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Abstract: Vegetation variable retrieval from reflectance data is typically grouped into three categories:
the statistical–empirical category, the physical category and the hybrid category (physical models
applied to statistical models). Based on the similarities between the spectra of leaves in the optical
domain, the leaf reflectance spectra can be linearly modelled using a very limited number of principal
components (PCs) if the PCA (principal component analysis) transformation is carried out at the
sample dimension. In this paper, we present a novel data-driven approach that uses the PCA
transformation to reconstruct leaf reflectance spectra and also to retrieve leaf biochemical contents.
First, the PCA transformation was carried out on a training dataset simulated by the PROSPECT-5
model. The results showed that the leaf reflectance spectra can be accurately reconstructed using
only a few leading PCs, as the ten leading PCs contained 99.999% of the total information in the
3636 training samples. The spectral error between the simulated or measured reflectance and the
reconstructed spectra was also investigated using the simulated and measured datasets (ANGERS
and LOPEX’93). The mean root mean squared error (RMSE) values varied from 5.56 × 10−5 to
6.18 × 10−3, which is about 3–10 times more accurate than the PROSPECT simulation method for
measured datasets. Secondly, the relationship between PCs and leaf biochemical components was
investigated, and we found that the PCs are closely related to the leaf biochemical components and to
the reflectance spectra. Only when the weighting coefficient of the most sensitive PC was employed
to retrieve the leaf biochemical contents, the coefficients of determination for the PCA data-driven
model were 0.69, 0.99, 0.94 and 0.68 for the specific leaf weight (SLW), equivalent water thickness
(EWT), chlorophyll content (Cab) and carotenoid content (Car), respectively. Finally, statistical models
for the retrieval of leaf biochemical contents were developed based on the weighting coefficients of
the sensitive PCs, and the PCA data-driven models were validated and compared to the traditional
VI-based and physically-based approaches for the retrieval of leaf properties. The results show that
the PCA method shows similar or better performance in the estimation of leaf biochemical contents.
Therefore, the PCA method provides a new and accurate data-driven method for reconstructing leaf
reflectance spectra and also for retrieving leaf biochemical contents.

Keywords: leaf reflectance spectrum; hyperspectral; vegetation index; PROSPECT; ANGERS;
LOPEX’93; specific leaf weight (SLW); equivalent water thickness (EWT); chlorophyll content (Cab);
carotenoid content (Car)

1. Introduction

Remote sensing of canopy biophysical variables is important in many applications ranging
from precision agriculture [1,2] to global assessments of the carbon and nutrient cycles [3–5].
Vegetation variable retrievals from remote sensing data are typically grouped in three categories:
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the statistical–empirical category, the physical category, and the hybrid category (physical models
applied to statistical models) [5–7].

The statistical–empirical method is typically based on a regression function that links
measured biochemical or biophysical parameters to spectral measurements [7,8], such as spectral
reflectance [9,10], spectral indices [11–14], red-edge features [15–18], absorption features [19–22],
and band combinations made using the wavelet transformation or principal transformation [23–26].
However, the leaf spectrum depends on a complex interaction between internal and external factors
that may vary significantly from one species to another, and it is hard to build a universal relationship
between a single vegetation variable and a spectral signature [27].

The physically-based radiation-transfer models (RTM) have proved to be a promising alternative
as they describe the radiation transfer within a leaf or canopy based on physical laws and thus
provide an explicit connection between the biophysical variables and the canopy reflectance [28].
Various strategies have been proposed for the inversion of the vegetation RTMs, including numerical
optimization approaches [29–31], and look-up table approaches [32–34]. Some hybrid inversion
methods were also developed using both statistical and physically-based methods to retrieve vegetation
parameters, such as artificial neural network approaches [35–38], and machine learning regression
algorithms [39–43]. Verrelst et al. used ANN, SVM, kernel ridge regression (KRR), and Gaussian
process regression (GPR) methods to predict LAI and concluded that GPR was a fast and accurate
nonlinear retrieval algorithm [39]. The main limitation of using RTMs is the ill-posed nature of the
model inversion which arises because different combinations of leaf parameters may correspond to
very similar spectra [30]. This makes the choice of the initial parameter values important, and some
regularization of the inverse problem may be required, implying the use of a priori knowledge to
constrain the inversion process [30,34]. Ground measurements acquired during field campaigns are key
to validating remote sensing estimates. Numerous methods were presented to collect ground-based
measurements, while there may be some differences and uncertainties among these methods even for
one variable, such as leaf area index (LAI) [44–46].

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components (PCs). In the field of hyperspectral
remote sensing, the PCA method is usually carried out at the spectral dimension, and the PCs are
normally computed as the transform of spectral measurements made at different wavelengths into
an orthogonal system of eigenvectors. Generally, due to the high degree of spatial similarity between
different bands, most of the variation in the data set can be explained by only a few leading PCs
(if the PCA transformation is done at the spectral dimension), which can be used to represent the
original observations. The PCA method is widely used in dimensionality reduction (DR) and has
several applications in hyperspectral image analysis, including denoising [47], spectral unmixing [48]
and target detection [49]. Besides, various alternative DR methods have been also presented [43].
For example, Rivera-Caicedo et al. evaluated 11 DR methods in combination with advanced machine
learning regression algorithms (MLRAs) for statistical variable retrieval [43].

Furthermore, PCA methods are also used for selecting subsets of variables used in regression
equations of surface properties such as the leaf area index (LAI) [23,50–57], canopy chlorophyll
content [24,58,59], soil properties [60] and the chlorophyll concentration of inland water bodies [61,62].
Some hyperspectral studies have demonstrated that regression models using PCA (over spectral
dimension) gave superior results as compared to using VIs [23,50–53,59]. For example, Satapathy
showed that the retrieved LAI from PCA has higher accuracy (RMSE = 0.137) than the classical
NDVI–LAI empirical approach (RMSE = 1.139) [51]. Chaurasia and Dadhwal found that a multi-band
PCA inversion approach yielded a high accuracy (RMSE = 0.380) as compared to NDVI and SR
approaches (RMSE = 2.28, 0.88) [50]. Partial least squares regression (PLSR) is a multiple linear
regression method that concentrates the merits of multiple linear regression analysis and principal
component analysis [57]. PLSR is also a PCA data-driven approach, which does not require manual
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optimization. Some studies showed that PLSR performs much better than PCA in the estimation of
vegetation parameters [57,58]. However, other hyperspectral studies showed that such a PCA method
did not show better performance than the VI-based method [54–57]. For example, Gonsamo et al. found
that the estimated LAI from the NDVI-based model significantly correlated with the ground-measured
LAI with a R2 of 0.63 and RMSE of 0.52, while the LAI inverted from the PCA method showed poor
correlation with ground-measured LAI [54]. Ray et al. found that none of the principal components
(PCs) showed significant correlation with LAI while some VIs correlate well with LAI [55]. This might
be due to the fact that the PCs provide only statistical measures, whereas the other indices are based
on a priori knowledge of the connections between specific physiological and reflectance features [55].
By definition, the components are dependent on the covariance of the training dataset. That means
that a regression model based on single or multi-band component(s) is limited to being site-specific
and non-transferable [50].

This high degree of spectral similarity (instead of spatial similarity) is also widely observed
between reflectance or transmittance spectra of the Earth’s surface or atmosphere. For example,
all green leaves show similar spectral curves that include fixed absorption features due to pigments
and foliar water. Although the PCA method is good at spectral reconstruction if the PCA transform
is carried out at the sample dimension, it is rarely used for this purpose. The PCA transformation
was, however, used to characterize approximately 7000 downwelling solar irradiance spectra in
the 380–1700 nm region at the sample dimension in a study by Rabbette and Pilewskie [63]; it was
found that the first four PCs accounted for the spectral variability due to column-integrated liquid
water, water vapor, molecular scattering, and ozone, respectively. PCA has also been used to
retrieve temperature and moisture profiles from high-resolution infrared satellite instruments [64].
More recently, in order to separate the subtle solar-induced chlorophyll fluorescence (SIF) from the
top of atmosphere (TOA) radiance, both the atmospheric transmittance and TOA spectrum have
been successfully modelled by means of a set of orthogonal PCs derived from the measured TOA
spectra of non-vegetation targets (e.g., desert and cloud pixels) using the PCA transform at the
sample dimension [65–67]. A PCA data-driven algorithm has also been developed to retrieve SO2

from OMI-measured radiance and irradiance data; this can significantly improve the quality of SO2

retrievals as compared with the current operational product [68]. In these studies on atmosphere
optics, PCA is not used for data reduction, it is used to select a few linearly uncorrelated spectra to
model atmosphere transmittance. Inspired by these studies, it is reasonable to assume that the leaf or
canopy reflectance spectra can also be reconstructed using a few PCs if the PCA transformation was
carried out at the sample dimension, and that the leaf or canopy properties can be retrieved from the
weighting coefficients of PCs if the PCA transform is carried out at the sample dimension instead of
the spectral dimension.

The objectives of this paper are (1) to present a PCA data-driven approach for the reconstruction
of leaf reflectance spectra; (2) to investigate whether the extracted PCs are able to account for the leaf
biochemical properties; (3) to present a PCA data-driven approach for the retrieval of leaf biochemical
contents; and (4) to compare the performance of the PCA method for the retrieval of leaf properties
with the traditional statistical–empirical or the full-physical approaches.

2. Materials and Methods

2.1. Measured and Simulated Datasets

2.1.1. LOPEX93 Dataset

The LOPEX database was established by the Joint Research Center (JRC) in 1993 and has been
widely used by researchers throughout the world. In order to represent a wide range of leaf internal
structure, pigmentation, and water content, plant species with different types of leaves were collected
during the summer of 1993 [69]. About 70 leaf samples representative of more than 50 species were
obtained from trees, crops and plants in the area near to the JRC, Ispra, Italy. The biochemical
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constituents include total proteins, cellulose, lignin, starch, specific leaf weight (SLW), chlorophyll
and foliar water. A Perkin Elmer Lambda 19 double-beam spectrophotometer equipped with a BaSO4

integrating sphere was used for the measurement of the directional-hemisphere reflectance (R) and
transmittance (T) of the upper faces of the leaves, the probe light beam of the instrument being incident
on the upper face of the leaves at an angle of 8◦. Spectra were collected over the 400–2500 nm region
with a sampling interval of 1 nm. The spectral resolution varied from 1 to 2 nm in the visible/near
infrared region (400–1000 nm) and from 4 to 5 nm in the mid-infrared (1000–2500 nm). For each sample,
measurements of five different areas were made in order to quantify the small but not negligible
leaf-to-leaf variability. LOPEX was originally designed to separate the cell wall constituents (lignin,
cellulose, etc.) and so emphasis was placed on the measurements of dry matter and water, while the
pigment measurements were averaged from five leaf samples. Therefore, the confidence in the accuracy
of the chlorophyll content measurements is relatively low.

The LOPEX dataset is shared online [70].

2.1.2. ANGERS Dataset

An experiment was conducted at the INRA (National Institute for Agricultural Research)
in Angers, France in June 2003 and a data set associating visible/infrared spectra of vegetation
elements with physical measurements and biochemical analyses was then constructed [71].
The directional-hemisphere reflectance spectra were measured using an ASD FieldSpec spectrometer
with a spectral range of 400–2500 nm and an interval of 1.4 nm. Reflectance and transmittance
measurements of 276 leaf samples from 39 different species were collected along with associated
biochemical and physical measurements. The biochemical parameters include leaf chlorophyll content,
carotenoids, SLW and water content. The ANGERS dataset can also be accessed free online [70].

2.1.3. Simulated PROSPECT Model Dataset

The PROSPECT model is a radiative transfer model which calculates the leaf hemispherical
reflectance and transmittance from 400 nm to 2500 nm [71,72]. The reflectance and transmittance spectra
of the leaves are simulated using different inputs to the PROSPECT-5 model, including the structural
parameter N, SLW (same as the dry matter content in many references), the chlorophyll content (Cab),
the carotenoid content (Car), and the equivalent water thickness (EWT). The brown pigment of the leaf
is neglected and set as zero in the simulation experiment. In this study, the PROSPECT-5 model was
employed to simulate the leaf spectral data for the training and validation of the retrieval algorithm
based on the principal component analysis. The focus was on retrieval of the key biochemical contents
from the reflectance spectra—the inputs used in the simulation experiment are illustrated in Table 1.

Table 1. Inputs to the PROSPECT model used in the simulation experiment.

Variable Values Unit Description

Cab 10–100 with an interval of 10 µg/cm2 Chlorophyll content

SLW [0.002, 0.003, 0.004, 0.005, 0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02] g/cm2 Specific leaf weight

EWT Derived from gravimetric water content (GWC %) and SLW
GWC: 50–90% with an interval of 5% cm Equivalent water

thickness

Car [1/10, 1/8, 1/6, 1/5, 1/4, 1/3, 1/2] × Cab µg/cm2 Carotenoid content

N Determined according to SLW - Leaf structure parameter

The leaf biochemical parameters in Table 1 were set according to their statistical distributions in
the ANGERS and LOPEX’93 datasets.

EWT was derived from leaf SLW and gravimetric water content (GWC %), as in Equation (1).

EWT =
SLW × GWC

1 − GWC
(g·cm−2 or cm) (1)
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According to the statistical results of leaf biochemistries in ANGERS [71,73], the data range was
46–92% for GWC, 0.0017–0.0331 g/cm2 for SLW, and 0.0050–0.0340 cm for EWT. If leaf EWT in the
PROSPECT model is assumed totally independent of SLW, its GWC may be too high for leaves with a
small SLW and too low for leaves with a large SLW in some cases. In Table 1, leaf EWT is assumed with
a reasonable range of GWC (50–90%) for a given SLW. Moreover, the leaves with larger SLW and GWC,
as in Table 1, will still have extremely high EWT. For example, if a leaf has an SLW value of 0.02 g/cm2

and a GWC value of 90%, its leaf EWT will be 0.2 cm. This value is extremely high for natural leaves.
Therefore, all the simulated samples with EWT > 0.06 cm (about twice the maximum EWT value of the
ANGERS dataset) were deleted. Such assumptions were more suitable to natural cases.

Car was scaled to Cab with a ratio that varied from 1/10 to 1/2 according to the statistical results
of leaf biochemistries in ANGERS [71,73].

The values of N were also linked to the SLW based on their statistical relationship. Jacquemoud
and Baret [72] found that the structure parameter N is well correlated with the SLW, and they observed
an increase in the SLW corresponding to an increase in the value of N. According to the ANGERS
dataset [53], there is a significant relationship between N and SLW, and the empirical statistical model
is listed as,

N = 1.214 + 58.428 × SLW, r = 0.735, RMSE = 0.152 (2)

Physically, PROSPECT differentiates N and SLW [72]. Other studies show that the structure
parameter N also varies with leaf internal structure and leaf water content [14,74,75]. If the structure
parameter N is directly determined using the empirical model, as in Equation (2), the intrinsic
variability of leaf optical properties will be underestimated. In order to account for this empirical
relationship in Equation (2) and also the variability of leaf reflectance spectra, the structure parameter
N of a given leaf SLW is determined by the sum of two parts. One part is the predicted item using
the empirical SLW-based model as Equation (2), and the other is a random item simulated by a Gauss
function with a mean value of zero and a standard deviation of 0.152, which is the root mean squared
error (RMSE) of the empirical SLW-based model, as in Equation (2).

Finally, there are the 5454 simulation samples. A total of 2/3 (3636) of the samples were randomly
selected as the training dataset, with the remaining samples being used as the validation dataset.

2.2. Vegetation Indices Sensitive to Leaf Biochemical Contents

A vegetation index is a non-dimensional index, usually a ratio, linear or non-linear combination
of the spectral reflectance of two or more bands, which compresses important information from a
hyperspectral or multispectral dataset into a vegetation index channel. Some popular spectral indices
were selected for investigating and comparing the performance of the PCA method in the estimation
of leaf biochemical contents. The indices used are listed in Table 2.

All these spectral indices were used to develop the statistical models for the retrieval of leaf
biochemistries. Three statistical modeling methods, including a linear model, exponential model,
and logarithmic model, were employed to link the spectral indices to leaf biochemistries based on
the simulated training dataset. For each pair of spectral index and leaf parameters, the statistical
model with the highest determination coefficient was selected as the optimal VI-based model.
Then, the optimal VI-based model was validated using the validation datasets.
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Table 2. Spectral indices employed for the estimation of leaf biochemical contents.

Biochemical Component Spectral Index Formula Reference

chlorophyll/Carotenoid

NDVI NDVI = (R800 − R670)/(R800 + R670) Rouse [76]
RVI RVI = R800/R670 Pearson and Miller [77]
MTCI MTCI = (R750 − R710)/(R710 − R680) Dash and Curran [78]
ND705 (R750 − R705)/(R750 + R705) Sims and Gamon [79]
PRI (R531 − R570)/(R531 + R570) Gamon et al. [80]
CIgreen (RNIR/Rgreen) − 1 Gitelson et al. [10]
CIred edge (RNIR/Rred edge) − 1 Gitelson et al. [81]
SIPI (R800 − R445)/(R800 − R680) Peñuelas et al. [82]

Water
NDWI NDWI = (R860 − R1240)/(R860 + R1240) Gao [83]
WI WI = R900/R970 Peñuelas et al. [84]
MSI MSI = R1600/R820 Hunt et al. [11]

SLW
NDLMA (R1368 − R1722)/(R1368 + R1722) Féret et al. [85]
NDMI (R1649 − R1722)/(R1649 + R1722) Wang et al. [86]

NDVI is the normalized difference vegetation index; RVI is the ratio vegetation index; MTCI is the MERIS
terrestrial chlorophyll index; ND705 is the red-edge normalized difference vegetation index; PRI is the photochemical
reflectance index; CIgreen is the green chlorophyll index; CIred edge is the red-edge chlorophyll index; SIPI is the
structure-insensitive pigment index; NDWI is the normalized difference water index; WI is the water index;
NDLMA is the normalized difference index for leaf mass per area (LMA); NDMI is the normalized dry matter index.

2.3. Principal Component Analysis

PCA methods are widely used in dimensionality reduction and have applications in hyperspectral
image analysis. For most hyperspectral remote sensing applications [23,47,48,50–62], the PCA
transformations are always conducted at the spectral dimension based on the high degree of spatial
similarity between images at different bands. As illustrated in Figure 1, the spectra of leaves have
similar fixed absorption features that are due to pigments and water. Therefore, based on the high
degree of spectral similarity between the reflectance spectra of different leaves, it should also be
possible to use PCA to reconstruct leaf spectra using a very small number of principal components by
carrying out the PCA transformation at the sample dimension instead of the spectral dimension.

PCA transforms a set of original variables into a set of linearly uncorrelated variables called
principal components (PCs). This transformation is defined in such a way that the first PC has the
largest possible variance, and each succeeding component in turn has the highest variance possible
under the constraint that it is orthogonal to the preceding components. The PCA transform can be
expressed as

Φ = X W (3)

where X is a data matrix whose columns consist of the reflectance spectra of the training samples, Φ is
the matrix containing the full PCs of the reflectance spectra of the training samples, and W is a square
matrix whose columns are the eigenvectors of XTX.

Once the PCs have been determined using the training reflectance dataset, the reflectance spectrum
of a leaf can be reconstructed using a linear combination of some of the leading PCs in Φ:

R̃(λ) =
n

∑
i=1

ki × Φi(λ) (4)

where R̃(λ) represents the leaf spectrum reconstructed by PCs, Φi(λ) is the ith principal component,
ki is the weight coefficient corresponding to the ith principal component, and n is the number of
selected PCs.

The weight coefficients (ki) can be retrieved using a linear least squares fitting method to minimize
the error between the observed and reconstructed leaf reflectance spectra, as expressed by Equation (5):

k =
(

ΦTΦ
)−1

ΦTR (5)
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where k = [k1, k2, . . . , kn]
T,
(
ΦTΦ

)−1
ΦT is the pseudoinverse of the matrix Φ. R is a column vector

consisting of the observed leaf reflectance spectrum.
In this study, the aim was to investigate the relationship between the weight coefficients of

different PCs and the leaf biochemical contents.
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Figure 1. Fifty reflectance spectra of the leaves in the ANGERS dataset.

Figure 1 shows the reflectance spectra of the leaves in the ANGERS dataset. The strong
absorption of light by pigments dominates green leaf properties in the visible spectrum (400–700 nm).
The near-infrared plateau (NIR, 760–1300 nm) is a region where biochemical absorption is limited and
the reflectance here is mainly determined by the leaf internal structure. The shortwave–infrared (SWIR,
1350–2500 nm) is a region of strong absorption, primarily by water in green leaves. Absorption by
water is strongest in the spectral bands centered at 1450, 1940 and 2500 nm, with important secondary
absorptions at 980 nm and 1240 nm.

As illustrated in Figure 1, a leaf reflectance spectrum is determined by the absorption of the
pigments, water content, dry matter and the internal multiple scattering. In this paper, the spectral data
were split into four specific datasets, each with a given spectral range over 400–2500 nm, 400–680 nm,
400–800 nm and 900–2500 nm. For datasets over 400–2500 nm, we aim to investigate the performance
of the PCA method to reconstruct leaf reflectance and to retrieve leaf biochemistries; for datasets
over 400–680 nm, we aim to separate the spectral contribution of Car from Cab on leaf reflectance;
for datasets over 400–800 nm, we focus on retrieving Cab and at the same time eliminating the
interference of the leaf EWT; for datasets over 900–2500 nm, we focus on retrieving EWT while
eliminating the interference of the leaf Cab.

3. Results

3.1. Reconstruction of the Leaf Reflectance Spectra Using the PCA Data-Driven Method

Figure 2 shows the twenty leading eigenvalues of the PCs obtained using the simulated leaf
reflectance spectra of the training dataset for the range 400–2500 nm. Each eigenvalue is proportional
to the portion of the variance that is correlated with each eigenvector. The sum of all the eigenvalues
is equal to the sum of the squared distances of the points from their multidimensional mean. It can
be observed from the eigenvalues and variances that the ten leading PCs contain 99.999% of the total
information. Therefore, the ten leading PCs were selected for the reconstruction of the leaf reflectance.

Figure 3 shows the five leading PCs of the reflectance spectra of the training dataset. These spectra
were derived independently from the reflectance data for the wavelength ranges 400–2500 nm,
400–680 nm, 400–800 nm and 900–2500 nm. The first PC contains the basic shape of a reflectance
spectrum, and can also describe the contribution of the leaf internal structure parameter, N, to the
reflectance [73,86–88]. Other PCs also contain some spectral features, the specific absorption coefficients
of the leaf pigments, and water content. Therefore, the weighting coefficients of the PC spectra in
Equation (5) may be closely linked to the leaf biochemical contents.
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Figure 2. The twenty leading eigenvalues of the principal components (PCs) calculated from the
reflectance spectra of the simulated training dataset for the range 400–2500 nm.

Figure 4 shows the spectral RMSE between measured leaf reflectance and reconstructed reflectance
using the different PCs. The results show that the spectral RMSE decreased with increased PCs, with a
mean RMSE varying from 0.0499 to 0.00045 when the number of PCs increased from one to ten.
When the first two PCs were employed to reconstruct the reflectance spectra, the spectral error over the
SWIR region (1300–2500 nm) decreased noticeably. The spectral characteristics over the SWIR region
are mainly determined by leaf EWT. Thus, the second PC could indirectly reflect the contribution
of water content to leaf reflectance. When the third PC was combined with the two leading PCs to
reconstruct the reflectance spectra, the spectral error over the VIS region (400–700 nm) decreased
noticeably, which indicated that the third PC could indirectly reflect the contribution of pigments on
leaf reflectance. Therefore, the weighting coefficients calculated using Equation (5) may be closely
linked to the leaf biochemical contents.
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PC spectrum calculated from the simulated leaf reflectance dataset, which is also the eigenvector in the
Equation (4).
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The simulated training dataset, validation dataset, ANGERS dataset and LOPEX’93 dataset were
reconstructed using the ten leading PCs derived from the simulated training dataset. The mean and
maximum spectral RMSE values between simulated/measured leaf reflectance and reconstructed
reflectance using the PCA method are summarized in Table 3. The RMSE values of the reconstructed
reflectance spectra for ANGERS and LOPEX’93 are illustrated in Figure 5. These results show that the
leaf reflectance spectrum can be accurately reconstructed using the ten leading PCs—the mean RMSE
varied from 5.56 × 10−5 to 6.18 × 10−3.

Table 3. The spectral root mean squared error (RMSE) value of the reconstructed reflectance spectra
derived using the ten leading principal components (PCs) for different spectral regions.

Spectral Region (nm) Training Validation ANGERS LOPEX’93

400–2500
mean 4.51 × 10−4 4.52 × 10−4 6.18 × 10−3 4.65 × 10−3

maximum 3.18 × 10−3 3.54 × 10−3 2.86 × 10−2 1.87 × 10−2

400–680
mean 6.99 × 10−5 7.78 × 10−5 1.10 × 10−3 6.36 × 10−4

maximum 4.48 × 10−4 4.83 × 10−4 3.35 × 10−3 4.19 × 10−3

400–800
mean 1.12 × 10−4 1.19 × 10−4 2.91 × 10−3 3.38 × 10−3

maximum 5.81 × 10−4 6.32 × 10−4 9.56 × 10−3 1.77 × 10−2

900–2500
mean 5.57 × 10−5 5.56 × 10−5 4.96 × 10−3 2.51 × 10−3

maximum 1.69 × 10−4 1.75 × 10−4 2.37 × 10−2 8.99 × 10−3

3.2. Relationship between the Weighting Coefficients of the PCs and the Leaf Biochemical Contents

As illustrated in Figure 5 and Table 3, the leaf reflectance can be accurately reconstructed using
just a few leading PCs, and the spectra of some of the leading PCs are similar to the contributions of



Remote Sens. 2017, 9, 1113 10 of 24

the biochemical contents to the leaf reflectance. It is also well-known that leaf spectra can be modelled
using only a few leaf variables such as the SLW, water content, pigment content and a structure
parameter that is used in the PROSPECT model. Therefore, the weighting coefficients of the PCs in
Equation (5) can potentially be linked to the leaf biochemical contents.

The simulated training dataset was employed to examine the relationship between the weighting
coefficients of the PCs and the leaf biochemical contents. The linear correlation coefficients were
calculated using the least squares method to determine which PC is most sensitive to different
biochemical constituents, as shown in Table 4.

Table 4. The coefficients of determination between the weighting coefficients of the principal
components (PCs) and the leaf biochemical contents of the training dataset for the spectral regions
400–2500 nm (S1), 400–680 nm (S2), 400–800 nm (S3) and 900–2500 nm (S4).

Cab µg/cm2 Car µg/cm2 EWT cm SLWg/cm2

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

PC1 0.06 0.81 0.18 0.00 0.04 0.42 0.10 0.00 0.38 0.02 0.08 0.49 0.55 0.06 0.21 0.59
PC2 0.14 0.67 0.83 0.00 0.06 0.29 0.40 0.00 0.69 0.01 0.01 0.94 0.38 0.04 0.03 0.40
PC3 0.62 0.00 0.11 0.00 0.30 0.18 0.00 0.00 0.23 0.00 0.00 0.04 0.03 0.00 0.01 0.31
PC4 0.11 0.16 0.02 0.00 0.05 0.09 0.18 0.00 0.14 0.00 0.00 0.14 0.01 0.01 0.00 0.07
PC5 0.01 0.10 0.00 0.00 0.00 0.02 0.12 0.00 0.00 0.01 0.01 0.01 0.36 0.02 0.01 0.30
PC6 0.06 0.01 0.00 0.00 0.00 0.00 0.12 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.01
PC7 0.01 0.01 0.00 0.00 0.17 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.07
PC8 0.00 0.01 0.00 0.00 0.01 0.00 0.06 0.00 0.03 0.00 0.04 0.01 0.01 0.00 0.11 0.02
PC9 0.02 0.01 0.03 0.00 0.00 0.00 0.03 0.00 0.01 0.04 0.05 0.00 0.21 0.10 0.14 0.00
PC10 0.00 0.00 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.02 0.00 0.22 0.00

S1, S2, S3, and S4 represent the spectral regions 400–2500 nm, 400–680 nm, 400–800 nm and 900–2500 nm. SLW, EWT,
Cab and Car represent specific leaf weight, equivalent water thickness, chlorophyll content and carotenoid content,
respectively. The bold font for numbers indicates the highest values.
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Figure 5. Spectral root mean squared error (RMSE) between measured leaf reflectance and reconstructed
reflectance using the ten leading principal components (PCs) for different spectral regions. X-1, X-2,
X-3 and X-4 represent the spectral regions 400–2500 nm, 400–680 nm, 400–800 nm and 900–2500 nm.
RMSE is root mean squared error.
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According to the linear correlation coefficients listed in Table 4, the weighting coefficients of the
first PC derived from the training dataset for the regions 400–2500 nm and 400–680 nm were best for
the estimation of the SLW and carotenoid content, whereas the weighting coefficients of the second PC
for the regions 400–800 nm and 900–2500 were best for the estimation of the chlorophyll content and
EWT, respectively. These weighting coefficients were selected for the estimation of the corresponding
leaf parameters.

Numerous studies [79,80,85] show that the influence of leaf biochemical constituents on the
reflectance and transmittance is not linear. According to scatterplots between the weighting coefficients
and biochemical constituents as listed in Figure 6, an exponential model is the best expression to
retrieve leaf parameters for SLW, Cab, Car, while a polynomial model is best for EWT. The statistical
models for the four leaf parameters are illustrated in Figure 6; the corresponding coefficients of
determination are 0.69, 0.99, 0.94 and 0.68 for the SLW, EWT, Cab and Car, respectively.
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Figure 6. The regression models for the specific leaf weight (SLW) (a), equivalent water thickness
(EWT) (b), chlorophyll content (c) and carotenoid content (d) derived using the weighting coefficients
of the most sensitive principal component (PC), as given in Table 4. R2 is the determination coefficient.

The statistical scatter plots for the SLW and Car are still a little dispersed (R2 = 0.69 and 0.68) for a
reliable statistical model, which means that a single PC may be not enough to represent the values
of the SLW and Car. Some combinations of the sensitive weight coefficients of PCs in Table 4 were
tested for better retrieval of leaf SLW and Car. The results show that some combinations can give better
performance for leaf SLW and Car.

The optimized statistical model for SLW is

LN(SLW) = −7.745 + 830 × PCS1-1 − 166 × PCS1-2

−148 ∗ PCS1-5 + 443 ∗ PCS3-1 − 281 ∗ PCS4-1, R2 = 0.94
(6)

where PCSi-j is the weighting coefficient of the corresponding, S1, S2, S3 and S4 represent the spectral
regions 400–2500 nm, 400–680 nm, 400–800 nm and 900–2500 nm, j = 1, 2, . . . , 10 is the number of
the PC.
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The optimized statistical model for Car is

LN(Car) = 1.32 − 35.9 × PCS1-3 + 202 × PCS1-7

+2410 ∗ PCS2-1 + 949 ∗ PCS2-2 − 420 ∗ PCS3-2, R2 = 0.89
(7)

where PCSi-j is the weighting coefficient of the corresponding, S1, S2, S3 and S4 represent the spectral
regions 400–2500 nm, 400–680 nm, 400–800 nm and 900–2500 nm, j = 1, 2, . . . , 10 is the number of
the PC.

According to the statistical analysis shown in Figure 5, the statistical models for the EWT,
and Cab are

EWT = 575 × PCS4-2
2 + 5.33 × PCS4-2 + 0.0152, R2 = 0.99 (8)

where PCS4-2 is the weighting coefficient of the second PC at 900–2500 nm, and

Cab = 45.1 × e−272×PCS3-2 , R2 = 0.94 (9)

where PCS3-2 is the weighting coefficient of the second PC at 400–800 nm.

3.3. Validation of the Regression Models of the Leaf Biochemical Contents

Using the regression models illustrated in Equations (6)–(9), it should be possible to retrieve the
leaf biochemical parameters by a PCA transformation. These models were validated using the three
validation datasets, which consisted of the simulated validation dataset, the LOPEX’93 dataset and the
ANGERS dataset.

Figure 7 shows the results used to validate the SLW model as in Equation (6). The values of the
RMSE were 0.00169, 0.00173, and 0.00178 g/cm2, and the coefficients of determination were 0.92, 0.81
and 0.58 for the simulated, ANGERS and LOPEX’93 datasets, respectively.

Figure 8 shows the results for the validation of the EWT model as in Equation (8). These results
gave an RMSE of 0.0018, 0.0036, and 0.0028 cm, and a coefficient of determination of 0.99, 0.83 and
0.85, for the simulated validation dataset, and the ANGERS and LOPEX’93 datasets, respectively.
According to scatterplot as in Figure 8, the leaf EWT was overestimated, which means that there may
be some bias in the PROSPECT model to simulate the contribution of EWT to leaf reflectance.
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Figure 7. The results of the validation of the specific leaf weight (SLW) model based on the principal
component analysis (PCA) method obtained using the simulated (a), ANGERS (b) and LOPEX’93
datasets (c). RMSE is the root mean squared error computed based on the SLW model as in Equation (6);
R2 is the determination coefficient.



Remote Sens. 2017, 9, 1113 13 of 24
Remote Sens. 2017, 9, 1113  13 of 23 

 

 
Figure 8. The results of the validation of the equivalent water thickness (EWT) model based on the 
principal component analysis (PCA) method obtained using the simulated (a), ANGERS (b) and 
LOPEX’93 datasets (c). RMSE is the root mean squared error computed based on the EWT model as 
in Equation (7); R2 is the determination coefficient. 

Figure 9 shows the results for the validation of the Cab model as in Equation (9). For this model, 
the values of the RMSE were 7.88, 6.34, and 24.51 μg/cm2, and the coefficients of determination were 
0.92, 0.92 and 0.14, for the simulated, ANGERS and LOPEX’93 datasets, respectively. Except for 
LOPEX’93, the samples are located close to the 1:1 line, which means that the contribution of the 
chlorophyll content to the leaf reflectance spectrum is well modeled using the second PC spectrum 
for the range 400–800 nm. LOPEX was originally designed to separate the cell wall constituents and 
the pigment measurements were averaged using five leaf samples. Thus, there is a lot of uncertainty 
about the accuracy of the chlorophyll content measurements. Therefore, despite the relatively poor 
results obtained in the validation of the LOPEX’93 dataset, the PCA method may still have potential 
for estimating chlorophyll content. 

   
Figure 9. The results of the validation of the statistical model of the chlorophyll content (Cab) based 
on the PCA data-driven method obtained using the simulated (a), ANGERS (b) and LOPEX’93 
datasets (c). RMSE is the root mean squared error computed the Cab model as in Equation (8); R2 is 
the determination coefficient. 

Figure 10 shows the results of the validation of the Car model as in Equation (7), which gave an 
RMSE of 5.96, 2.77 and 5.76 μg/cm2, and a coefficient of determination of 0.73, 0.71 and 0.13, for the 
simulated, ANGERS and LOPEX’93 datasets, respectively. The samples are scattered widely around 
the 1:1 line for all the validation datasets, which indicates that the contribution of the carotenoid 
content to the leaf reflectance spectrum is not well modeled by the PCA method. 

y = 0.984 x + 0.0003 
R² = 0.99 

RMSE=0.0018 cm

0

0.02

0.04

0.06

0.00 0.02 0.04 0.06

P
re

di
ct

ed
 E

W
T

 (
cm

)

Simulated EWT (cm)
(a)

y = 1.405 x - 0.0036
R² = 0.83

RMSE=0.0036 cm

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04

P
re

di
ct

ed
 E

W
T

 (
cm

)

Measured EWT (cm)
(b)

y = 1.094 x 
R² = 0.85

RMSE=0.0028 cm

0

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04

P
re

di
ct

ed
 E

W
T

 (
cm

)

Measured EWT (cm)
(c)

y = 0.903x + 4.61
R² = 0.92

RMSE=7.88 μg/cm2

0

20

40

60

80

100

120

0 30 60 90 120

P
re

di
ct

ed
 C

ab
 (
μg

/c
m

²)

Simulated Cab(μg/cm²)
(a)

y = 0.847x + 8.98
R² = 0.92

RMSE=6.34 μg/cm2

0

30

60

90

120

0 30 60 90 120

P
re

di
ct

ed
 C

ab
 (
μg

/c
m

2 )

Measured Cab (μg/cm2)
(b)

y = 0.182x + 42.08
R² = 0.14

RMSE=24.51 μg/cm2

0

50

100

150

200

0 50 100 150 200

P
re

di
ct

ed
 C

ab
 (
μg

/c
m

2 )

Measured Cab (μg/cm2)
(c)

Figure 8. The results of the validation of the equivalent water thickness (EWT) model based on the
principal component analysis (PCA) method obtained using the simulated (a), ANGERS (b) and
LOPEX’93 datasets (c). RMSE is the root mean squared error computed based on the EWT model as in
Equation (7); R2 is the determination coefficient.

Figure 9 shows the results for the validation of the Cab model as in Equation (9). For this model,
the values of the RMSE were 7.88, 6.34, and 24.51 µg/cm2, and the coefficients of determination
were 0.92, 0.92 and 0.14, for the simulated, ANGERS and LOPEX’93 datasets, respectively. Except for
LOPEX’93, the samples are located close to the 1:1 line, which means that the contribution of the
chlorophyll content to the leaf reflectance spectrum is well modeled using the second PC spectrum
for the range 400–800 nm. LOPEX was originally designed to separate the cell wall constituents and
the pigment measurements were averaged using five leaf samples. Thus, there is a lot of uncertainty
about the accuracy of the chlorophyll content measurements. Therefore, despite the relatively poor
results obtained in the validation of the LOPEX’93 dataset, the PCA method may still have potential
for estimating chlorophyll content.
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Figure 9. The results of the validation of the statistical model of the chlorophyll content (Cab) based on
the PCA data-driven method obtained using the simulated (a), ANGERS (b) and LOPEX’93 datasets
(c). RMSE is the root mean squared error computed the Cab model as in Equation (8); R2 is the
determination coefficient.

Figure 10 shows the results of the validation of the Car model as in Equation (7), which gave an
RMSE of 5.96, 2.77 and 5.76 µg/cm2, and a coefficient of determination of 0.73, 0.71 and 0.13, for the
simulated, ANGERS and LOPEX’93 datasets, respectively. The samples are scattered widely around
the 1:1 line for all the validation datasets, which indicates that the contribution of the carotenoid
content to the leaf reflectance spectrum is not well modeled by the PCA method.
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Figure 10. The results of the validation of the statistical model of the carotenoid content based on
the principal component analysis (PCA) method obtained using the simulated (a), ANGERS (b) and
LOPEX’93 datasets (c). RMSE is the root mean squared error computed based on the Car model in
Equation (9); R2 is the determination coefficient.

3.4. Comparison of PCA Method with Traditional VI-Based Method for Retrieving Leaf Biochemical Contents

The spectral indices listed in Table 2 were employed to build the statistical models of the leaf
biochemical contents using the training data simulated by the PROSPECT-5 model. The statistical
models based on the simulated training dataset are listed in Table 5. The results show that some
vegetation indices are significantly correlated with the leaf biochemical parameters. The most sensitive
vegetation indexes are the NDMI, WI, and ND705 for the SLW, EWT and pigments, respectively.

Table 5. The vegetation index (VI)-based models of leaf biochemical contents.

Spectral Index Regression Model R2

NDVI
y = 0.108e7.46x (Cab) 0.78
y = 0.0213e7.54x (Car) 0.51

RVI
y = 4.07e0.226x (Cab) 0.89
y = 0.826e0.229x (Car) 0.59

MTCI
y = 36.94 ln(x) + 41.29 (Cab) 0.90

y = 4.004e0.464x (Car) 0.43

ND705
y = 6.82e4.02x (Cab) 0.94
y = 1.42e4.04x (Car) 0.61

PRI
y = 43.4e0.98x (Cab) 0.02
y = 11.4e−4.38x (Car) 0.21

SIPI
y = 6982125.5e−11.75x (Cab) 0.72

y = 715797e−11.05x (Car) 0.41

CIgreen
y = 10.84x + 9.63 (Cab) 0.91

y = 3.36e0.254x (Car) 0.53

CIred edge
y = 28.86x + 9.63 (Cab) 0.89

y = 3.42e0.666x (Car) 0.50

NDWI y = 0.58x − 0.01 (EWT) 0.95
WI y = 0.68x − 0.69 (EWT) 0.95
MSI y = 0.50e−5.87x (EWT) 0.97

NDLMA y = 0.001e17.49x (SLW) 0.83
NDMI y = 0.001e52.99x (SLW) 0.97

SLW, EWT, Cab and Car represent specific leaf weight, equivalent water thickness, chlorophyll content and
carotenoid content, respectively. NDVI is the normalized difference vegetation index; RVI is the ratio vegetation
index; MTCI is the MERIS terrestrial chlorophyll index; ND705 is the red-edge normalized difference vegetation
index; PRI is the photochemical reflectance index; CIgreen is the green chlorophyll index; CIred edge is the red-edge
chlorophyll index; SIPI is the structure-insensitive pigment index; NDWI is the normalized difference water index;
WI is the water index; NDLMA is the normalized difference index for leaf mass per area (LMA); NDMI is the
normalized dry matter index. R2 is the determination coefficient.
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The retrieval accuracies of the VI-based models in Table 5 were also investigated and compared to
the PCA method. Three validation datasets, including the simulated validation dataset, ANGERS and
LOPEX’93, were employed. The R2 and RMSE values of the most accurate VI-based models in Table 5
were summarized and compared to these metrics of the PCA method in Figures 7–10. The validation
results of the VI-based models of SLW and EWT are listed in Table 6, and the validation results of the
VI-based models of Cab and Car are listed in Table 7.

Table 6. Results for the validation of the accuracy of the VI-based models of specific leaf weight (SLW)
and equivalent water thickness (EWT).

Simulated ANGERS LOPEX’93

SLW

NDLMA
R2 0.78 0.79 0.56

RMSE 0.0028 0.0018 0.0018

NDMI
R2 0.95 0.73 0.7

RMSE 0.0016 0.0025 0.0021

PCA
R2 0.92 0.81 0.58

RMSE 0.00169 0.00173 0.00178

EWT

NDWI
R2 0.95 0.56 0.53

RMSE 0.0041 0.0044 0.0073

WI
R2 0.96 0.75 0.61

RMSE 0.0053 0.004 0.0094

MSI
R2 0.96 0.77 0.83

RMSE 0.0043 0.0037 0.0028

PCA
R2 0.99 0.83 0.85

RMSE 0.0018 0.0036 0.0028

PCA represents the results calculated using the principal analysis method. NDWI is the normalized difference water
index; WI is the water index; NDLMA is the normalized difference index for specific leaf weight(SLW); NDMI is the
normalized dry matter index. RMSE is the root mean square error; R2 is the determination coefficient. The bold font
for numbers indicates the highest R2 values or the lowest RMSE values.

Table 7. Results for the validation of the accuracy of the VI-based models of chlorophyll content (Cab)
and carotenoid content (Car).

Cab (µg/cm2) Car (µg/cm2)

Simulated ANGERS LOPEX’93 Simulated ANGERS LOPEX’93

NDVI
R2 0.66 0.41 0.02 0.26 0.35 0.003

RMSE 17.74 18.02 27.9 9.42 4.09 6.67

RVI
R2 0.75 0.14 0.004 0.29 0.12 0.0001

RMSE 14.31 26.4 34.08 9.03 6.19 7.93

MTCI
R2 0.9 0.59 0.13 0.22 0.64 0.04

RMSE 8.89 18.23 27.59 10.05 3.41 6.37

ND705
R2 0.89 0.95 0.12 0.38 0.84 0.07

RMSE 10.09 5.41 25.33 8.4 2.32 6.08

CIgerrn
R2 0.91 0.92 0.13 0.36 0.75 0.1

RMSE 8.59 7.7 24.92 8.66 3.3 6.51

CIred edge
R2 0.89 0.95 0.14 0.3 0.71 0.07

RMSE 9.42 6.23 25.05 9.23 3.11 6.07

PRI
R2 0.02 0.33 0.01 0.35 0.18 0.0003

RMSE 29.52 23.17 26.46 9.06 6.53 6.35
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Table 7. Cont.

Cab (µg/cm2) Car (µg/cm2)

Simulated ANGERS LOPEX’93 Simulated ANGERS LOPEX’93

SIPI
R2 0.92 0.92 0.14 0.48 0.7 0.04

RMSE 7.91 7.39 24.52 7.77 4.63 7.34

PCA
R2 0.92 0.92 0.14 0.73 0.71 0.13

RMSE 7.88 6.34 24.51 5.96 2.77 5.76

PCA represents the results calculated using the principal analysis method. NDVI is the normalized difference
vegetation index; RVI is the ratio vegetation index; MTCI is the MERIS terrestrial chlorophyll index; ND705 is the
red-edge normalized difference vegetation index; PRI is the photochemical reflectance index; CIgreen is the green
chlorophyll index; CIred edge is the red-edge chlorophyll index; SIPI is the structure-insensitive pigment index;
RMSE is the root mean square error; R2 is the determination coefficient. The bold font for numbers indicates the
highest R2 values or the lowest RMSE values.

The results show that:

(1) the SLW can be accurately retrieved using the NDMI and NDLMA, and the PCA method also only
showed similar or slightly better performance on estimation for ANGERS and LOPEX’93.

(2) the EWT can be more accurately retrieved using the PCA method than those obtained using the
VI-based method for all validation datasets.

(3) the PCA method generally provides a better estimate of the pigment content, although the
ND705–based and CIred edge–based models provide a slightly more accurate estimation for Cab
when the ANGERS is used.

Therefore, the preliminary results obtained using the PCA data-driven method show that this
method has the potential to produce more accurate retrievals of leaf biochemical contents than the
traditional VI-based methods.

4. Discussion

4.1. The Performance of the PCA Approach in the Reconstruction of Leaf Reflectance Spectra

As shown in Figure 1, for optical observations made in the range 400 nm to 2500 nm, the leaves
showed similar spectra due to fixed absorption features caused by pigments and water. Traditionally,
the PCA transformation is carried out at the spectral dimension and, due to the high degree of similarity
between different bands, is widely used in dimensionality reduction in hyperspectral image analysis.
In this study, the PCA transformation was carried out at the sample dimension (instead of at the
spectral dimension) because of the high spectral similarity between different samples. The results
showed that the leaf spectrum could be accurately reconstructed and gave a mean RMSE value of
4.52 × 10−4 for the 400–2500 nm range using the simulation dataset, 6.18 × 10−3 using the ANGER
dataset, and 4.65 × 10−3 using the LOPEX’93 dataset. The simulated leaf reflectance was systematically
about ten times more accurately reconstructed than the measured data. This phenomenon can be
attributed to two reasons. Firstly, the training data of the PCs were generated with PROSPECT-5,
there is a systematic bias between PROSPECT-5 and measured reflectance. Such modelling bias cannot
be totally compensated using the PCA reconstruction method. Secondly, the measurement error and
noise in the measured reflectance are unavoidable, so the reconstruction accuracy for the measured
data will also decrease.

The PROSPECT-5 model has been adequately evaluated and is widely used in the field of
vegetation remote sensing. According to the investigations by Féret et al. [71], carried out on the
CALMIT, ANGERS and HAWAII datasets, the PROSPECT-5 model resulted in an RMSE value of
0.016 to 0.036, which is much higher than the spectrum reconstruction error obtained using the PCA
approach. It is, therefore, reasonable to believe that the real leaf reflectance spectra can be very
accurately reconstructed using the ten leading PCs derived from the simulated training dataset.
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Although the leaf reflectance spectrum can be accurately reconstructed using only a few
leading PCs, the weighting coefficients of PCs must be estimated from a real leaf reflectance
spectrum. As illustrated in Table 4, the correlation between the weighting coefficients of PCs and
leaf biochemistries (except for SLW) becomes very weak starting from component three or four
even if PROSPECT is used to generate these PCs. Therefore, the statistical relationship between leaf
biochemistries and PCs is not reliable enough for modelling of leaf optical properties. More works
should be carried out to examine the potential of the PCA method to model the leaf optical properties.

4.2. The Performance of the PCA Approach in the Estimation of Leaf Parameters

Normally, the VI-based method uses only two or three bands to retrieve vegetation properties.
The physically-based radiation-transfer models (RTM) provide an explicit connection between the
biophysical variables and the canopy reflectance. Although the physically-based approaches can
use all the reflectance bands to retrieve vegetation properties, they suffer from an ill-posed problem.
In PCA, an orthogonal subspace projection is performed on the sample dimension to produce a new
sequence of uncorrelated PCs, and very accurate linear modelling of the leaves’ reflectance spectra
can be carried out using a few leading PCs. If there is a stable relationship between the weighting
coefficients of the first few PCs and the leaf properties, a statistical model can be built to retrieve
the leaf properties. Apparently, the novel PCA data-driven method combines the advantages of the
VI-based and physically-based methods and may perform well at retrieving leaf properties.

As illustrated in both Figures 4 and 5 and Table 3, the leaf reflectance can be accurately
reconstructed using a few leading PCs. Also, the spectra of some of the leading PCs are similar
to the contributions of the biochemical contents to the leaf reflectance. It is also well-known that leaf
spectra can be modelled using a small number of leaf variables, such as the SLW, water, pigment
content and a structure parameter used in the PROSPECT model. Therefore, the weighting coefficients
of the PCs in Equation (5) can potentially be linked to the leaf biochemical contents.

The retrieval accuracy obtained using the PCA method with the ANGERS and LOPEX’93 datasets
was compared to the PROSPECT method inversion results obtained by Féret et al. [71] (as illustrated
in Table 8). It can be seen that the PCA approach gave almost the same retrieval performance as the
physical approach. Furthermore, Féret et al. [71] used both reflectance and transmittance to estimate
leaf chemistries. Here, only reflectance spectra were employed in the PCA method. Moreover, the PCA
method is a very simple method to retrieve leaf biochemistries if the PCs are available. If the weighting
coefficients of the PCs can be calculated from a leaf reflectance spectrum by a simple linear least squares
fitting method, then the leaf biochemical contents can be determined using the simple statistical models
as in Equations (6)–(9). Therefore, the PCA method is an accurate and universal approach to retrieve
leaf biochemical contents with similar performance as the physical method, while it is simpler than the
numerical solution algorithm employed, as widely employed in the physical method.

Based on the results shown in Tables 6–8, it can be concluded that, in most cases, the PCA method
produces similar or more accurate and robust estimates of leaf biochemical contents than both the
traditional VI-based and physical approaches.
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Table 8. Comparison of estimates of leaf biochemical contents made using the principal component
analysis (PCA) method and the P-5 method. (P-5 represents the PROSPECT-5 model inversion method
used by Féret et al. [71]).

Leaf Biochemistries Method ANGERS LOPEX’93

EWT cm
PCA 0.0036 0.0028
P-5 0.0020 0.0017

SLW g/cm2 PCA 0.00173 0.00178
P-5 0.0026 0.0034

Cab µg/cm2 PCA 6.34 24.51
P-5 5.17 32.35

Car µg/cm2 PCA 2.41 6.20
P-5 2.77 5.76

SLW, EWT, Cab and Car represent specific leaf weight, equivalent water thickness, chlorophyll content and
carotenoid content, respectively. The bold font for numbers indicates the lower RMSE values.

4.3. Limitations of the PCA Data-Driven Method

The PCA method is a data-driven approach to the reconstruction of leaf reflectance and the PCs are
dependent on the training data. By definition, a PC is related to spectral variance, not leaf biochemistry.
Only the spectral variance in the training dataset is contributed to a leaf constituent, there will be an
indirect relation between a PC and leaf biochemical constituent. In fact, even if one PC shows strong
correlation with a leaf biochemical constituent, the PC may have many spectral features (as illustrated
in Figure 3), some of them are totally unrelated to features in the specific absorption coefficient of the
corresponding leaf biochemical constituent. Therefore, the representativeness and accuracy of the
training data determine the accuracy, robustness and applicability of the PCA data-driven method.

In this study, the PC training data were simulated using the PROSPECT-5 model. Although the
PROSPECT model is widely used for simulation or retrieval applications, the leaf optical properties
cannot be perfectly modeled. For example, the internal leaf structure may also change with varied
GWC, which will induce changes in the leaf spectrum, especially in the NIR region [18,74]. Such a
co-varying effect was neglected in PROSPECT. There may be some bias between simulations and
measured leaf reflectance. The PROSPECT-5 simulation error results in a bias in the estimates of the
leaf biochemical contents made using the PCA data-driven method. According to the validation results
illustrated in Figures 7–10, the PCA method can give an unbiased estimation for the simulated validated
sample, while producing a biased estimation for measured datasets. Some statistical parameters of the
validation results in Figures 7–10 are listed in Table 9.

Table 9. The statistical parameters of the validation results for the simulated, ANGERS and
LOPEX’93 datasets.

Simulated Validation ANGERS LOPEX

R2 RMSE Bias SL INTC R2 RMSE Bias SL INTC R2 RMSE Bias SL INTC

SLW 0.92 0.00168 −2.0% 0.9 7 × 10−4 0.81 0.00173 29.8% 0.656 2 × 10−4 0.58 0.00178 3.6% 0.845 8 × 10−4

EWT 0.99 0.002 −1.3% 0.984 3 × 10−4 0.83 0.0036 9.7% 1.40 −0 0.85 0.0028 9.8% 1.09 0
Cab 0.92 7.88 −1.3% 0.903 4.61 0.92 6.34 11.2% 0.847 8.98 0.14 24.51 3.1% 0.182 42.08
Car 0.73 5.96 −7.6% 0.54 5.00 0.71 2.77 1.9% 0.759 2.24 0.13 5.76 11.6% 0.2 9.93

R2 is the determination coefficient; RMSE is the root mean square error; Bias is the relative difference between the
estimated value and the measured value; SL and INTC are slope and intercept.

If the bias as listed in Table 9 was corrected, the leaf biochemistries could be retrieved with better
accuracy. For example, leaf EWT was over-estimated by about 9.7% in the PCA method. If the bias
was adjusted, the retrieval accuracy of EWT would be improved, with an RMSE value from 0.0036 to
0.0012 for ANGERS, and from 0.0028 to 0.0025 for LOPEX’93.
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Therefore, the preliminary results show that the PCA method is a powerful and promising
approach to the reconstruction of leaf spectra and also to the retrieval of leaf biochemical contents.
The performance of the PCA method would be improved if the training data simulated by the
PROSPECT-5 model were replaced by observations that were sufficiently accurate and representative.

Furthermore, PROSPECT-5 was employed to simulate the training dataset for the PCA data-driven
method. However, only Cab and Car were considered in PROSPECT-5, although three main families of
pigments are found in leaves: chlorophylls, carotenoids, and anthocyanins. Féret et al. [89] introduces
a new version of the widely-used PROSPECT model, called PROSPECT-D, which for the first time
includes all three main pigments. There is significant difference between reflectance spectra simulated
using the two models at the 500–700 nm region, if anthocyanin content is larger than 5 µg·cm−2.
For leaves during the senescence period, anthocyanins may sometimes be the dominant pigments,
and cannot be neglected. For such cases, the training dataset of the PCA data-driven method should
be updated using PROSPECT-D instead of PROSPECT-5.

5. Conclusions

Here, we presented a novel data-driven approach that used PCA transformation to reconstruct
leaf reflectance and also to retrieve leaf biochemical contents. The results show that:

� The leaf reflectance spectra can be accurately linearly reconstructed using only a few leading
PCs, with the ten leading PCs accounting for 99.998% of the total information contained in
the 3636 training data. The spectral RMSE between measured reflectance and reconstructed
reflectance using the PCA method was found to be about 3–10 times smaller than that using
the PROSPECT simulation method for the measured datasets. Therefore, the PCA method may
provide a new data-driven approach for the reconstruction of leaf reflectance spectra.

� The spectra of some of the leading PCs are similar to the contributions of the leaf biochemical
components to the reflectance, and the weighting coefficients of the PCs are significantly
correlated with the leaf biochemical contents. If only the weighting coefficient of the most
sensitive PC was employed, the coefficients of determination for the PCA data-driven model
were 0. 69, 0.99, 0.94 and 0.68 for SLW, EWT, Cab and Car, respectively.

� The PCA data-driven models were validated and compared to the traditional VI-based and
physical approaches to the retrieval of leaf properties. The results show that the PCA method
gives similar or even better estimation of most of the leaf biochemical contents, including the
SLW, EWT, Cab and Car. Therefore, the PCA data-driven method also provides a new way of
retrieving leaf biochemical contents that may be more robust and accurate than the traditional
VI-based and full-physical methods.

However, the PCs were calculated from the simulated data using PROSPECT-5 in this paper.
The bias of the PROSPECT-5 model would be transferred to the PCA method. More work should
be carried out to collect a measured dataset with high accuracy and representativeness, and then to
investigate the performance of the PCA method if the simulated data were replaced by measurements.
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