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Abstract: A novel de-noising method for improving the performance of full-waveform light detection
and ranging (LiDAR) based on differential optical path is proposed, and the mathematical models
of this method are developed and verified. Backscattered full-waveform signal (BFWS) is detected
by two avalanche photodiodes placed before and after the focus of the focusing lens. On the
basis of the proposed method, some simulations are carried out and conclusions are achieved.
(1) Background noise can be suppressed effectively and peak points of the BFWS are transformed into
negative-going zero-crossing points as stop timing moments. (2) The relative increment percentage of
the signal-to-noise ratio based on the proposed method first dramatically increases with the increase
of the distance, and then the improvement gets smaller by increasing the distance. (3) The differential
Gaussian fitting with the Levenberg-Marquardt algorithm is applied, and the results show that it
can decompose the BFWS with high accuracy. (4) The differential distance should not be larger than
c/2 × τrmin, and two variable gain amplifiers can eliminate the inconsistency of two differential
beams. The results are beneficial for designing a better performance full-waveform LiDAR.

Keywords: full-waveform LiDAR; differential optical path; background noise; SNR; backscattered
full-waveform signal; Levenberg-Marquardt

1. Introduction

Light Detection and Ranging (LiDAR) is an active, remote-sensing system that provides direct
range measurement and is capable of collecting three-dimensional (3D) spatial information [1,2].
The system emits short laser pulses with high frequency to illuminate the object surface and then
employs photodiode detectors to record backscattered waveform signals [3–5]. LiDAR has received
much attention in recent years due to its simplicity, high accuracy, and utility in many applications,
such as 3D city modeling, cartography, forest inventories, target recognition, and the digital terrain
model [6–9]. To the best of our knowledge, LiDAR can be divided into two categories, i.e., discrete-echo
LiDAR and full-waveform LiDAR [10,11]. A discrete-echo LiDAR records only a few discrete-echo
backscattered waveform signals for each transmitted laser pulse and provides only 3D coordinates
and range information about objects [8,12]. Unlike the discrete-echo LiDAR, a full-waveform LiDAR
can record the entire backscattered full-waveform signal (BFWS) for each transmitted laser pulse
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as a function of time, followed by a digital sampling with an extremely high temporal resolution
(typically by 1 ns intervals) [13]. The recorded BFWS provides not only range information but also
other information related to geometry and radiative properties of the illuminated object surfaces,
such as width, amplitude, and backscattering cross-section of the illuminated object surfaces [14,15].
Therefore, compared with the discrete-echo LiDAR, the full-waveform LiDAR is more suitable in
many applications, including surface topography, airborne vegetation mapping, disaster and crisis
management, natural resource monitoring, mission planning, and target identification [16,17].

Waveform decomposition is a widely used method for waveform processing of the full-waveform
LiDAR, and it consists of data preprocessing, estimation of initial parameters, and curve fitting [11,18].
The data preprocessing is the first and a crucial procedure of the waveform decomposition and aims
to remove noise contamination [19]. Several types of noise sources, such as signal-caused quantum
noise, thermal noise, amplifier noise, dark current noise, and background noise (BGN), contribute
to the noise contamination [20,21]. These sources are frequently encountered in the full-waveform
LiDAR and can decrease the signal-to-noise ratio (SNR) of the system. Among these sources, the BGN
is one of the major noise sources, especially in a bright, sunlight-measurement environment [22,23].
At present, current de-noising methods can be categorized into two types [24]: frequency [25] and
spatial domains [26,27]. The frequency domain de-noising methods first transform the signal into
the frequency domain prior to filtering and then transform the signal back into the space domain by
inverse transformation after filtering. An example of this category is wavelet de-noising [28]. However,
the calculation processes for multi-scale wavelet decomposition reconstruction are complicated,
and the smoothing of thousands of pieces of the BFWS data is time-consuming [19]. Unlike the
frequency domain de-noising methods, the spatial domain de-noising methods directly apply space
transformation algorithms to the signal. The algorithms can be average filtering or Gaussian filtering,
and among others [8,29]. Although the average filtering and Gaussian filtering algorithms do not
need a priori knowledge of the BFWS data and are suitable for rapid processing of a large number
of the BFWS data, these two algorithms may cause distortion of the BFWS, such as shrinkage of the
peak amplitude and an increase in the pulse width. Moreover, the Gaussian filtering has difficulty in
selecting an appropriate kernel width for each echo pulse reflected from complex terrain [8].

This study aims to develop techniques for suppressing the background noise and improving the
performance of the full-waveform LiDAR. For this purpose, a novel de-noising method based on the
differential optical path is proposed. The principle and theoretical analysis are illustrated in Section 2.
Simulations based on the proposed method are carried out in Section 3. Conclusions are elaborated in
the last Section. The results demonstrate that the proposed method can suppress background noise
effectively and achieve a higher SNR value.

2. Materials and Methods

2.1. Principle

The principle of the full-waveform LiDAR based on the differential optical path is shown in
Figure 1.

First, a field programmable gate array (FPGA) generates a trigger signal for a laser to emit a laser
pulse, and the laser pulse is collimated by a transmitting lens.

Second, the transmitted laser pulse is divided into two beams by beam splitter 1. (1) One beam
is focused by a convergent lens and is detected directly by a photo detector [30]. Because the beam
undergoes no noise interference and it keeps the original stand waveform, it is suitable to regard the
peak position of the laser pulse as the start timing moment for a timer in FPGA. (2) The other beam is
projected into a scene for illuminating objects. Three objects are assumed to exist in the scenario, and
the distances between the three objects and the laser are R1, R2, and R3, respectively. The BFWS—the
sum of the backscattered sub-waveform signal (BSWS)—is generated after the interactions of the
transmitted laser pulse with each encountered object.
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Third, the BFWS is reflected by the beam splitter 1 and focused by a focusing lens. Two APDs are
placed before and after the focus of the focusing lens (offset distance is L). The beam splitter 2 divides
the BFWS into two beams and the two beams impinge on the two APDs, respectively. The two electrical
signals (Pr1 and Pr2) of the BFWS are sent to a subtraction circuit (SC). After the subtraction operation
of the SC, a differential BFWS (Prd) is obtained and sampled by an analog-to-digital converter (ADC).
The differential BFWS has some negative-going zero-crossing points (NGZCPs) and it is set as the stop
timing moments for the timer in the FPGA.

Finally, the other parameters of the different objects, including the amplitude, the position
traveling time, and the standard deviation, are obtained by analyzing the differential BFWS. The time
of flights are determined between the start and stop timing moments. The range information about the
objects can be obtained using the time of flights. Unlike our previous study [21], besides the range
information, other information related to geometry and radiative properties of the illuminated objects
can be achieved by the other parameters through decomposing the differential BFWS.
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The range information is an important parameter obtained from the BFWS and is determined by
the start and stop timing moments. The start timing moment comes from the photo detector, and the
peak position is easy to detect because of the high intensity and low background power, so the peak
position is set as the start timing moment. In terms of the stop timing moments, the traditional method
uses only a single APD for detecting stop signals. The stop timing moments of different objects are the
peak points (PPs) of the BFWS, as shown in Figure 2a. However, the peak positions are difficult to
discriminate for the timer, because the temporal change rates near the peak positions are small, which
increases the difficulty in obtaining the peak position. Unlike the traditional method, the differential
optical path method employs two APDs to receive the BFWS. These two APDs are placed before and
after the focus of the focusing lens, respectively. Compared with the peak discriminator of the stop
timing moments based on the traditional method, the stop timing moments for the timer are changed
into the NGZCPs of the differential BFWS based on differential optical path method, which is shown
in Figure 2b. We can see that the temporal change rates of the differential BFWS at the NGZCPs in
Figure 2b are obviously higher than those at the PPs of the BFWS in Figure 2a. Therefore, the stop
timing moments can be easily detected by the timer through the differential optical path method. From
the principle of the proposed method, we can see that the amplitudes of the two BFWSs impinging on
by the two APDs (Pr1 and Pr2) are reduced by half compared with those of a single APD. Hence, in
order to ensure the proposed method works properly, the amplitudes of the two BFWSs should be
larger than the minimum input power of the APD. Although the amplitudes of the two BFWSs are
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reduced by half, the background noise can be suppressed and the SNR can be enhanced by subtracting
the two BFWSs. Therefore, the range information and other information about the objects based on the
proposed method are more accurate than that of the traditional method.Remote Sens. 2017, 9, 1109  4 of 15 
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2.2. Analysis of the Differential BFWS

Different from our previous study [21], the fundamental expression to describe the differential
BFWS is based on the LiDAR equation. The power of the transmitted laser pulse is supposed to be a
temporal function of Gaussian model and it can be written as [31]
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where Et is the original pulse energy, and τ is the transmitting pulse width. The pulse laser transmits a
narrow laser beam with a certain divergence angle toward the object, and the power impinging on the
APD is written as [3]
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where R is the distance between the object and laser, βt is the transmitter beam divergence, ρ is the
reflectivity, As is the receiving area of the object, Ω is the solid angle, and Dr is the aperture diameter
of the receiver optics system. Equation (2) can also be rewritten as the following LiDAR equation [32]{
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where σ is the backscatter cross-section, which represents the character of the object, such as the
reflectivity and the directionality of scattering.

From a practical point of view, additional power losses in the instrument and atmosphere must
be considered. Therefore, the ultimate LiDAR equation, i.e., the BSWS, is [12,32]
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PtD2
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where ηsys is the system transmission factor, and ηatm is the atmospheric transmission factor.
As mentioned above, the traditional method employs a single APD to receive the BFWS. Therefore,

if N distinct objects exist within the travel path of the laser pulse in the scene, then the expression of
the BFWS, i.e., the sum of the BSWSs of each distinct object can be written as [3]

Pr(t) =
N
∑

i=1

Pt

(
t− 2Ri

c

)
D2

r

4πRi
4β2

t
ηsysηatmσi

Pt

(
t− 2Ri

c

)
= Et

τr
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2π
exp

[
− (t−2Ri/c)2

2τri
2

]
τ2
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2 + tan2(θi)W(Ri)

2
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√
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(
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πW2
0
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where Ri is the distance between the i-th object and the laser, τri is the received pulse width, c is the
light speed, θi is the tilt angle of the i-th object between normal vector and optical axis, W0 is the waist
radius of the laser, and W(Ri) is the beam radius at the Ri distance.

According to the principle based on the differential optical-path as shown in Figure 1, the BFWSs
of the APD 1 and the APD 2 are written as
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N
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Equation (6) is expressed under ideal condition, i.e., the noise is ignored. The BGN is an
external noise of the APD and is a major noise source especially in the bright sunlight measurement
environment. Therefore, it should be taken into consideration. The power of the received background
solar illumination impinging on the APD can be written as [20]

PBi = ρihsumTr Ar sin(FOV/2)2∆λ, (7)

where hsum is the background solar irradiance, Tr is the transmission of the receiver, FOV is the field
of view of the receiver optics system, Ar is the area of the receiver, and ∆λ is the optical bandwidth.
Equation (7) shows that the BGN is a constant, i.e., it does not vary with time. Moreover, according to
the previous studies [33,34], in LiDAR measurement systems, the level of background noise generated
by the atmosphere can be treated as constant. Therefore, the two BFWSs impinging on the APD 1 and
APD 2 with the BGN are written as
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After the subtraction operation between these two BFWSs detected by the APD 1 and the APD 2,
the differential BFWS is obtained and it can be written as

Prd(t) = Pr1(t)− Pr2(t) =
N
∑

i=1

(
1
2 ×

D2
r ηsysηatmσi
4πRi

4β2
t
× Et

τri
√

2π

{
exp

{
− [t − (2Ri − L)/c]2

2τri
2

}
− exp

{
− [t − (2Ri + L)/c]2

2τri
2

}})
. (9)

Equation (9) shows that the BGN is suppressed effectively. According to our previous study [21],
the time of flight of each object using the differential optical path method also equals to 2Ri/c. In
other words, the range information is unaffected by the proposed method. Moreover, compared with
traditional peak discriminator, the PP is changed into the NGZCP, which is more easily detected by the
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timer than that of the PP. Therefore, the differential optical path method can more easily obtain range
information and other information than the traditional method.

2.3. SNR Analysis

The SNR is a synthetical parameter to evaluate the quality of the full-waveform data [1]. The SNR
expression of a single APD based on the traditional method is written as [21,33,35]

SNR =
Psig

〈Pth〉+ 〈Pa〉+ 〈Pdark〉+ 〈Pshot〉+ Pback
, (10)

where Psig is the detected signal power of the APD, 〈Pth〉 is the mean-squared thermal-noise power,
〈Pa〉 is the mean-squared noise power added by the electronic amplifier, 〈Pdark〉 is the mean-squared
dark-current-noise power of the APD, 〈Pshot〉 is the mean-squared signal shot noise power, and Pback is
the output power of background noise by the APD. The expressions of the above terms based on the
traditional method are described as follows

Psig = I2RL = (MPrρD)
2RL

〈Pth〉 = 4kTB
〈Pa〉 = 4kTaB
〈Pdark〉 = 2eIdark M2FexBRL

〈Pshot〉 = 2ePr M2FexρDBRL
Pback = 2ePBKi M2FexρDBRL

, (11)

where I is the detected photocurrent, ρD = ηDe/hf is the current responsivity of the APD, ηD is the
quantum efficiency of the APD, e is the electron charge, h is Planck’s constant, f = c/λ is the frequency
of light, RL is the effective load resistance of the APD, M is the current gain of the APD, ρD is the
responsivity of the APD, k is Boltzmann’s constant, B is the electrical bandwidth of the system, i.e.,
B = 1/(2τ), T is the temperature in Kelvin, Ta is the effective noise temperature, Idark is the dark current,
and Fex is the excess-noise factor.

By substituting Equation (11) in to Equation (10), we obtain the SNR expression of the traditional
method as

SNR =
Pr

2ρD
2RL M2

4kBT + 4kBTa + 2eM2FexBRL(PrρD + PBKρD + Idark)
, (12)

which can be rewritten as

SNR =
Pr

2ρD
2M2

4kB(T+Ta)
RL

+ 2eM2FexB(PrρD + PBKρD + Idark)
, (13)

Employing the relationship between the responsivity and quantum efficiency of the APD, i.e., ρD

= ηDe/hf, the SNR of the traditional method also be written as

SNR =
Pr

2M2

B
[

h2 f 2

e2ηD2

(
4k(T+Ta)

RL
+ 2eM2Fex Idark

)
+ 2M2Fexh f

ηD
(Pr + PBK)

] , (14)

Compared with the traditional method, the proposed method employs two APDs to receive the
BFWS. Because the background noise Pback is constant, it can be suppressed by subtraction operation
of the two BFWSs detected by two APDs. However, the other four noise are not constants; in fact,



Remote Sens. 2017, 9, 1109 7 of 16

they are random numbers whose possibility distribution functions obey Poisson distributions [36].
Therefore, the SNR expression of the proposed method with two APDs can be achieved by

SNR =
Psig

〈Pth〉+ 〈Pa〉+ 〈Pdark〉+ 〈Pshot〉+ Pback
, where

Psig =
∣∣Pr1

2ρD1
2RL1 M1 − Pr2

2ρD2
2RL2M2

2
∣∣

〈Pth〉 = 4k(T1 + T2)B
〈Pa〉 = 4k(Ta1 + Ta2)B
〈Pdark〉 = 2eB

(
M1

2Fex1RL1 Idark1 + M2
2Fex2RL2 Idark2

)
〈Pshot〉 = 2eB

(
M1

2Fex1RL1Pr1ρD1 + M2
2Fex2RL2Pr2ρD2

)
Pback = 2eB

∣∣M1
2Fex1RL1PBKρD1 −M2

2Fex2RL2PBKρD2
∣∣

, (15)

where ρD1 and ρD2 are the responsivities of the two APDs, RL1 and RL2 are the effective load resistances
of the two APDs, M1 and M2 are the current gains of the two APDs, T1 and T2 are the temperatures in
Kelvin of the two APDs, Ta1 and Ta2 are the effective noise temperatures of the two APDs, Fex1 and
Fex2 are the excess noise factors of the two APDs, and Idark1 and Idark2 are the dark currents of the two
APDs.

2.4. Waveform Decomposition and Differential Gaussian Fitting

As mentioned above, compared with the discrete-echo LiDAR, the full-waveform LiDAR can
provide more potential ability in extracting additional parameters and deriving properties of the objects
from the BFWS. Decomposition is the core process for deriving the valuable parameters [37]. Gaussian
fitting is one of the most commonly adopted methods for decomposing full-waveform data [38,39].
The Gaussian fitting is based on the assumption that the transmitted pulse is of a Gaussian type and
the BFWS is composed of several single echoes that also are Gaussian types. Therefore, the Gaussian
fitting expression of the BFWS based on the traditional method can be written as [12,32]

Pr(t) = b +
N

∑
i=1

ai exp

[
− (t− ti)

2

2δ2
i

]
, (16)

where b is the noise level of the waveform, N is the peak number of the BFWS, i.e., the echo number, ai
is the amplitude of the i-th echo, ti is the traveling time of the i-th echo, δi is the half width of the i-th
echo (standard deviation), and t is the traveling time.

The initial positions and echo number should be determined prior to the Gaussian fitting for the
iteration process. In general, two conventional methods, i.e., the center of gravity and zero-crossing
of the first derivative, can be used. Compared with conventional methods, the second derivative
algorithm outperforms the two aforementioned traditional methods [40]. The second derivative of the
BFWS is calculated as [37]

d2Pr(t)
dt2

∣∣∣∣
i
≈ Pr(ti − ∆t)− 2Pr(ti) + Pr(ti + ∆t)

∆t2 , (17)

where ti indicates an echo location of the BFWS, and ∆t is the time interval. In the second-derivative
algorithm, a local minimum point is supposed to be the initial position of the echo and represents one
echo number.

Unlike the Gaussian fitting of the tradition method, the differential Gaussian fitting expression of
the differential BFWS based on differential optical path method is written as

Prd(t) =
N

∑
i=1

1
2
× ai

{
exp

[
− [t− (ti − L/c)]2

2δ2
i

]
− exp

[
− [t− (ti + L/c)]2

2δ2
i

]}
. (18)
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Compared with Equations (5) and (18), we can see that the differential Gaussian fitting can
preserve the characteristics of the BFWS, including the amplitude, the distance of the objects, and the
pulse width. In terms of the amplitude, the amplitude of the differential Gaussian fitting is reduced
to half of the BFWS due to the existing BS 2; therefore, it is needed to multiply the amplitude of the
differential Gaussian fitting by two in order to correctly retrieve the parameters of the objects, including
the backscatter cross-section. In terms of the distance of the objects, the NGZCP locations are the
points where Prd (t) = 0 in Equation (18), which can be obtained by [t − (ti − L/c)]2 = [t − (ti + L/c)]2.
Then, we can achieve t = ti = 2R/c, which illustrates that the distance of the objects can be preserved by
the differential Gaussian fitting. In terms of the pulse width, we can find that the standard deviation
in Equation (18) is equal to the pulse width in Equation (5), and the tilt angle of the objects can be
retrieved by the standard deviation.

The aforementioned method uses the second derivative of the BFWS to achieve echo number. On
the contrary, the differential optical-path method regards the NGZCP number of differential BFWS as
the echo number, which is written as {

Prd(ti − ∆t) > 0
Prd(ti + ∆t) < 0

. (19)

If the sampling point Prd (ti) of the differential BFWS satisfies Equation (19), then this sampling
point is supposed to be the initial position of the echo and represents one echo number.

A nonlinear least-squares method with robust Levenberg–Marquardt (LM) technique is used to
obtain the additional parameters (amplitude, position, and standard deviation) from the differential
Gaussian fitting expression in Equation (18) [32]. The fitting quality is evaluated by a variable ξ, which
is written as

ξ =

√√√√C
N

∑
i=1

(Prd(ti)− yi)
2 < ω, (20)

where C is a weight value and equals to 1/N, and ω is the desired accuracy determined by the end user.

3. Results

3.1. Simulation Parameters and Model Verification

On the basis of the abovementioned analysis, the simulations of the BSWS of each object and the
BFWS are carried out. Given that the BGN is one of the major noise sources, it is also simulated. Three
objects with different reflectivities are selected and are positioned at different ranges to the laser. The
set parameters of the pulse laser and the three objects are as shown in Table 1 [3,16,20].

The BSWS and the BGN of each object based on the traditional method using the aforementioned
parameters in Table 1 are shown in Figure 3. The Figure 3 shows that the power of BGN is higher than
that of BSWS under the parameters, i.e., the BSWS is submerged under the BGN. Therefore, detecting
the PPs of the BSWS is difficult. In order to solve this issue and test the model verification of the
proposed method, the differential BSWS of each target is achieved using the differential optical-path
method (the differential distance L = 0.03 m), and the corresponding results are shown in Figure 4a.
From Figure 4a, we can see that the BGN is suppressed effectively and the PPs are transformed
into NGZCPs.
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Table 1. Parameter values used in the simulation.

Parameter Value Object Parameter Value

Original pulse energy (Et) 4 µJ

First

Distance to
laser(R1) 500 m

Wavelength (λ) 1064 nm Reflectivity(ρ1) 0.5

Initial beam radius (W0) 0.02 m Tilt angle(θ1) 10◦

Initial pulse width (τ0) 0.2 ns Backscatter
cross-section(σ1) 0.098

Transmitter beam
divergence (βt)

0.5 mrad

Second

Distance to
laser(R2) 500.1 m

Aperture diameter of the
receiver (Dr)

25 mm Reflectivity(ρ2) 0.4

Area of the receiver (Ar) π × Dr
2/4 Tilt angle(θ2) 20◦

Transmission of the
receiver (Tr)

0.8 Backscatter
cross-section(σ2) 0.079

System transmission
factor (ηsys) 0.8

Third

Distance to
laser(R3) 500.3 m

Atmospheric
transmission factor (ηatm) 0.9 Reflectivity(ρ3) 0.3

Background solar
irradiance (hsum) 500 W/m2/µm Tilt angle(θ3) 30◦

Field of view (FOV) 5◦ Backscatter
cross-section(σ3) 0.059

Optical bandwidth (∆λ) 10 nm
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The differential BFWS, i.e., the sum of the differential BSWS of each object in Figure 4a is shown
in Figure 4b. From Figure 4b, the number of the objects and the positions of the NGZCPs according to
Equation (19) can be obtained. We can see that there are three NGZCPs that exist in the differential
BFWS in Figure 4b. Therefore, the number of the objects is three, which equals to the object number
in Table 1. According to the simulation parameters (the distances to the laser) in Table 1, the times of
flights of the three objects are 3.3333, 3.3340, and 3.3353 µs, which are equal to the NGZCP positions
of the differential BFWS, shown in Figure 4b. The aforementioned analysis shows that the BG is
suppressed effectively and the time of flight, i.e., the range information of each object is unaffected by
the proposed method.

3.2. SNR Improvement

SNR is used to evaluate the quality the BFWS because it affects the measurement accuracy of the
full-waveform LiDAR. Equations (14) and (15) indicate that the SNR is affected by many factors, such
as dark current, temperature, current gain, and load resistance of the APD. Moreover, according to
Equation (9), the power of the BFWS changes with the distance to laser and the power of the BGN
changes the reflectivity of the objects. Therefore, considering so many factors at the same time is a
challenge. Actually, the parameters of the two APDs and the pulse lasers can usually be determined
when the full-waveform LiDAR system is already given. The SNR is related only to distance to the
laser and reflectivity of the objects. To obtain the SNR, the reflectivity and the distance difference of the
objects are fixed, shown in Table 1. The distance between the pulse laser and the first object varies from
300 m to 3000 m. Some typical parameters of the two APDs are set as follows: iDK = iDK1 = iDK2 =100 nA,
RL = RL1= RL2 = 50Ω, T = T1 = T2 = 300 K, Ta = Ta1 = Ta2 = 175 K, M = M1 = M1 = 50, Fex = Fe1x = Fex2 = 10,
ηD = ηD1 = 0.9, ηD2 = 0.8, e = 1.602 × 10−19 C, h = 6.63 × 10−34 J·s, and k = 1.38 × 10−23 J/K [33].

The results of the SNR of the traditional method and the proposed method are shown in Figure 5a.
The Figure 5a shows that: (1) The SNRs of the two methods decrease dramatically with the increase of
the distance when the distance is shorter than 1000 m. However, the SNRs decrease slightly when the
distance is shorter than 1000 m. (2) Based on the traditional method, the SNR decreases from 63 dB to
3 dB when the distance increases from 300 m to 1000 m and decreases from 3 dB to 0.009 dB when the
distance increases from 1000 m to 3000 m. Based on the proposed method, the SNR decreases from
104 dB to 7 dB when the distance increases from 300 m to 1000 m, and decreases from 7 dB to 0.023 dB
when the distance increases from 1000 m to 3000 m. (3) Compared with the traditional method, the
proposed method can improve the SNR effectively at the same distance. For example, at a distance of
300 m, the SNR of the traditional method is 63 dB, whereas that of the proposed method is 104 dB. To
clearly illustrate the SNR improvement by the proposed method, relative increment percentages of
the SNR, i.e., ∆SNR = [(SNRp− SNRt)/SNRt] × 100%, are calculated, where SNRp and SNRt are the
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SNRs of the proposed method and the traditional method, respectively. The results of the ∆SNR are
shown in Figure 5b. The Figure 5b shows that the ∆SNR increases with the increase of the distance.
When the distance increases from 300 m to 1000 m, the ∆SNR increases dramatically from 65 to 145.
However, it increases slightly from 145 to 161 when the distance increases from 1000 m to 3000. The
results show that the proposed method can improve the SNR, but the improvement gets smaller by
increasing distance.
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3.3. Waveform Decomposition and Differential Gaussian Fitting Accuracy

Waveform decomposition and Gaussian fitting are widely used methods in the full-waveform
LiDAR and are the important processes for deriving the valuable parameters and features of the objects,
such as amplitude, position (traveling time), and standard deviation from the differential BFWS. The
differential BFWS should be decomposed to obtain these parameters. A differential Gaussian fitting
with the LM technique for the proposed method is used, and the desired accuracy ω is set as 1 × 10−16.
The real value of the differential BFWS is shown in Figure 4b. The differential Gaussian fitting results
of the differential BFWS about the three objects and fitting accuracy are shown in Table 2. The results
show that the relative errors of the amplitude of each object are 0.41%, 0.78%, and 0.29%, respectively;
the relative errors of the position of each object are all 0%, which shows the proposed method can
precisely detect the position of the objects; the relative errors of the standard deviation of each object
are 0.07%, 0.10%, 0.01%, respectively; and the relative errors of the backscatter cross-section of each
object are 0.51%, 0.89%, and 0.34%, respectively.

The differential Gaussian fitting curves of the BSWS of each object are shown in Figure 6a. The
differential Gaussian fitting values (shown in Figure 6a) and the real values BFWS of each object
(shown in Figure 4a) are compared. The absolute errors of these values are shown in Figure 6b. The
maximum absolute errors of the three objects are 3.56 × 10−12, 2.80 × 10−11, and 2.08 × 10−12 W,
respectively. The minimum absolute errors of the three objects are −6.23 × 10−12, −1.99 × 10−11, and
−4.58 × 10−12 W, respectively. These results indicate that the differential Gaussian fitting with the LM
technique is capable of decomposing the differential BFWS with high accuracy and can well preserve
the characteristics of the objects.
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Table 2. Waveform decomposition and differential Gaussian fitting accuracy results.

Object Parameter Real Value
Differential

Gaussian Fitting
Value

Absolute Error Relative Error

First
Amplitude (a1/2) 8.9579 × 10−7 W 8.9948 × 10−7 W 3.64 × 10−9 W 0.41%

Position (t1) 3.33333 µs 3.33333 µs 0 µs 0%
Standard deviation (2 × δ1

2) 8.0326 × 10−20 8.0383 × 10−20 5.7 × 10−23 0.07%

First Backscatter cross-section (σ1) 0.098 0.0985 0.0005 0.51%

Second
Amplitude (a2/2) 7.1166 × 10−7 W 7.1723 × 10−7 W 5.57 × 10−9 W 0.78%

Position (t2) 3.3340 µs 3.3340 µs 0 µs 0%
Standard deviation (2 × δ2

2) 8.1389 × 10−20 8.1473 × 10−20 8.4 × 10−23 0.10%

Second Backscatter cross-section (σ2) 0.079 0.0797 0.0007 0.89%

Third
Amplitude (a3/2) 5.2655 × 10−6 W 5.2517 × 10−6 W 1.38 × 10−9 W 0.26%

Position (t3) 3.3353 µs 3.3353 µs 0 µs 0%
Standard deviation (2 × δ3

2) 8.3495 × 10−20 8.3487 × 10−20 8.0 × 10−24 0.01%

Third Backscatter cross-section (σ3) 0.059 0.0588 0.0002 0.34%
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4. Discussion

Equation (9) shows that the expression of the differential BFWS based on the proposed method
is affected by the differential distance (L) of the APD 1 and the APD 2. In other words, different
differential distances exhibit different expressions of the differential BFWS. According to the principle
of the Figure 1, an overlapping area should exist between the two BFWSs detected by the APD 1 and
the APD 2 to ensure that the proposed system works properly. Meanwhile, given that the complexity
of the proposed system, inconsistent splitting ratio of the BS3, and the individual difference of the
two APDs (APD1 and APD2), it is challenging to maintain the consistent characteristics of the two
beams split by the BS 2. Therefore, the inconsistency of the two beams should be eliminated prior
to utilization.
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4.1. Differential Distance Selection

An overlapping area should exist between the two BFWSs detected by the two APDs. Therefore,
the differential time (2L/c) should not exceed the minimum value of the received pulse width (τrmin).
Thus, the differential distance should not exceed c/2 × τrmin, shown in Figure 7a. The differential
BFWS of the two APDs is shown in Figure 7b when the differential distance is larger than c/2 × τrmin.
The Figure 7b shows that the number of the NGZCPs is two, i.e., the number of the object is two.
In fact, three objects are included in the simulated scene. Therefore, a differential distance that is larger
than c/2 × τrmin may cause misjudgment of the number of the objects. Moreover, the differential
BFWS is distorted, which increases the difficulty of wave decomposition and decreases the differential
Gaussian fitting accuracy. In terms of the minimum value of the received pulse width τrmin, it can be
evaluated before using the full-waveform LiDAR by Equation (5) according to the parameters of the
laser and the distances between the objects and the laser.
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4.2. Inconsistent Elimination of Two Beams

According to the principle of the differential optical path method in Figure 1, the BFWS is divided
into two beams. The two beams are then detected by two different APDs. However, the amplitudes
of the two BFWSs detected by the two APDs usually are different owing to the inconsistent splitting
ratio of the BS 2 and individual difference of the two APDs. Under this situation, two variable gain
amplifiers (VGAs) can be used to eliminate the inconsistency through gaining the BFWSs before
entering the SC, as shown in Figure 8. The two amplitudes of the two BFWSs can be adjusted to
the same desired value using the two VGAs, and the amplification coefficients are the ratios of the
desired value and the two amplitudes of the two BFWSs. It is worth noting that the amplitudes are
amplified when the differential BFWS is decomposed to obtain the valuable parameters. Therefore, the
amplification coefficients should be divided prior to utilization so that the actual physical properties of
the objects can be obtained.
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5. Conclusions

A novel de-noising method for full-waveform LiDAR based on the differential optical path is
proposed, and the mathematical models of the proposed method are developed and verified. On the
basis of the proposed method, simulations are carried out, including the BGN, stop timing moment
discrimination, the SNR, the waveform decomposition, and the differential Gaussian fitting. The
following conclusions are obtained. (1) The proposed method can effectively suppress the BGN.
(2) The BFWS is detected by two APDs placed before and after the focus of the focusing lens. Hence,
the PP is transformed into NGZCP, which is more beneficial for the stop timing moment discrimination
for the timer. (3) The SNR of the proposed method is improved but the improvement gets smaller
by increasing distance. The relative increment percentage ∆SNR of the proposed method increases
dramatically from 65 to 145 when the distance increases from 300 m to 1000 m, and it increases slightly
from 145 to 161 when the distance increases from 1000 m to 3000. (4) The differential Gaussian fitting
based on the LM algorithm can decompose the differential BFWS with high accuracy. The maximum
absolute errors of the three objects are 3.56× 10−12, 2.80× 10−11, and 2.08× 10−12 W, respectively. The
minimum absolute errors of the three objects are −6.23 × 10−12, −1.99 × 10−11, and −4.58 × 10−12 W,
respectively. (5) The differential distance should not be larger than c/2 × τrmin, and employing two
VGAs can eliminate inconsistency of the two beams. The proposed method is applicable for the
full-waveform LiDAR application fields, such as surface topography and airborne vegetation mapping.
In this study, our works mainly focus on the theoretical framework and simulation experiments for
validating the proposed method. In our future works, we will carry out the experiments and verify the
validation of the proposed method.
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