhile, in order to obtain the best reliability of WL
ambiguity resolution, the minimization criterion of σWL2/λWL2 should be satisfied. In this paper,
the integer coefficients of the code observation are selected as (l,m,n) = (0,0,1), the corresponding
coefficients are b1 ≈ −4.20 and b2 ≈ 4.20, respectively. The integer coefficient selection is detailed in
Appendix A. As a result, the wavelength λWL2 is 4.30 m and the ratio of the noise to the wavelength is
σWL2/λWL2 ≈ 0.23 cycles based on the assumed observation precision.

These two WL ionosphere-free combinations from (5) and (6) take full advantage of ambiguity
links and ambiguity-corrected observations to restrict the combined observation noise with respect to
wavelength sufficiently. Moreover, because the two WL observations contain the same WL ambiguity
N(1,0,−1) depending on the ambiguity link between the EWL and WL ambiguity, the strength of the
WL ambiguity model can be improved by these advantages. Using these two WL ionosphere-free
combinations, we construct a new linear model for WL ambiguity resolution. In view of presence of
non-dispersive terms, the residual tropospheric bias also needs to be taken into account as estimated
parameter to compensate the tropospheric bias, which is detailed in Section 3. Therefore, the WL linear
model writes [

ΦWL1
ΦWL2

]
=

[
H m λWL1I
H m λWL2I

] bWL
τ

N(1,0,−1)

 (7)
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where Φ represents the vector of modelled combined observations; H denotes the geometry matrix; m
is tropospheric mapping function; b includes baseline components; τ is zenith tropospheric wet delay
(ZWD); N(1,0,−1) is vector of ambiguities; I is identity matrix. After applying least-square estimation,
the WL ambiguities N(1,0,−1) can be determined using the least-squares ambiguity decorrelation
adjustment (LAMBDA) algorithm [1].

2.3. NL Ambiguity Resolution

The reliability of NL ambiguity resolution determines the performance of precise positioning.
Compared with WL and EWL ambiguity resolution, the NL ambiguity resolution is more sensitive
to the ionospheric bias and the combined observation noise [17,24]. Therefore, it is very necessary
to eliminate the ionospheric bias and restrict the combined observation noise simultaneously for
improving the reliability of NL ambiguity resolution.

In the NL ambiguity resolution, the double-differenced carrier phase observation, including
φ(1,0,0), φ(0,1,0) and φ(0,0,1), are used to construct two new independent ionosphere-free combinations.

Assuming that the EWL and WL ambiguity are correctly resolved above, the
^
N(0,−1,1) and

^
N(1,0,−1)

can be used to form the ambiguity link between EWL, WL and NL ambiguities, shown by

N(0,1,0) = N(1,0,0) −
^
N(1,0,−1) −

^
N(0,−1,1)

N(0,0,1) = N(1,0,0) −
^
N(1,0,−1)

(8)

Due to the ambiguity link, we can construct two new ionosphere-free combinations contained the
same ambiguity N(1,0,0) for NL ambiguity resolution, which can be expressed as

φNL1 = c1φ(1,0,0) + c2φ(0,1,0) + c2λ(0,1,0)(
^
N(1,0,−1) +

^
N(0,−1,1))

= ρ + (c1λ(1,0,0) + c2λ(0,1,0))N(1,0,0) + (c1 + c2)εφ

φNL2 = d1φ(1,0,0) + d2φ(0,0,1) + d2λ(0,0,1)

^
N(1,0,−1)

= ρ + (d1λ(1,0,0) + d2λ(0,0,1))N(1,0,0) + (d1 + d2)εφ

(9)

where φNL1 and φNL2 denote two independent ionosphere-free combinations by using different phase
observations in NL ambiguity resolution. In order to construct ionosphere-free combination and

retain the geometry terms, the coefficients set c1 = −
β
(0,1,0)

1−β
(0,1,0)

≈ 2.49, c2 = 1
1−β

(0,1,0)
≈ −1.49 and

d1 = −
β
(0,0,1)

1−β
(0,0,1)

≈ 2.94, d2 = 1
1−β

(0,0,1)
≈ −1.94, respectively. The wavelength and the noise are λNL1 =

c1λ(1,0,0) + c2λ(0,1,0) ≈ 0.108 m, σNL1 ≈ 2.90 σφ and λNL2 = d1λ(1,0,0) + d2λ(0,0,1) ≈ 0.106 m, σNL2 ≈ 3.53
σφ ,respectively. The corresponding ratio of the noise to the wavelength are σNL1/λNL1 ≈ 0.16 cycles
and σNL2/λNL2 ≈ 0.20 cycles, respectively.

Similar to WL ambiguity resolution, depending on the advantage of the ambiguity link (8), we
construct two new ionosphere-free combinations from (9) with sufficiently combined observation
noise restriction. Using these two ionosphere-free combinations, the linear model for NL ambiguity
resolution can be expressed as

[
ΦNL1
ΦNL2

]
=

[
H m λNL1I
H m λNL2I

] bNL
τ

N(1,0,0)

 (10)

Similar to the WL ambiguity resolution in (7), it can be seen that ambiguities N(1,0,0) can be resolved
by these two combinations. After applying a least-square estimation, the NL ambiguities N(1,0,0) can be
determined using the LAMBDA algorithm. Then, the baseline parameters are adjusted by the integer
constraints of the corrected NL ambiguities to obtain high-precision positioning solutions [1]. In order
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to clearly understand the proposed method, the coefficients for the EWL, WL, NL observations of the
proposed IFVR method are listed in Table 1.

Table 1. Coefficients for the extra-wide-lane (EWL), (wide-lane) WL, and narrow-lane (NL) observations
of the proposed ionosphere-free and variance-restricted (IFVR) method.

Observations Combination

φEWL φ(0,−1,1) − p(0,1,1)

φWL1

−
β(1,0,−1)

β
(1,−1,0)−β

(1,0,−1)
φ(1,−1,0) +

β(1,−1,0)
β
(1,−1,0)−β

(1,0,−1)
φ(1,0,−1) +

β(1,0,−1)λ(1,−1,0)

β
(1,−1,0)−β

(1,0,−1)

^
N(0,−1,1)

φWL2 p(0,0,1) +
β(0,0,1)

β
(0,−1,1)−β

(1,0,−1)

^
φ (0,−1,1) −

β(0,0,1)
β
(0,−1,1)−β

(1,0,−1)
φ(1,0,−1)

φNL1

−
β(0,1,0)

1−β
(0,1,0)

φ(1,0,0) +
1

1−β
(0,1,0)

φ(0,1,0) +

λ(0,1,0)
1−β

(0,1,0)

(
^
N(1,0,−1) +

^
N(0,−1,1)

)
φNL2 −

β(0,0,1)
1−β

(0,0,1)
φ(1,0,0) +

1
1−β

(0,0,1)
φ(0,0,1) +

λ(0,0,1)
1−β

(0,0,1)

^
N(1,0,−1)

According to the description of the proposed TCAR method above, the advantage of the ambiguity
link between each step of TCAR is demonstrated for WL and NL ambiguity resolution. The proposed
IFVR method precisely eliminates the ionospheric bias and sufficiently restricts the variance of
combined observation noise by the ambiguity link. From (5) and (6) for WL ambiguity resolution and
(9) for NL ambiguity resolution, it can be seen that each new combination restricts the ratio of the
noise to the wavelength within 0.25 cycles based on the assumed observation precision. Furthermore,
the strength of WL and NL ambiguity resolution is also enhanced by the ambiguity link, which is
beneficial for improving the reliability of ambiguity resolution. It can be found that the combined
observation in (7) and (10) are independent from each other, and, due to the corresponding design
matrix in (7) and (10) are full row rank, it can also be deduced that (7) and (10) are independent from
each other. Therefore, the model strength of proposed TCAR is sufficiently strong.

In order to get an insight into the essence of the proposed method, we use the equality lemma
to compare with the geometry-based un-combined TCAR (GBUC) [25], as shown by Appendix B.
Although the GBUC is theoretically comparable with the proposed method, the effectiveness of GBUC
is limited by the model robustness of ionospheric bias.

3. Results

3.1. Experiments Setup

In order to test the proposed TCAR method, a series of actual triple-frequency BDS data were
collected. The baseline distances of the selected stations vary from 7.7 km to 68.8 km. Table 2 gives
a summary of the data including the baseline distance, the time of data collection and the sampling
rate. The distribution of these stations is shown in Figure 1. The number of common satellites for four
baselines is also given in Figure 2. To evaluate the ambiguity resolution performance later, we correctly
resolve the NL ambiguities among three frequencies beforehand using the whole span of data. The
stations of CUT0, PERT and JFNG belong to the international GNSS service (IGS) network, whose
locations are being precisely known. In contrast, the precisely locations of WUDH, WHHP, and WHHN
cannot be publicly obtained. We use the commercial post-processing software (NovAtel GrafNav) to
obtain the coordinate of these stations, i.e., the precise point positioning (PPP) mode using the IGS
precise products. Moreover, because the WL and NL model from the proposed TCAR method contain
the non-dispersive terms, the tropospheric bias needs to be taken into account. The hydrostatic part of
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tropospheric delay contained in the un-differenced observations is compensated by the Saastamoinen
model [26]. The wet part of troposphere delay is estimated by zenith wet parameter along with
Niell mapping function [27]. The parameter is assumed to be a random-walk process [6,28]. The
corresponding state transition between two consecutive epochs is τk = τk−1 + ω, in which ω denotes
the process noise with the corresponding variance σω

2 = qτ ∆t, where qτ and ∆t is the spectrum density
coefficients and the sampling internal, respectively. We take qτ = 3 cm2/h for tropospheric estimated
model [6]. In addition, the cutoff elevation angle is set to 15◦. The elevation-dependent weighting
is applied, and the observation STD at elevation θ is σ(θ) = σo(1 + 1/sin(θ))with σo being the STD in
zenith, which takes 30 cm and 3 mm for triple-frequency un-differenced code and phase observation,
respectively. Moreover, in order to further improve estimated precision and efficiency, we use the
sequential method of the extended Kalman filter as introduced in [6].

Table 2. Data information.

No. Dis. UTC Duration Interval(s)

1 7.7 km 2013/3/20 24 h 30
2 22.4 km 2015/10/27 24 h 30
3 42.5 km 2014/2/26 24 h 30
4 68.8 km 2014/2/26 24 h 30
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3.2. Error Analysis of the Combined Observation

In order to validate the performance of the proposed TCAR method with respect to different
ionospheric cases, the residual double-differenced ionospheric delay is extracted using ambiguity-fixed
phase observations from the proposed IFVR method.

According to the relationship of ionospheric delay between frequencies, I1, the first-order
double-differenced ionospheric delay on frequency f 1, can be calculated using ambiguity-corrected

observation
^
φ (1,0,0) and

^
φ (0,1,0). It can be expressed as

I1 =

^
φ (0,1,0) −

^
φ (1,0,0)

β
(0,1,0) − 1

(11)

Figure 3 shows the calculated results of the ionospheric delay on frequency f 1, in which the
different color codes represent the ionospheric delay from each satellite-pairs. It can be found from
Figure 3 that, the peaks of the ionospheric delay for the baseline distance of 7.7 km, 22.4 km, 42.5 km,
and 68.8 km can reach up to 11.6 cm, 18.1 cm, 58.0 cm, and 72.4 cm, respectively. It should be pointed
out that the ionospheric delay for 68.8 km can be up to 3.8 cycles with respect to the wavelength of f 1. It
is because the ionospheric delay does not only depend on the baseline distance but also the ionospheric
condition. The peak of ionospheric delay fluctuations for the 68.8 km is at the local time from 18:00 to
22:00, which correspond to the local sunset and midnight. This relatively large ionospheric delay is
probably related to the ionospheric disturbance, i.e., the so-called traveling ionospheric disturbances
(TID) [29]. Because the new ionosphere-free combinations are used in the proposed TCAR method, the
ambiguity resolution will not be affected by the ionospheric bias.
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In addition to the effect of ionospheric bias, the combined observation noise is another factor
impacting the reliability of ambiguity resolution. Because the residuals of observation reflect the
noise level of observation, we therefore use Figure 4 to show different combined observation residuals
with respect to each visible satellites-pair for the baseline of 68.8 km. It can be seen that the majority
of observation residuals can be restricted to within 0.25 cycles and the mean is close to 0 cycles.
This demonstrates that the proposed TCAR method is not only capable of eliminating the effect of
atmospheric bias, but also can restrict the noise level, which has a positive effect on the fast and reliable
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ambiguity resolution. The statistical results of residuals for all baselines are listed in Table 3. It can be
seen that the maximum of STD of observation residuals are less than 0.15 cycles. Moreover, it can be
found that the residual level of φWL2 and φEWL are larger than that of the others. This is because these
two combined observations are constructed by using code observation with low precision. However,
the STD of the residuals of these two combinations can still be restricted within 0.15 cycles, which
means the reliable ambiguity resolution can be achieved.
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Table 3. Statistics of residuals for each combined observation from all of data (STD: cycles).

Dis. φNL1 φNL2 φWL1 φWL2 φEWL

7.7 km 0.05 0.06 0.03 0.10 0.09
22.4 km 0.06 0.08 0.04 0.13 0.10
42.5 km 0.06 0.07 0.05 0.14 0.10
68.8 km 0.06 0.07 0.06 0.12 0.09

3.3. Performance of Ambiguity Resolution

In order to demonstrate the effectiveness of the proposed TCAR method (denoted as the IFVR),
two ‘state-of-the-art’ methods, namely, the geometry-based and ionosphere-reduced TCAR method
(denoted as the GBIR, referred to by [4]) and the geometry-free and ionosphere-free TCAR method
(denoted as the GFIF, referred to by [17]) are selected to be compared. The GBIR is selected to
demonstrate the effectiveness of eliminating ionospheric bias for reliable ambiguity resolution. The
method constructs the three EWL, WL, and NL ambiguities, which selects the combined strategies

as follows: EWL (φ(0,−1,1), p(0,1,1)), WL(φ(1,4,−5),
^
φ (0,−1,1)), and NL(φ(4,−3,0),

^
φ (1,0,−1)) referred to

by [4,30]. In addition, the comparison between GFIF and IFVR is made to demonstrate the necessity of
restricting the combinational noise level. The method consists of three cascaded steps, whose combined
observations for each step are selected as EWL (φ(0,−1,1) − p(0,1,1)), WL (φ(1,4,−5) − p(1,1,1)), and NL (a1
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^
φ (1,4,−5) + a2

^
φ (1,−1,1) − φ(1,0,0)), of which a is corresponding combined factors, referred to by [7,17].

Note that the LAMBDA algorithm is used for the ambiguity resolution of IFVR, GFIF, and GBIR,
in which the threshold value for the ratio test is set to 3. The epoch-by-epoch ambiguity resolution
processing is used in order to investigate the performance of ambiguity resolution ultimately.

The experimental results are evaluated by the ambiguity resolution performance and positioning
accuracy. The ambiguity resolution performance of EWL, WL and NL steps are shown by the metrics
of the empirical fixed rate (Pfix) and the conditional success rate (Pcf), in which Pfix are defined as the
ratio between the epochs of the ambiguity being fixed and total epochs, and Pcf is defined as the ratio
between the epochs of the ambiguity being fixed correctly and the epochs of the ambiguity being fixed,
in which the ambiguity can been accepted as fixed only if the ratio-test is passed. Herein, Pfix reflects
the continuity of ambiguity resolution, while Pcf reflects the correctness of ambiguity resolution. As
discussed in [21,31], the empirical fixed rate and conditional success rate reflects the reliability of
ambiguity resolution, which are listed in Table 4. The positioning errors for the three methods in the
ambiguity-fixed mode are shown in Figure 5 and the corresponding STD values of positioning errors
are listed in Table 5.

Table 4. Ambiguity validation performances for different methods (×100%).

Amb. Dis.
GBIR GFIF IFVR

Pfix Pcf Pfix Pcf Pfix Pcf

EWL

7.7 km 100 100 100 100 100 100
22.4 km 100 100 100 100 100 100
42.5 km 100 100 100 100 100 100
68.8 km 100 100 100 100 100 100

WL

7.7 km 100 100 100 100 100 100
22.4 km 100 100 100 100 100 100
42.5 km 100 100 100 100 100 100
68.8 km 100 100 100 100 100 100

NL

7.7 km 99.1 99.9 96.6 99.9 97.6 99.9
22.4 km 98.5 100 98.1 100 98.4 100
42.5 km 66.1 98.0 98.3 100 99.5 100
68.8 km 22.5 30.5 86.4 100 92.1 100
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Figure 5. Positioning error comparison for different methods in the ambiguity-fixed mode. The row
panels from top to bottom denote GBIR, GFIF, and IFVR, respectively. The column panels from left to
right denote the distances of 7.7 km, 22.4 km, 42.5 km, and 68.8 km. The colors of purple, green and red
represent the positioning errors in the east, north, and up components, respectively.
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Table 5. Positioning errors for different methods (cm).

Dis.
GBIR GFIF IFVR

STD SEP
(95%)

STD SEP
(95%)

STD SEP
(95%)E N U E N U E N U

7.7 km 0.2 0.3 2.3 9.3 0.7 0.5 1.8 8.2 0.7 1.1 2.3 7.6
22.4 km 0.2 0.4 0.7 5.4 0.2 0.2 1.3 4.8 0.1 0.1 2 6.4
42.5 km 0.7 0.9 3.5 7.0 0.5 0.4 3.2 6.6 0.5 0.4 3.3 6.5
68.8 km 5.9 3.4 6.2 20.8 0.5 0.3 2.3 11.1 0.8 0.5 3.6 12.9

As seen from Table 4, the empirical and correctly fixed rates of EWL and WL ambiguity resolution
for three methods achieve 100% regardless of the baseline distances, which reveals the effectiveness
of long wavelength by observation combination. By comparing the NL ambiguity resolution result
between the GBIR and the IF-based TCAR methods, i.e., the GFIF and the proposed IFVR, the necessity
of the ionosphere-free combination can be demonstrated because the continuity and the reliability of
GBIR is deteriorated when a larger ionospheric bias results from the increased baselines. Particularly,
when the baseline increases to 68.8 km, the empirical fixed rate of GBIR is 22.5%, and the correctly
fixed rate is 30.5%, respectively. Compared with the GFIF and the IFVR, it can be found that the
empirical fixed rate performances are comparable to each other, which can be also be reflected by the
comparable positioning accuracy performance as listed in Table 5. Note that the position error of first
column is shifted from its reference value in the Figure 5. This is probably the bias from PPP-based
positioning reference. However, the ambiguity resolution correctness performance of IFVR can achieve
an improvement by 5.7% at most in the 68.8 km baseline distance case, which means the proposed
IFVR has stronger ambiguity resolution strength than the GFIF.

4. Concluding Remarks

The purpose of this study is to improve the reliability of the TCAR method by eliminating
ionospheric bias and restricting the combined observation noise simultaneously. We proposed a new
ionosphere-free and combined observation variance-restricted TCAR method by utilizing ambiguity
links between each step of TCAR. Since the advantage of the ambiguity link is explored sufficiently,
the contradiction between the ionosphere elimination and combined observation noise suppression
can be removed, so that the new ionosphere-free combination method with combined observation
noise restriction can be constructed especially for WL and NL ambiguity resolution. Moreover, the
strength of ambiguity resolution can also be improved by the ambiguity link, which is beneficial for
improving the reliability of ambiguity resolution. The proposed TCAR method is tested using real data
from various baselines. As a result, the STD of residuals of combination from each step of TCAR can
be restricted within 0.15 cycles, even when the baseline is increased to 68.8 km. By comparing the NL
ambiguity resolution performance of GBIR with the GFIF and the IFVR, it is found that the elimination
of the effect of ionospheric bias is essential to improve the ambiguity resolution, particularly in the
NL step. Meanwhile, the continuity performance is significantly improved by effectively restricting
the observational noise level with respect to the wavelength, as indicated by the comparison with the
GFIF and the IFVR.

Since the proposed IFVR method is capable of restricting the combined observation noise and
eliminating the ionospheric bias, it is suitable for long baseline RTK positioning. The application of
proposed method for 100 km or even 1000 km long baseline RTK will be our future work. In addition,
the performance will be further tested with other GNSS such as GPS and Galileo.
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Appendix A. Procedure for Selecting the Code Combined Coefficients

For achieving the best ambiguity resolution performance, the optimal integer coefficient for
combined observations φWL2 in WL ambiguity resolution needs to follow the minimization criterion of
σWL2/λWL2 = min. Assuming that the candidate integer coefficients (l,m,n) ∈ [−10,10], some optimal
combined coefficient candidates can be searched with the predefined observation precision. Assuming
that the standard deviations of double-differenced code and phase observations take σp = 60 cm and σφ

= 6 mm, respectively, the optimal combined coefficient is (l,m,n) = (4,9,8) in mathematical analysis, in
which, λWL2 ≈ 4.14 m, σWL2 ≈ 0.86 m, and then σWL2/λWL2 ≈ 0.21 cycles. However, the assumption
that all code observations have the same precision does not exactly be inconsistent with the fact that
the code chipping rate on f 3 is 10 times faster than that of the others, which means the precision of
code on frequency f 3 is higher than that of the others in theoretical analysis [9,32]. Considering the
difference in observation noise between p1, p2 and p3, the assumption becomes σp1 = σp2 = σp and σp3

= n·σp, in which the factor n is smaller than 1 (theoretically it is 0.1), but the practical value of 0.2 is
used in this case, i.e., σp1 = σp2 = 60 cm and σp3 = 12 cm. The coefficient combination (l,m,n) = (0,0,1)
can obtain a better performance with σWL2/λWL2 ≈ 0.19 cycles. Therefore, in our studies, we choose
(l,m,n) = (0,0,1), considering the actual BDS environments.

Appendix B. Proof of Equivalence of IFVR and GBUC Method

We firstly introduce the equality lemma [33–35]. The general model can be expressed as

E{y} =
[

A1 A2

][ x1

x2

]
, D{y} = Q (A1)

where, E{}, D{} denotes expectation and deviation operator, respectively; y ∈ Rn×1 is observation
vector; the symbols x1 ∈ Rs×1 includes baseline, troposphere, ambiguities unknown parameters and x2

∈ Rt×1 includes ionosphere parameters as nuisance parameters for ambiguity resolution. A1 and A2 is
the corresponding design matrix, respectively. Q is covariance matrix for the observations.

In order to eliminate the nuisance parameters x2, a transition matrix C can be used to form a new
observation model

E{y∗} = E{Cy} = CA1x∗1 , D{y∗} = CQCT (A2)

Equality lemma: If the transition matrix C fulfills the condition of CA2 = 0 and rank(C) = n − t, the
result

_
x 1 =

_
x
∗
1 , Q_

x 1
_
x 1

= Q_
x
∗
1
_
x
∗
1

can be obtained, which means the model strength of (A1) is equal as

Model (A2).
The equivalence between GBUC and IFVR method can be derived by using the equality lemma.
Because the code observations p1 is not used by IFVR, therefore, the raw observations includes

l={φ1, φ2, φ3, p2, p3}T, where p and φ denotes double-differenced code and phase observations,
respectively, the subscript denotes the different frequency. The GBUC method is given

E{yGBUC} = E{l} =
[

A1 A2

][ x1

x2

]
, D{yGBUC} = Q (A3)

If the number of double-differenced satellite pairs is m, the l ∈ Rn×1, n = 5 m can be obtained;
x1 = {b, τ, N1, N2, N3} ∈ R(4+3m)×1, the symbols b, τ, N denotes baseline, troposphere and ambiguity
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parameters, respectively; x2 = {l1} ∈ Rm×1, the symbols l represents the slant ionosphere parameters;
the corresponding the design matrix is given as

A1 =

[
e3 ⊗ B Λ⊗ Im

e2 ⊗ B 0

]
, A2 =

[
µφ

µp

]
⊗ Im (A4)

with, B is design matrix of b and τ parameters, Λ = diag(λ1, λ2, λ3); µφ = [−µ1, −µ2, −µ3]T, µp = [µ2,
µ3]T, where µ1 = 1, µ2 = (f 1/f 2)2, µ3 = (f 1/f 3)2; Im is identity matrix; ⊗ denotes Kronecker product.

The IFVR method formed by Equations (3), (7) and (10) can be rearranged as

E{yIFVR} = E{Cl} = CA1x1, D{yIFVR} = CQCT (A5)

where,

C =


0 η([0,−1,1],2) η([0,−1,1],3) −η([0,1,1],2) −η([0,1,1],3)

a1η([1,−1,0],1) + a2η([1,0,−1],1) a1η([1,−1,0],2) a2η([1,0,−1],3) 0 0

b2η([1,0,−1],1) b1η([0,−1,1],2) b1η([0,−1,1],3) + b2η([1,0,−1],3) 0 1

c1 c2 0 0 0
d1 0 d2 0 0

⊗ Im. (A6)

where, η([i1,i2,i3],j) =
ij f j

i1 f1+i2 f2+i3 f3
, j ∈ (1, 2, 3); the coefficients a, b, c, d are defined in the

Equations (5), (6) and (9). The rank (C) = n − t, which means the C is not-square matrix and is not
non-singular matrix.

According to the equality lemma, the CA2 can be derived as

CA2 =



−η([0,−1,1],2)µ2 − η([0,−1,1],3)µ3 − η([0,1,1],3)µ2 − η([0,1,1],3)µ3

−(a1η([1,−1,0],1) + a2η([1,0,−1],1))− a1η([1,−1,0],2)µ2 − a2η([1,0,−1],3)µ3

−b2η([1,0,−1],1) − b1η([0,−1,1],2)µ2 − (b1η([0,−1,1],3) + b2η([1,0,−1],3))µ3 + µ3

−c1 − c2µ2

−d1 − d2µ3


⊗ Im = 0 (A7)

Therefore, the condition of CA2 = 0 and rank (C) = n − t is fulfilled between the GBUC and the
IFVR method, which means the method strength of these two combinations are equivalent. However,
the effectiveness of the GBUC depends on accuracy of ionospheric model, particularly, ionospheric
stochastic model. In contrast, the IFVR method can be used without regard to inaccuracy of ionospheric
model, which means the proposed IFVR have better ambiguity resolution performance in the presence
of ionosphere.
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