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Abstract: The Upper Guinean region of West Africa exhibits strong geographic variation in land
use, climate, vegetation, and human population and has experienced phenomenal biophysical and
socio-economic changes in recent decades. All of these factors influence spatial heterogeneity and
temporal trends in fires, but their combined effects on fire regimes are not well understood. The main
objectives of this study were to characterize the spatial patterns and interrelationships of multiple fire
regime components, identify recent trends in fire activity, and explore the relative influences of climate,
topography, vegetation type, and human activity on fire regimes. Fire regime components, including
active fire density, burned area, fire season length, and fire radiative power, were characterized
using MODIS fire products from 2003 to 2015. Both active fire and burned area were most strongly
associated with vegetation type, whereas fire season length was most strongly influenced by climate
and topography variables, and fire radiative power was most strongly influenced by climate. These
associations resulted in a gradient of increasing fire activity from forested coastal regions to the
savanna-dominated interior, as well as large variations in burned area and fire season length within
the savanna regions and high fire radiative power in the westernmost coastal regions. There were
increasing trends in active fire detections in parts of the Western Guinean Lowland Forests ecoregion
and decreasing trends in both active fire detections and burned area in savanna-dominated ecoregions.
These results portend that ongoing regional landscape and socio-economic changes along with climate
change will lead to further changes in the fire regimes in West Africa. Efforts to project future fire
regimes and develop regional strategies for adaptation will need to encompass multiple components
of the fire regime and consider multiple drivers, including land use as well as climate.

Keywords: Upper Guinean region; Africa; MODIS fire products; boosted regression trees; active fires;
burned area; fire intensity; fire seasonality

1. Introduction

Wildfires are a principal force shaping ecological patterns and processes across diverse terrestrial
ecosystems. The complex interactions of ignition sources with vegetation, climate, and topography
give rise to fire regimes, an ecological concept describing the range of fire characteristics occurring at a
given geographic location and time period [1,2]. Fire regimes can be characterized by various metrics,
including fire size, seasonality, frequency, intensity, and severity. Examining multiple components of
the fire regime is therefore necessary for understanding the geographic patterns, drivers, and ecological
effects of fire [3]. This knowledge is essential for projecting how fire regimes will respond to future
changes in climate and land use, and for developing strategies to adapt to these changes. West Africa,
in particular, is a region where fire has a significant impact on terrestrial ecosystems [4,5]. The region
also exhibits strong geographic variation in land use, climate, vegetation types, and human population,
all of which influence spatial heterogeneity of fire regimes. The main goal of this study was to explore
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the influences of climate, vegetation, and land use on multiple fire regime components across the forest
and woody savanna zones of West Africa.

Over the past four decades West Africa has lost a substantial portion of its natural vegetation,
including savannas, woodlands, and forests, to expanding croplands and human settlements. As a
result, the remaining natural vegetation is highly fragmented [5,6]. A recent analysis of satellite remote
sensing data indicated a decreasing trend of woody vegetation cover across the savanna ecoregions
along with widespread degradation of the humid forests [7]. The tropical humid forest (also known as
the Upper Guinean forest, UGF), a globally significant biodiversity hotspot [8], is estimated to have lost
over 80% of its original forest cover, with the remainder distributed in a fragmented agriculture-forest
mosaic [9,10]. Moreover, West Africa’s population almost doubled between 1990 and 2015 (180 to
353 million), and it is projected to nearly double again by 2050, from 353 million to 797 million [11].
The region has also been experiencing climate change in recent decades. Temperatures have become
warmer, and precipitation has either not changed or declined for many locations below the Sahel,
especially along the Guinea Coast [12].

In the rapidly changing environment of West Africa, fire regimes are affected by changes that alter
fuel conditions and ignitions, but fire also serves as a driver of vegetation and land use change. As a
result, fire and vegetation change are linked via strong positive and negative feedbacks [4]. Yet, studies
of fire regimes in this region are rare. Quite recently, Prichard et al. [13] reviewed fire regimes across
the world’s major bioregions and pointed out the relative scarcity of literature on African savannas.
Surprisingly this review did not include any examples of research on tropical forest fires in Africa.

Much of our knowledge of fire regimes in West Africa has been gleaned from studies conducted at
broader continental to global extents. In a global characterization of fire regimes, Archibald et al. [14]
found that most of the region was dominated by relatively frequent, small-sized fires with low
intensity. Additionally, the West African fire regime was largely controlled by human impacts [2].
Another global analysis of burned areas also indicated that human activities strongly influence fire
size distribution in West Africa through land cover changes, fire ignitions, landscape fragmentation,
and fire management [15,16]. Multiple studies have found evidence of decreasing fire activity in the
dry, savanna-dominated regions across Africa [17–19]. Most regional to continental scale fire studies
have not explicitly addressed the tropical forest regions of West Africa, where fire is relatively rare.
However, there is evidence that fires have encroached into the northern portions of the dry tropical
forest zone in recent decades, leading to degradation and eventual loss of forest vegetation [4].

Although studies of fire have been conducted in other tropical regions, the distinctive physical
and social environments of West Africa suggest that knowledge from such studies is not directly
transferable. For example, land use pressure in the forested zone is dominated by selective logging,
small-scale slash-and-burn farming and bush meat hunting, in contrast to the agro-industrial pressures
that are prevalent in the tropical Americas [20]. Disproportionate dependence on forest resources, high
levels of poverty, and recent history of wars and political instability are all important socio-economic
characteristics of the Upper Guinean region. Given these unique features, better regional information
about the patterns and drivers of fire regime is needed to support projections of future fire regime
changes and aid in the development of adaptation strategies. To help meet these needs, we conducted
a regional study of fire regimes in the forest and woody savanna dominated portions of West Africa
and addressed the following research questions:

1. What are the spatial patterns and interrelationships of multiple fire regime components in the
Upper Guinean region?

2. What are the overall trends in fire activity and how do they differ amongst the humid forest and
the savanna-dominated ecoregions?

3. How do the relative influences of climate, topography, vegetation type, and human activity vary
across different fire regime components?
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2. Materials and Methods

2.1. Study Area

Our study area encompassed a portion of the UGF region and consisted of five West African
countries distributed along the Atlantic coast between Senegal and Togo. This area covered 985,480
km2 and included Ghana, Côte d’Ivoire, Liberia, Sierra Leone, and Guinea (Figure 1). The climate
is characterized by a strong rainfall gradient with peak rainfall (≈4000 mm/year) near the coasts
of Guinea, Sierra Leone and Liberia. Rainfall decreases rapidly in a north-easterly direction to only
≈1200 mm/year at the forest savannah-boundary [10] and less than 1200 mm/year in the driest
portions of the study area. Generally, decreasing rainfall is associated with a longer dry season and
higher inter-annual variability of rainfall [21]. The rainfall regimes are modulated by the Intertropical
Convergence Zone (ITCZ) and the West Africa Monsoon (WAM) and are influenced by teleconnections
with climate modes, such as the El Niño-Southern Oscillation (ENSO) and Atlantic Multidecadal
Oscillation (AMO) [21,22].
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Figure 1. Map of study the area overlaid with: (a) terrestrial ecoregions of the world [23]; and (b) a
2 km spatial resolution West African land cover/land use map for 2013 developed by the USGS. We
aggregated the original cover types into eight general classes.

Along this rainfall gradient, natural vegetation varies from dense evergreen rainforests, to moist
and dry closed-canopy semi-deciduous forests, to woodlands and savannas [10]. The area is mainly
covered by four of the World Wide Fund (WWF) terrestrial ecoregions of the world [23]. These are the
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Eastern Guinean Forests (EGF) and Western Guinean Lowland Forests (WGLF), together comprising
the Upper Guinean Forests; and the Guinean Forest–Savanna Mosaic (GFSM) and West Sudanian
Savanna (WSS) ecoregions (Figure 1a). The principal land use is agriculture based on food and cash
crops, chiefly cereals, cocoa, tubers, rubber, and fruit trees [6]. Other important land use practices
include mining and timber exploitation in the forested regions, agro-pastoralism, and tree harvesting
for fuel-wood, especially charcoal, in the drier savanna-dominated regions [6].

2.2. Remotely-Sensed Fire Data

2.2.1. Active Fires

We obtained active fire detections at 1-km resolution from the combined MODIS Terra
(10:30 am/pm Equatorial nominal overpass time) and Aqua (1:30 pm/am Equatorial nominal overpass
time) active fire product MCD14ML, level 3 Collection 6 [24,25]. We used the detection confidence and
hot-spot type fields in the MCD14ML data to respectively remove low confidence fires (<30%) and
non-vegetation fires. We used the fire radiative power (FRP) measurement associated with each MODIS
active fire detection as a measure of fire intensity [25]. FRP is the rate of fire energy released per unit
time, and this information is retrieved using MODIS mid-infrared wavelengths [26]. In Collection 6 of
the MCD14ML product, FRP retrieval uses a radiance-based approach in which the 4-µm radiance of
individual fire pixels and surrounding background pixels are compared [24,26]. FRP can be interpreted
as a measure of biomass combustion rate, and is increasingly used by the atmospheric emissions
modeling community to estimate vegetation burning emissions [27,28].

2.2.2. Burned Area

We used the MODIS burned area product, MCD64A1 Collection 6, to measure burned area. This
product uses an improved algorithm that incorporates both surface reflectance and active fire input
data [29]. Consequently, this product has generally improved burned area detection than the previous
product MCD45A1, with higher accuracy and significantly better detection of small burns [30]. The
MCD64A1 product has a spatial resolution of 500 m at a daily time step.

2.3. Derived Fire Regime Variables

We summarized the active fire and burned area data from 2003 to 2015, covering the period
within which data were simultaneously collected by both MODIS Terra and Aqua satellites. Four
main grid-based fire regime metrics were calculated: mean annual active fire density, percent mean
annual burned area, fire season length, and mean fire radiative power (Table 1). We also generated
other indicators of fire seasonality, including peak fire month, the percentage of active fire detections
occurring in the peak month, and the percent monthly distributions of active fires and area burned by
ecoregion. Variables were summarized for a grid of 0.25◦ raster cells and for the four major ecoregions
described previously.

2.3.1. Active Fire Density

We summarized the active fire data into time series of monthly and annual active fire counts for
each grid cell and ecoregion. We used the annual active fire densities to compute the mean annual
active fire density (fires km−2 year−1) for each grid cell and ecoregion.

2.3.2. Annual Burned Area

Monthly and annual burned areas were calculated for each grid cell and ecoregion and
summarized as a percent of the total land area. We used the annual burned area data to compute the
mean annual burned area (% year−1) for each grid cell and ecoregion.
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2.3.3. Fire Season Characteristics

We used the grid-based monthly time series data to compute a monthly climatology of active
fire density for each grid cell using methods developed by Chuvieco et al. [31] and Moreno and
Chuvieco [32]. Following these same authors, we computed fire season length as the number of
calendar months within a year in which the monthly fire climatology was greater than the long-term
average annual fire density per each grid [32]. We further identified the peak fire month for each grid
cell as the calendar month in which the maximum climatological fire density was recorded [33]. We
also calculated the percentage of active fire detections recorded in the peak fire month as a proportion
of the total annual active fire detections for each grid cell. To examine the intra-annual variability of
fire activity by ecoregion, we used the ecoregion-based monthly fire data to calculate the percent of
total active fire counts and the percent of total burned area that occurred during each month.

2.3.4. Mean Fire Radiative Power

We calculated the mean fire radiative power (MW km−2) for each climate grid by averaging
fire radiative power values of all fire pixels over all years in each grid cell. The distribution of mean
fire radiative power was heavily right-skewed. Therefore, we carried out a logarithmic (base 10)
transformation to make the distribution more symmetric and reduce the influence of outlying values.

2.4. Predictor Variables for Analyses of Fire Drivers

Predictor variables were selected to characterize the major climatic, land cover/land use, and
human factors that we expected to be associated with the geographic pattern of fire regimes [34,35]
(Table 1). We used the Tropical Rainfall Measuring Mission (TRMM) monthly product 3B43-v7 at 0.25◦

spatial resolution to generate mean annual rainfall and annual maximum cumulative water deficit
(MCWD). MCWD estimates accumulated water deficit within a particular year and is an indicator
of the intensity and length of the dry season [36]. More negative values of MCWD indicate higher
levels of moisture stress. We computed MCWD using methods described by Aragão et al. [36]. We
also included annual potential evapotranspiration estimates from the CGIAR-CSI Global-Aridity and
Global-PET Geospatial Database [37]. Higher values of potential evapotranspiration indicate greater
moisture stress. All predictor variables were aggregated to match the 0.25◦ spatial resolution of the
TRMM data.

We generated vegetation cover and vegetation change maps from 2-km spatial resolution USGS
region-specific land cover/use maps for West Africa for 2000 and 2013, which were created through
visual interpretation of Landsat images [6]. Some of the detailed USGS cover types were aggregated
into broader classes. The “forest” class included forest, degraded forest, woodland, and swamp forest.
The “savanna” class included savanna, bowe, and herbaceous savanna. The “cropland” class included
agriculture, irrigated agriculture, agriculture in shallows and recession, and cropland and fallow with
oil palms. We expressed these classes as percent cover at the 0.25◦ grid cell resolution.

We obtained a protected area (PA) boundaries polygon layer from the World Database on Protected
Areas (accessed in November 2016). We reclassified PAs into two classes (production reserve and
eco-reserve) based on their level of protection as defined by the Protected Categories System of the
International Union for Conservation of Nature (IUCN). Production reserve (PR) encompassed PAs
of IUCN category VI, which are designated for natural ecosystems’ protection and sustainable use.
Eco-reserves (ER) encompassed PAs of IUCN category I to V, which are designated to maintain and
protect biodiversity and ecosystem integrity with minimal human influence. We assigned all areas
outside PAs to non-protected (NP) status. We rasterized the PA polygons by resampling to the TRMM
grid, and retaining PA status as the raster values.

The new Gridded Population of the World (GPWv4) dataset, at 1 km grid resolution (CIESIN,
2015) was used to obtain 2010 population density estimates. We extracted the major roads (functional
class 0-3) GIS layer from the Global Roads Open Access Data Set (gROADSv1, [38]). We ran the
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Euclidean distance function in ArcGIS 10.2 to generate a raster grid of distances to the nearest major
road. We calculated slope from a 90 m spatial resolution digital elevation model using ArcGIS 10.2.

To check for excessive data redundancy, we screened the intercorrelations among the predictors
and found that nearly all had Pearson correlations <0.65 and >−0.65 (Table 1). An exception was
MCWD which had stronger correlations with the savanna and forest variables.

Table 1. Data layers used in the analyses. All variables were re-scaled to the TRMM spatial resolution
of 0.25◦.

Data Layer Sources and Description Variable Name (Units)

Fire variables

Active Fire Density
Mean annual fire density for 2003–2015 derived from 1
km monthly MODIS active fire product MCD14ML
collection 6 [24]

AfDens
(fires 10−3 km−2 year−1)

Fire Radiative Power
Mean fire radiative power per pixel of active fire
detections for 2003–2015 derived from MCD14ML
collection 6

mFRP (MW km−2)

Fire Season Length Length of the active fire period for 2003–2015 generated
from MCD14ML collection 6 FSL (months/year)

Burned Area
Mean annual burned area for 2003–2015, as a percent of
grid cell area, generated from 500 m monthly Burned
Area product MCD64A1 Collection 6 [30]

BurnedArea (% year−1)

Predictor variables
Vegetation

Forest cover 2000 Proportion of grid cell covered by forest in 2000, derived
from 2 km resolution USGS land cover map [6] Forest2000 (%)

Forest Change Change in proportion of forest between 2000 and 2013
(generated from [6]) ForestChng (%)

Savanna cover 2000 Proportion of grid cell covered by savanna in 2000,
derived from USGS land cover map [6] Savanna2000 (%)

Savanna Change Change in proportion of savanna between 2000 and 2013
(generated from [6]) SavannaChng (%)

Protected Area Status IUCN Protected Categories System [39]

PaStatus:
1: Production-Reserve (PR),
2: Eco-Reserve (ER),
3: Non-protected (NP)

Climate

Mean Annual Precipitation
Mean annual precipitation for 2003–2015, derived from
Tropical Rainfall Measuring Mission (TRMM) monthly
product 3B43-v7 [40]

Precipitation (mm/year)

Mean Annual Cumulative
Water Deficit

Mean annual maximum cumulative water deficit for
2003–2015, calculated from TRMM product 3B43-v7 MCWD (mm/year)

Potential Evapotranspiration Global Aridity Index & Potential Evapo-Transpiration
Climate Database, ≈1 km resolution [37] PotentialEvapo (mm/year)

Human

Population Density

Population density in 2010 generated from Gridded
Population of the World (GPWv4), ≈1 km resolution
from CIESIN (Center for International Earth Science
Information Network—Columbia University, 2015)

PopDens
(persons/km2 log10 scale)

Distance to Road Euclidean distance to major roads (functional class 0–3),
derived from Global Roads Open Access Data Set [38] Dist2Road (km log10 scale)

Cropland 2000 Proportion of grid cell covered by cropland/agriculture
in 2000, generated from USGS land cover map [6] Crplnd2000 (%)

Cropland Change Change in proportion of cropland between 2000 and
2013, generated from USGS land cover map [6] CrplndChng (%)

Distance to Cropland Euclidean distance to cropland in 2000, generated from
USGS land cover map [6] Dist2Crplnd (km)

Topography
Slope Slope from ≈90 m resolution SRTM DEM [41] Slope (degrees)



Remote Sens. 2017, 9, 1117 7 of 19

2.5. Analysis Methods

2.5.1. Question 1: What Are the Spatial Patterns and Interrelationships of Multiple Fire Regime
Components in the Upper Guinean Region?

To characterize the spatial patterns of fire activity in the Upper Guinean region, we mapped the
four main fire regime components: mean annual active fire density, percent mean annual burned area,
fire season length, and mean fire radiative power. We graphed the bivariate relationships amongst
these fire regime components, and used the Kendall non-parametric rank correlation coefficient test to
determine the direction and the strength of correlations among their spatial patterns. We also mapped
peak fire month and the corresponding percent of fire detections and graphed the seasonal cycle of fire
distribution and tabulated summaries of fire regime characteristics by ecoregion.

2.5.2. Question 2: What Are the Overall Trends in Fire Activity and How Do They Differ Amongst the
Humid Forest and the Savanna-Dominated Ecoregions?

We used the non-parametric Mann–Kendall test to test for increasing monotonic upward or
downward trends in annual time series active fire density and burned area for each grid cell and
ecoregion. The Mann–Kendall test was used for trend detection in previous fire regime analysis [42].
We followed criteria outlined in Liu et al. [7] for the grid-based trend test and set a significance level
of 0.1. Trends were calculated only for grid cells with at least six data points, and at most eight
consecutive missing data points.

2.5.3. Question 3: How Do the Relative Influences of Climate, Topography, Vegetation Type, and
Human Activity Vary across Different Fire Regime Components?

We used Boosted Regression Trees (BRT) to determine the most important environmental drivers
of each of the four main fire regime components: active fire density, burned area, fire season length, and
fire radiative power. BRT is a nonparametric machine-learning approach combining the advantages of
regression trees, which relate a response to their predictors by recursive binary splits, and boosting
algorithms, which combine many simple models to give improved predictive performance [43]. It is
relatively insensitive to outliers and is able to handle various data types, accommodate missing data in
predictor variables, automatically model interactions among explanatory variables, and produce easily
interpretable results [43]. We implemented BRT analyses using the gbm functions in the dismo package
in R 3.4.1 [44].

In order to avoid overfitting, we used cross-validation procedure to identify optimal model
parameters (tree complexity-tc, learning rate-lr, and number of trees-nt), and the best combination of
these parameters was selected by maximizing the variance explained by the model. Model fitting were
evaluated using 10-fold cross-validation correlation between observed and model fitted datasets [44].
We used a Gaussian error model and a bag fraction of 0.75, and obtained the best tc = 3 for all BRT
models of the four fire regime components. In the active fire density model, lr of 0.075, and nt of 2400
were selected. In the burned area model, lr of 0.05, and nt of 2160 were selected. In the fire season
length model, lr of 0.025, and nt of 2100 were selected. In the fire radiative power model, lr of 0.075,
and nt of 1800 were selected.

BRT measured the relative influence of each predictor variable based on the number of times that
variable was selected for splitting, weighted by the squared improvement to the model resulting from
these splits, and averaged over all trees [43]. The relative influence of each variable was scaled to a
total of 100%, with higher values indicating stronger influence on the fire regime component. The
marginal effect of each variable was visualized using partial dependence graphs, which showed the
effect of that variable on a fire regime component after accounting for the average effects of all other
variables [43].
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3. Results

3.1. Question 1: What Are the Spatial Patterns and Interrelationships of Multiple Fire Regime Components in
the Upper Guinean Region?

Figure 2 depicts geographic distributions of the four main fire regime components. An overarching
gradient of fire activity were evident in relation to patterns of precipitation and vegetation, with the
highest values of active fire density, burned area, and fire radiative power clustered in the Guinean
Forest–Savanna Mosaic (GFSM) and Western Sudanian Savanna (WSS) ecoregions in the North.
In contrast, there was much lower fire activity in the Western Guinean Lowland Forest (WGLF) and
Eastern Guinean Forest (EGF) ecoregions located in the South. However, the different fire regime
components also exhibited distinctive patterns. Unusually high active fire density and relatively long
fire seasons ranging from 4 to 6 months were observed in the western portion of the study area at
the boundary between the WGLF and the GFSM (Figure 2). The highest fire radiative power was
concentrated near the coast in the westernmost portion of the study area. In contrast, burned area was
highest in the WSS and GFSM ecoregions in the northeastern portion of the study area. This area also
had slightly lower active fire density than the northwestern region, along with a relatively short fire
season length of 2–3 months.
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Figure 2. Maps of four major fire regime components, which were the response variables in the BRT
models: (a) active fire density; (b) percent burned area; (c) fire season length; (d) fire radiative power.

Among the fire regime components, the strongest relationship was between active fire density
and burned area (τ = 0.61, p < 0.0001, Figure 3). Active fire density had a moderate relationship with
fire radiative power (τ = 0.48, p < 0.0001). All other relationships were weak and mostly nonlinear
(Figure 3).

At the ecoregion scale, active fire density was highest in the GFSM, followed by WSS and then
WGLF; and burned area was highest in the WSS, followed by GFSM, and then WGLF (Table 2). Among
all ecoregions, the forested EGF recorded the lowest active fire density, burned area, and fire radiative
power (Table 2). Fire season averaged about 3-months in all ecoregions (Table 2). Within ecoregions
fire season length was spatially heterogeneous, with fire seasons longer than three months localized in
the north-western part of the study area and in portions of the EGF.
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November and February, while in the forested ecoregions most fires occurred between January and 
May. The savanna-dominated ecoregions had earlier peak fire months, mainly December and 
January (Figure 5a). On the contrary, in the forested ecoregions fire activity peaked later in the fire 
season, mainly in March and April. The percentage of active fire detections during the peak fire 
month was highly spatially varied (Figure 5b). 

Figure 3. Bivariate relationships amongst the four fire-regime components, with Kendall
non-parametric rank correlation coefficients indicating the direction and strength of correlations
among each component pairs. Each variable’s name (Table 1) is shown on the diagonal. The lower
triangle shows the bivariate scatter plots with a fitted smoothed line. The upper triangle shows the
correlations and associated p-values: *** p <0.001, ** p < 0.05, � p ≥ 0.05. Larger font sizes indicate
stronger correlations.

Table 2. Summary of fire regime characteristics (mean ± standard deviation) across ecoregions for the
period 2003–2015.

Fire Regime Metric
Western Guinean
Lowland Forests

(WGLF)

Eastern Guinean
Forests
(EGF)

Guinean Forest
Savanna Mosaic

(GFSM)

West Sudanian
Savanna
(WSS)

Annual Active Fire Density
(fires 10−3 km−2 year−1) 162 ± 51 54 ± 11 297 ± 24 267 ± 31

Percent Annual Burned Area
(% year−1) 3.8 ± 1.6 1.8 ± 0.7 21.2 ± 3.8 27.2 ± 4.5

Fire Season Length
(months) 2.9 ± 0.8 3.4 ± 0.7 3.3 ± 1.0 3.2 ± 0.9

Fire Radiative Power
(MW km−2) 47 ± 79 23 ± 34 42 ± 86 34 ± 44

The fire season generally occurred between November and May, with variation in seasonal
patterns across ecoregions (Figure 4). In the savanna ecoregions, most fires occurred between
November and February, while in the forested ecoregions most fires occurred between January and
May. The savanna-dominated ecoregions had earlier peak fire months, mainly December and January
(Figure 5a). On the contrary, in the forested ecoregions fire activity peaked later in the fire season,
mainly in March and April. The percentage of active fire detections during the peak fire month was
highly spatially varied (Figure 5b).
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3.2. Question 2: What Are the Overall Trends in Fire Activity and How Do They Differ Amongst the Humid
Forest and the Savanna-Dominated Ecoregions?

At the ecoregion level, the trend in active fire density was weakly positive in the WGLF ecoregion
and weakly negative in the EGF and WSS ecoregions (Figure 6a, Table 3). There were also weak
decreasing trends in burned area in the EGF, GFSM, and WSS ecoregions (Figure 6b, Table 3). However,
the temporal trends in fire activity also varied geographically within ecoregions (Figure 7). We found
clusters of increasing active fire detections in parts of the WGLF, particularly in Sierra Leone and
western Liberia (Figure 7a). There were also clusters of decreasing active fire and burned area in the
central portions of the WSS and the GFSM, particularly in Côte d’Ivoire (Figure 7).
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Table 3. Nonparametric Mann–Kendall tests to detect trends in fire activity at ecoregion scale from
2003–2015. Positive Kandall’s tau statistic values indicate increasing trends, whilst negative values
indicate decreasing trends.

Fire Regime
Metric Statistic

Western
Guinean

Lowland Forests

Eastern Guinean
Forests

Guinean Forest
Savanna Mosaic

West Sudanian
Savanna

Annual Active
Fire Density

Tau 0.359 −0.333 −0.103 −0.385
p-value 0.1 * 0.127 0.669 0.077 *

Annual Burned
Area

Tau 0.077 −0.333 −0.359 −0.308
p-value 0.76 0.127 0.1 * 0.161

* Significant at α = 0.1
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highlighted in the maps. Grid cells without enough data points to calculate trend are shown in white.
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3.3. Question 3: How Do the Relative Influences of Climate, Topography, Vegetation Type, and Human Activity
Vary across Different Fire Regime Components?

Cross-validated correlations between the BRT predictions and observed values were 0.91 for
active fire density, 0.88 for burned area, 0.64 for fire season length, and 0.89 for fire radiative power.
The most important predictor variables identified by the BRT algorithm varied among the four fire
regime components (Figure 8).
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For active fire density, savanna cover was the most influential variable followed by precipitation,
potential evapotranspiration, and maximum cumulative water deficit (MCWD). All these variables
were positively associated with active fire density, except MCWD (Figure 9a). MCWD had a nonlinear
relationship, in which active fire density was highest at intermediate water deficits (MCWD ≈ −150,
Figure 9a) which may provide dry conditions favorable for fire activity. In contrast, high moisture stress
(low MCWD values) may suppress fire activity due to low primary productivity and fuel availability,
and low moisture stress (high MCWD values) may limit fire activity because of high fuel moisture.
Forest cover and distance to roads had weaker influences on active fire density (4.8%, and 4.2% relative
importance, respectively; Supplementary Materials Figure S1).

For burned area, the most important predictor variables were savanna cover, forest cover, slope,
savanna cover change, MCWD, cropland change, potential evapotranspiration, precipitation, and
protected area status in order of decreasing importance. Burned area was positively associated with
savanna cover, but negatively associated with forest cover and slope. Loss of savanna cover during the
study period was associated with lower burned area, whereas gain in savanna cover was associated
with higher burned area (Figure 9b). A higher gain in cropland was generally associated with higher
burned area (Supplementary Materials Figure S2). Burned area was lowest at the highest water stress
(low MCWD values) and increased with decreasing water stress (increasing MCWD values).

For fire season length, the three climatic indices, slope, population density, and forest cover
were the most important predictor variables (Figure 9c and Figure S3). The fire season was longest
when water deficit was high (lowest MCWD values). Fire season length decreased with decreasing
water stress up to an MCWD value of −200 mm/year, and then increased slightly at the lowest levels
of water stress (highest MCWD values). Annual precipitation was negatively associated with fire
season length except at the lowest precipitation levels (≤1200 mm/year). Potential evapotranspiration
was positively associated with fire season length. Thus, for all three climatic variables, longer fire
seasons were generally associated with drier conditions. Slope had a nonlinear relationship with fire
season length, with a positive association at low slope values and a negative association at higher
slope values. Population density was positively associated fire season length. Forest cover also had a
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unimodal relationship with fire season length, where the longest fire seasons were associated with
20–40% forested land cover (Supplementary Materials Figure S3).
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Figure 9. Partial dependence plots of the top four (4) predictors from the BRT model for each fire regime
component: (a) active fire density; (b) percent burned area; (c) fire season length; (d) fire radiative
power. The plots represent the effect of each predictor on fire activity after considering the average
effect of all predictors in the model. Abbreviations of predictor variables and their corresponding full
names are described in Table 1.

For fire radiative power, the three climatic indices had the strongest influences followed by
savanna cover and slope (Figure 9d and Supplementary Materials Figure S4). Thus, the four most
influential drivers were the same for fire radiative power and active fire density, although their levels
of influence varied and the relationships with MCWD and potential evapotranspiration were different.
Fire radiative power was positively associated with higher annual precipitation and negatively
associated with evapotranspiration, suggesting that fire intensity was highest in wetter and more
productive environments. In contrast, fire radiative power was highest when water deficit was
high (lowest MCWD values) and decreased with decreasing water stress (highest MCWD values),
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suggesting that greater moisture stress during the dry season was also associated with more intense
burning (Figure 9d).

4. Discussion

4.1. Vegetation Constraints on Regional Patterns of Fire Activity

There was strong variability in the spatial and temporal patterns of fires across the Upper Guinean
region. As expected, the savanna-dominated ecoregions were the epicenters of fire activity, with the
highest density of active fires, burned area, and to large extent fire intensity. Savannas are fire-adapted
ecosystems, with abundant fine fuels and low fuel moisture during the dry season [45–47]. Savanna
also constitutes the most widespread vegetation type in the study area (Figure 1 and Figure S5) and
thus provides the majority of fuels that support ignition and fire spread. Therefore, concentration of
fire activity in the savanna and mixed forest–savanna ecoregions was not surprising. Less fire activity
was observed in the humid forest ecoregions because these forests tend to offer some buffering against
fire encroachment. Tropical forests are usually fire resistant because they have relatively low amounts
of herbaceous fuels and relatively high fuel moisture in their shaded understories [48].

In the BRT analyses, active fires and burned area both had the strongest associations with savanna
vegetation type. The geographic distribution of savanna was in turn related to the overarching regional
gradients of precipitation and moisture stress, but the BRT results emphasized that vegetation, rather
than climate per se, had the strongest proximal influence on fire activity. Recent vegetation change
was also identified as an important driver of fire. Our finding that savanna loss was associated with
lower burned area is consistent with previous studies which found reductions in burned area due
to conversion of savannas to agriculture [17,18,49]. However, cropland gain during the study period
was also associated with higher burned area, and this relationship may reflect the use of fire to clear
forested areas for agriculture. In contrast to savanna, forest areas with lower cover were associated
with more burned area. These results emphasize that whereas human disturbances through forest
fragmentation and degradation tend to enhance fire activity in forested areas, such disturbances tend
to diminish fire activity in savanna-dominated landscapes.

We also observed trends in fire activity that are likely associated with regional changes in land
use and vegetation patterns. Increasing trends in active fire detections were identified in the Western
Guinean Lowland Forest (WGLF) ecoregion. This result affirms recent findings by Ichoku et al. [5] who
reported increasing active fire detections in parts of forested West Africa. Recently, Liu et al. [7]
observed decreasing trends of woody vegetation in the WGLF, an indication of forest loss and
degradation in that area. Thus, increasing active fire detections here may be connected with a generally
decreasing tree cover and increasing amounts of herbaceous/shrub vegetation and fine fuels, as has
been documented in other forested regions of West Africa [4]. Furthermore, our observation of a
generally decreasing trend in fire activity in savanna-dominated ecoregions is consistent with previous
studies which reported declining fire activity in African savannas [5,17,18]. Liu et al. [7] reported
decreasing trends in woody cover and increasing enhanced vegetation index (EVI) across much of
the woody savanna and forest–savanna mosaic ecoregions, suggesting that decreasing fire activity is
indeed linked with increasing agriculture and declining tree cover in these areas.

4.2. Distinctive Fire Regimes in the Transition and Savanna Zones

Differences in multiple fire regime components between the northeastern and the northwestern
parts of the study area underscored the complexity of factors controlling fire regimes. When the fire
season is long with a late peak, as in the northwestern subregion, the fires that start early in the season
are usually smaller in size [14] and thus have the potential to break up fuel continuity and reduce total
burned area later in the season. It has been shown in a variety of ecosystems that fires reduce fuel loads
and thereby inhibit spread of subsequent fires and reduce burned area [50,51]. Moreover, many parts
of the northwestern landscape have rugged topography (Supplementary Materials Figure S5), which
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may have inhibited fire spread leading to lower area burned in the northwestern subregion. These
relationships were reflected in the BRT analyses, which found that rugged landscapes with steeper
slopes had generally lower burned area and longer fire seasons than landscapes with lower slopes and
more gentle terrain.

In contrast, the shorter fire season and earlier peak fire month in the northeastern subregion
suggest that flammable and contiguous fuels allowed large areas to burn within a shorter period. These
findings are consistent with experimental results from the Kruger National Park in South Africa which
found that total burned area was mainly controlled by fuel availability rather than the number of fire
events [2]. The northeastern landscape was generally flat and encompassed the largest protected areas
of savanna in the study area, located in central and northern Ghana and north-eastern Côte d’Ivoire
(Figure 1 and Figure S5), thereby providing the most contiguous savanna cover with continuous fuel
beds that are conducive to ignition and rapid fire spread. The BRT results showed that protected
eco-reserves, which are mostly savannas, had more burned area than other protection categories
(Supplementary Materials Figure S2), meaning that fires were more likely to burn in continuous
savanna landscapes where human interference is minimal.

Notwithstanding these explanations, we acknowledge that this observed dichotomy between
active fire and burned area may also reflect the geographic variability in the probability of ignitions
growing into fires large enough to be detectable by the MODIS burned area algorithm. Although
the current burned area product, MCD64A1, has improved detection of small burned areas [30], its
performance in highly heterogeneous landscapes such as this study area has not been quantified. Thus,
burned area may be underestimated in the northwestern portion of our study area if the fire regime
there is comprised of many small fires. However, we believe that relative geographic differences in fire
regimes that we have observed are valid: many smaller fires occurring over a longer fire season in the
northwest versus fewer, larger fires burning more area over a shorter fire season in the northeast.

Archibald et al. [14] reported that small-sized and low intensity fires dominate the West African
fire regime. However, we found particularly high fire intensity values in western part of the study
area. This distinct pattern of fire intensity could be partly explained by the climatic conditions in
the far western portion of the study area. This area is unique in that it has high annual precipitation
combined with high moisture stress during the dry season as reflected in high maximum cumulative
water deficits (Supplementary Materials Figure S5), as well as the latest peak fire months within the
study area. The BRT results confirmed that precipitation and maximum cumulative water deficit were
the two most important drivers of fire radiative power. Thus, the high fire radiative power in this
region may reflect a combination of high fuel loads generated during the growing season followed by
low fuel moisture during the fire season, leading to relatively high fire intensity compared to other
portions of the study area with either lower fuel loads or higher fuel moisture during the fire season.
Furthermore, the late peak fire month in this area likely increased the potential for high intensity fires
because fuels later in the fire season are exposed to prolonged dry and warm conditions and therefore
have lower fuel moisture than in the early season [52].

4.3. Climatic Influences on Fire Regime Components

Our findings that more severe moisture deficits were associated with fewer active fires and
less burned area, but were also associated with longer fire season lengths and higher fire radiative
power (FRP), emphasize the heterogeneous impacts of moisture stress on the fire regime. The
general association between drier conditions and lower fire activity indicates that after accounting for
differences between major vegetation types, fuel loads rather than fuel moisture are the primary factor
limiting fire initiation and spread. High levels of moisture stress lead to reduced primary productivity
and consequently result in reduced fuel loads that limit fire activity, whereas more rainfall and lower
moisture stress lead to increased fuel loads and fuel continuity.

The overriding influence of the three moisture variables on FRP (Figure 9d and Figure S4)
emphasize that climatic variables, rather than vegetation type, were the main determinants of fire
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intensity [2,52]. As discussed in the previous section, the BRT results indicate that FRP is constrained by
a combination of productivity and fuel moisture effects. The highest FRP levels occurred where annual
precipitation was high and evapotranspiration was low, indicating the potential for high productivity
throughout the growing season, but cumulative moisture stress was high, indicating severe moisture
stress and low fuel moisture during the dry season.

Fire season length was most strongly influenced by climate, topography, and population density.
Although vegetation types and their associated fuels primarily control the spatial variability in ignition
and fire spread, they have less influence on the timing of fire activity during the year. The association
of longer fire season length with higher cumulative moisture deficit supports earlier observation by
Giglio et al. [33] that fire season length in the tropics is largely controlled by duration of the dry season.
This relationship was further supported by the positive associations of fire season length with potential
evapotranspiration and negative association with precipitation. Nonetheless, our analyses also showed
that human population density was an important modifier of fire season length but not active fire
density nor burned area. The association of population density with longer fire seasons suggests that
anthropogenic activities have more control on the timing of fires than the amount of fire events in
these highly-human modified landscapes. Thus, the longer fire seasons in the Eastern Guinean Forest
ecoregion may reflect the constraints of climate as well as land use practices, which tend to make fires
more persistent even though they are less widespread [31].

5. Conclusions

In the Upper Guinean Region of West Africa, different components of the fire regime were
influenced by different environmental drivers. As a result, the various combinations of these
environmental factors create distinctive fire regimes throughout the region. The strong gradient
of increasing fire activity from the wetter coastal regions to the drier regions in the north was related
primarily to the shift from forest to savanna vegetation types rather than direct climatic effects. Within
the savanna zone, there was a distinction between fire regimes with high active fire density, low
burned area, long fire seasons, and late peak fire months compared to fire regimes with fewer active
fires, higher burned area, shorter fire seasons, and earlier peak fire months. There was also an area
of particularly high fire intensity located in the westernmost coastal regions of the study area. These
differences were attributable to the combined effects of vegetation cover, recent land use changes,
topography, and climate. Increasing trends in active fire detections in parts of the forested zone and
decreasing trends in both active fire detections and burned area in the savanna zone were likely
associated with differential impacts of land use change in these distinctive ecoregions. We conclude
that while ongoing climate change will continue to influence fire regimes throughout the region, land
use change and the resulting feedbacks between fire and vegetation will have a major impact as well.
Efforts to project future fire regimes and develop regional strategies for adaptation will therefore need
to encompass multiple components of the fire regime and consider multiple drivers, including land use
as well as climate. It will also be essential to develop a stronger understanding of how these drivers
affect the timing and spatial pattern of ignitions, the abundance and spatial connectivity of available
fuels, and the amount of biomass consumed by fire.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/11/1117/s1:
Figure S1: Partial dependence plots of the nine most important variables influencing the spatial pattern of active
fire density. Figure S2: Partial dependence plots of the nine most important variables influencing the spatial
pattern of burned area. Figure S3: Partial dependence plots of the nine most important variables influencing the
spatial pattern of fire season length. Figure S4: Partial dependence plots of the nine most important variables
influencing the spatial pattern of fire radiative power. Figure S5: Maps of the 10 most important independent
variables in the BRT models.
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