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Abstract: Fractional vegetation cover (FVC), or green vegetation fraction, is an important parameter
for characterizing conditions of the land surface vegetation, and also a key variable of models for
simulating cycles of water, carbon and energy on the land surface. There are several types of FVC
estimation models using remote sensing data, and evaluating their performance over a specific region
is of great significance. Therefore, this study firstly evaluated three types of FVC estimation models
using Landsat 7 ETM+ data in an agriculture region of Heihe River Basin, China, and then proposed
a combination strategy from different individual models to improve the FVC estimation accuracy,
which employed the multiple linear regression (MLR) and Bayesian model average (BMA) methods.
The validation results indicated that the spectral mixture analysis model with three endmembers
(SMA3) achieved the best FVC estimation accuracy (determination coefficient (R2) = 0.902, root mean
square error (RMSE) = 0.076) among the seven individual models using Landsat 7 ETM+ data.
In addition, the MLR and BMA combination methods could both improve FVC estimation accuracy
(R2 = 0.913, RMSE = 0.063 and R2 = 0.904, RMSE = 0.069 for MLR and BMA, respectively). Therefore,
it could be concluded that both MLR and BMA combination methods integrating FVC estimates
from different models using Landsat 7 ETM+ data could effectively weaken the estimation errors of
individual models and improve the final FVC estimation accuracy.

Keywords: fractional vegetation cover; pixel dimidiate model; spectral mixture analysis; combination;
multiple linear regression; Bayesian model average; Landsat 7 ETM+

1. Introduction

Fractional vegetation cover (FVC), or green vegetation fraction, is usually defined as the fraction of
green vegetation as seen from the nadir of the total statistical area [1–4]. FVC is an important parameter
for describing conditions of land surface vegetation, and a key indicator for monitoring the changes in
ecosystems. Furthermore, these vegetation conditions and changes are important factors of specific
models such as numerical weather prediction, regional and global climate modeling, and global change
studies [5–10]. FVC has also been widely used for crop yield estimation, crop condition monitoring,
drought monitoring and so on [11–17]. Therefore, it is of great significance to accurately estimate FVC
on the regional and global scales.

To estimate the FVC in a large area, remote sensing technology has been the effective means,
and several types of FVC estimation methods have been developed using remote sensing data,
such as the regression models, the pixel dimidiate model, the three gradient differential vegetation
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index (TGDVI) model, the spectral mixture analysis (SMA), neural networks, and physical models.
A regression model is an empirical FVC estimation method which establishes linear or non-linear
relationships between FVC and vegetation indices (VIs) [18–20] or reflectances of various spectral
bands [21]. The FVC estimation accuracy of a regression model is acceptable on a small regional scale
using sufficient ground FVC measurements. However, the regression model cannot be extended to large
scale FVC estimation because a single empirical model is usually generated for a specific vegetation
type in the specific region, and the quantitative empirical relationship between FVC and vegetation
indices or bands’ reflectance varies with vegetation types and regions. Thus, if the regression model is
used for large regions, a large amount of ground measurements, covering various vegetation types and
growth conditions, are required for accurately parameterizing the empirical models. This translates to
a large quantity of work.

The pixel dimidiate model is a simple and widely used method for FVC estimation using remote
sensing data, which assumes that one pixel is only composed of either vegetation or non-vegetation,
and the fraction of vegetation composition is considered to be the FVC of this pixel [22–26]. Usually,
a vegetation index is used as an indicator in the pixel dimidiate model, and the key issue of the
pixel dimidiate model is determining the values of the vegetation index for pure vegetation and pure
soil pixels. The pixel dimidiate model is simple and can achieve acceptable FVC estimation accuracy in
small regions, but the determination of the parameters of the pixel dimidiate model is difficult because
they vary with vegetation types and growth conditions.

The TGDVI model was developed based on the characteristics of vegetation and soil spectral
reflectance, in which the maximal gradient difference is calculated using the green, red and
near-infrared (NIR) bands’ reflectances [27]. Furthermore, Jiapaer et al. found that there were significant
differences between vegetation and non-vegetation in short-wave infrared (SWIR), red and NIR
bands [27]. Thus, the authors proposed two modified TGDVI (MTGDVI) models using Landsat 5 TM
data to obtain more accurate FVC estimates in arid regions. The TGDVI model for FVC estimation is
also simple and it also presents difficulties in determining the model parameters of the pure vegetation
pixel because it also varies with vegetation types and growth conditions.

The SMA model can estimate the FVC from multi-spectral and hyper-spectral remote sensing data
with the assumption that the spectral reflectance of one pixel is contributed to by all of the endmembers
in the pixel. This model estimates FVC by calculating the fraction of vegetation endmembers [27–32].
The linear SMA model assumes that the reflectances of different endmembers are composed in a linear
form in the mixture pixel which is commonly used for FVC estimation using remote sensing data. A similar
assumption is made for the nonlinear SMA model, in which the reflectance of different endmembers
are composed in a non-linear form [28,30,33,34]. The number and purity of the endmembers can
obviously influence the accuracy of FVC estimates using SMA, thus a substantial difficulty in the SMA
model is how to determine the endmembers and the spectral response of endmembers, because the
land surface is very complex, especially for the development of a large scale SMA model.

Physical methods are usually based on the inversion of radiative transfer models which simulate
the physical relationships between vegetation canopy spectral reflectance and FVC. However, due to
the difficulties of the direct inversion of radiative transfer models [2], neural networks (NNs) and
lookup table methods are usually employed for simplifying the inversion of physical models. NNs have
been trained with physical model simulations and used to estimate FVC from several low spatial
resolution sensors on large scale, such as in the POLDER FVC product and the CYCLOPES FVC
product [8,35]. The physical methods are more widely acceptable in a theoretical sense. However,
use of physical methods may be restricted due to the lack of suitable data because large amounts
of data are required and many factors such as time, space, angle and spectral response need to be
considered in the application of satellite remote sensing data.

Different FVC estimation models may have variational performance in different regions.
Hence, evaluating the performance of different models is an important issue. This study mainly focuses
on comparing the performances of different FVC estimation methods using Landsat 7 ETM+ data in
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an arid region and proposing two combination strategies, including multiple linear regression (MLR)
and Bayesian model averaging (BMA) methods, to improve FVC estimation accuracy. Firstly, seven
individual FVC estimation models, including the pixel dimidiate models with normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI) as indicators, the SMA models using
three and four endmembers, and three TGDVI models, were investigated using Landsat 7 ETM+ data.
Then, the FVC estimates from individual models were combined in different ways using the MLR and
BMA methods to improve FVC estimation accuracy. Finally, the performance of the individual models
and the two combination methods were evaluated based on the ground FVC measurements.

2. Materials and Methods

2.1. Study Area

The Heihe River basin (HRB) in the arid region of Northwest China was selected for this study
(Figure 1). The HRB is the second largest inland river basin in China, which is also the experimental
area for the HiWATER project [36]. The study area is located around the oasis, which is located in
the middle of the HRB (38◦50′7”N, 100◦22′34”E), and covers approximately 570 km2. The annual
precipitation is approximately 100–250 mm and the annual mean temperature is approximately 7–10 ◦C.
The land surface is mainly occupied by agriculture crops, mostly corn. The growing season of corn
is from May to September. Small patches of orchards, vegetables and wheat are also found in the
agriculture region. The Gobi Desert is located around the oasis and some desert vegetation is found in
this region, such as camel thorn.
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Figure 1. Study area and spatial distribution of the field measurement sites (The field measurement 
sites were not located in the black stripes). 

2.2. Landsat 7 ETM+ Data 

Three Landsat 7 ETM+ data, in path 133 and row 33, with cloud coverage of less than 10% in 
2012 were selected for this study. The dates that these Landsat 7 ETM+ data sets were obtained were 
the closest possible to the dates of the field FVC measurements (Table 1). The exact dates of 
acquisition of the three Landsat ETM+ data sets were 24 June, 12 July and 28 August 2012. The 
Landsat 7 ETM+ data were downloaded from the United States Geological Survey (USGS) website 
(http://earthexplorer.usgs.gov/). They had already been processed with atmospheric and geometric 
corrections. The atmospheric correction of the Landsat 7 ETM+ data was completed using the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) software, and the top of canopy 
reflectances of Landsat 7 ETM+ data were used for FVC estimation in the further analysis. 
  

Figure 1. Study area and spatial distribution of the field measurement sites (The field measurement
sites were not located in the black stripes).

2.2. Landsat 7 ETM+ Data

Three Landsat 7 ETM+ data, in path 133 and row 33, with cloud coverage of less than 10% in 2012
were selected for this study. The dates that these Landsat 7 ETM+ data sets were obtained were the
closest possible to the dates of the field FVC measurements (Table 1). The exact dates of acquisition of the
three Landsat ETM+ data sets were 24 June, 12 July and 28 August 2012. The Landsat 7 ETM+ data were
downloaded from the United States Geological Survey (USGS) website (http://earthexplorer.usgs.gov/).
They had already been processed with atmospheric and geometric corrections. The atmospheric
correction of the Landsat 7 ETM+ data was completed using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) software, and the top of canopy reflectances of Landsat 7 ETM+
data were used for FVC estimation in the further analysis.

http://earthexplorer.usgs.gov/
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Table 1. Dates of the Landsat 7 ETM+ data acquisition, field FVC measurements, and number of valid
field FVC measurements.

Day 1 Day 2 Day 3

Landsat 7 ETM+ 24 June 2012 12 July 2012 28 August 2012
Field survey data 23 June 2012 10 July 2012 28 August 2012

Number of valid field data 15 19 10

2.3. Field Survey Data

The field survey data were acquired from 25 May to 14 September 2012. Measurements were
taken every 5 days before 23 July and every 10 days thereafter [37,38]. To match the acquisition dates of
the Landsat 7 ETM+ data, field FVC measurements from 23 June, 10 July, and 28 August were selected.
There were 44 valid field FVC measurements that were not located in the stripes of the Landsat 7 ETM+
data, of which 39 were mostly covered by corn, vegetables, orchards and wheat. Five sites were mostly
covered by desert vegetation such as camel thorn (Table 1).

The field FVC measurements were conducted using digital photography. The sample sites were
designated as 10 m× 10 m for the low vegetation types such as corn and 30 m× 30 m for tall vegetation
types such as fruit trees. Nine photos were taken uniformly in every sample site. The photos of low
vegetation types were acquired from the nadir with a long stick equipped with a camera at the end.
For the tall trees in the orchard, a top-down direction was used to take photos of low vegetation under
the tree crown, whereas a bottom-up direction was used to capture the tree crown. The FVC was
calculated from each photo, and the average FVC value of the nine photos of each sample site of low
vegetation types was considered as the true FVC value of the sample site. As for the orchard sample
site, the FVC was calculated using the following equation:

FVC = FVCup + (1 − FVCup) × FVCdown (1)

where FVCup and FVCdown were FVC values extracted from the photos captured by the bottom-up
and top-down directions, respectively.

The FVC of each photo was calculated using an automatic segmentation method [39],
which transformed the photos from the RGB color space to the International Commission on
Illumination (CIE) L*a*b* color space that could more easily identify the green vegetation pixels.
The segmentation method was based on the Gaussian model, which was used to fit a distribution
histogram of green vegetation and background pixels in order to find a suitable threshold value to
segment the image into green vegetation and non-green vegetation pixels. Then, the percentage of
green vegetation pixels for each photo could be obtained as the FVC of this photo. A randomly selected
photo taken in the field and the corresponding segmentation of green vegetation and non-green
vegetation pixels is shown in Figure 2. It can be seen that the segmentation results were visually
satisfactory for FVC extraction from photos in this study.
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2.4. Individual FVC Estimation Methods

2.4.1. Pixel Dimidiate Model

The pixel dimidiate model assumes that a pixel is composed of vegetation and non-vegetation
compositions [24], and that the FVC can be estimated using Equation (2):

FVC = (S− Ssoil)/
(
Sveg − Ssoil

)
(2)

where S is the spectral response of the remote sensing data; Sveg and Ssoil are spectral responses for
a pure vegetation pixel and a pure soil pixel, respectively.

The vegetation index (VI), an important indicator for vegetation growth conditions [40,41],
is usually used in the pixel dimidiate model as the spectral response of remote sensing data to
calculate the FVC. The visible and NIR reflectance are sensitive to vegetation [23,42,43] and can be
used to calculate the VIs (NDVI/EVI), which can characterize the vegetation growth conditions and
minimize the atmospheric influence [1]. Thus, FVC can be estimated using VI instead of S using
Equation (3),

FVC = (VI−VIsoil)/
(
VIveg −VIsoil

)
(3)

Both NDVI and EVI were selected to estimate FVC using the dimidiate pixel model [44,45].
NDVI is the most commonly used indicator of vegetation growth, however, it may be saturated
when the vegetation coverage is very high. EVI can compensate for the limitation of NDVI for it
is sensitive to soil and atmospheric effects. The two VIs are well correlated with leaf area index
(LAI), canopy cover, biomass, and the fraction of absorbed photosynthetically active radiation [46,47].
Moreover, EVI can enhance the vegetation information by reducing the influences from atmosphere
and background [45,46,48]. For the Landsat 7 ETM+ data, NDVI and EVI are calculated by Equations (4)
and (5):

NDVI =
RNIR − RRed
RNIR + RRed

(4)

EVI = G× (RNIR − RRed)/(RNIR + C1 × RRed − C2 × RBlue + L) (5)

where RBlue, RRed and RNIR are the reflectances of the blue, red and NIR bands, respectively. G = 2.5,
C1 = 6.0, C2 = 7.5, and L = 1 [49–51].

2.4.2. TGDVI Model

The TGDVI model was proposed for FVC estimation based on the reflectance characteristics of
vegetation and soil [27]. Furthermore, Jiapaer et al. considered that there were more differences in the
reflectances of SWIR, NIR and red bands for Landsat 5 TM data between vegetation and non-vegetation
pixels in an arid region [27]. Thus, the authors proposed two modified TGDVI models by replacing
the green band by the two SWIR bands of Landsat 5 TM data. The equations of TGDVI and modified
TGDVI for Landsat 7 ETM+ data in this study are listed as following:

TGDVI model:
d =

RNIR − RRed
λNIR − λRed

− RRed − RGreen
λRed − λGreen

(6)

MTGDVI1 model:
d =

RNIR − RRed
λNIR − λRed

− RSWIR5 − RNIR
λSWIR5 − λNIR

(7)

MTGDVI2 model:
d =

RNIR − RRed
λNIR − λRed

− RSWIR7 − RNIR
λSWIR7 − λNIR

(8)

fc =

{
0 i f d ≤ 0

d/dveg i f d > 0
(9)
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where RGreen, RNIR, RRed, RSWIR5, and RSWIR7 are the reflectance of green, NIR, red and two SWIR
bands of Landsat 7 ETM+ data, respectively, and λGreen, λNIR, λRed, λSWIR5, and λSWIR7 are the
corresponding wavelength, respectively. dveg is the d of highly dense vegetation.

2.4.3. Spectral Mixture Analysis

The SMA model is based on the assumption that a pixel’s spectral reflectance is changed by the
spectral reflectance of certain endmembers according to a certain function. The linear SMA model
assumes that the function is linear, and the general form of the linear SMA is:

Ri =
N

∑
j=1

(
f jrij
)
+ ei (10)

where Ri is the reflectance for band i (i = 1, 2, 3, 4, 5, 7 for Landsat 7 ETM+ data in this study), N is the
number of endmembers, rij represents the reflectance of endmember j at band i, f j stands for the
fraction of endmember j in the pixel; and ei is the residual error at band i.

For one pixel, the fractions of all the endmembers are constrained to:

N

∑
j

f j = 1 and f j ≥ 0 (11)

and ei meets the following equation with the least square to minimize the root mean square
error (RMSE):

RMSE =

√√√√ N

∑
i=1

ei/N (12)

where N is the number of spectral bands.
To estimate FVC using Equation (10), the number of valid bands must be more than the number

of endmembers. Because the Landsat 7 ETM+ spectral reflectances of bands 1, 2 and 3 have a strong
correlation, the maximum number of endmembers can be four for Landsat 7 ETM+ data estimating
FVC using the SMA model [30,52]. Therefore, three endmembers SMA (SMA3) and four endmembers
SMA (SMA4) models were investigated in this study. The pixel purity index (PPI) method was used to
select the spectral reflectance of endmembers [53–55].

Because the pixel dimidiate models, the TGDVI models and the SMA models are all empirical
or semi-empirical methods, determination of model parameters plays an important role for FVC
estimation. Based on the distribution characteristics of land cover types in the study area, the SMA4
model selects four endmembers including agriculture crops (e.g., corn), orchards, farmland soil and
desert soil. The summation of abundances of agriculture crops and orchards was considered to be the
FVC of one pixel. Because the spectral responses of agriculture crops and orchards are not so large
(Figure 3) and orchards take little part in the study area, SMA3 selects three endmembers including
agriculture crops, farmland soil and desert soil, and the abundance of agriculture crops was considered
to be the FVC of one pixel. Because the study area may be not large enough, the endmember selection
of pure pixels may be difficult. Therefore, to ensure the selected endmembers are pure, the PPI method
of endmember selection was performed on the whole Landsat 7 ETM+ data on 12 July when the
vegetation was in the most luxuriant period of the three Landsat 7 ETM+ data sets. The spectral
responses of the selected 4 endmembers are shown in Figure 3.



Remote Sens. 2017, 9, 1121 7 of 15
Remote Sens. 2017, 9, 1121  7 of 15 

 

 
Figure 3. The spectral responses of the selected 4 endmembers for the SMA method. 

2.5. Combination Methods 

Different FVC estimation models have their own characteristics which may contain 
complementary information for improving FVC estimation accuracy. Therefore, combining several 
individual FVC estimation models may integrate the advantages of individual models and achieve 
better FVC estimates. Thus, it is necessary to investigate whether the combination methods can 
generate a better FVC estimation result and to find a feasible combination strategy. Two combination 
methods, MLR and BMA methods, were evaluated in order to combine different individual FVC 
estimation models in this study. 

2.5.1. The MLR Method 

The MLR method is a simple regression method used to obtain the coefficients of each individual 
FVC estimation method using the least square method. The equation for the MLR method is 
presented as Equation (13): 

FVC =  (13) 

where FVC is the combined FVC estimation using the MLR method,  is the coefficient of FVC 
estimation from the kth model, K (K = 2, 3, 4, 5, 6, 7) is the number of individual models used in the 
combination process, and  is the FVC estimation from the kth model.  can be estimated using 
the least square method. 

2.5.2. The BMA Method 

For the BMA method, the probability density functions (PDFs) for the individual FVC estimation 
models are weighted by their posterior probability, and the predictive PDF for the combination FVC 
estimation is a weighted average of the individual models’ PDFs [56–59]. Therefore, the BMA method 
combines FVC estimates by adjusting the predictive PDF to achieve a good fit to the field FVC 
measurements. According to the law of total probability, the predictive PDF, p(y), can be expressed 
as 

( | , , … , ) = ( | ) ∙ ( | ) (14) 

where y is the predictive variable, { , , … , } is the ensemble model for variable y, K (K = 2, 3, 4, 5, 
6, 7) is the number of the combined model. ( | ) is the predictive PDF when using model  
alone. ( | )  is the posterior probability that model  is correct for the given field FVC 

Figure 3. The spectral responses of the selected 4 endmembers for the SMA method.

2.5. Combination Methods

Different FVC estimation models have their own characteristics which may contain
complementary information for improving FVC estimation accuracy. Therefore, combining several
individual FVC estimation models may integrate the advantages of individual models and achieve
better FVC estimates. Thus, it is necessary to investigate whether the combination methods can
generate a better FVC estimation result and to find a feasible combination strategy. Two combination
methods, MLR and BMA methods, were evaluated in order to combine different individual FVC
estimation models in this study.

2.5.1. The MLR Method

The MLR method is a simple regression method used to obtain the coefficients of each individual
FVC estimation method using the least square method. The equation for the MLR method is presented
as Equation (13):

FVC =
K

∑
k=1

ak f̃k (13)

where FVC is the combined FVC estimation using the MLR method, ak is the coefficient of FVC
estimation from the kth model, K (K = 2, 3, 4, 5, 6, 7) is the number of individual models used in the
combination process, and f̃k is the FVC estimation from the kth model. ak can be estimated using the
least square method.

2.5.2. The BMA Method

For the BMA method, the probability density functions (PDFs) for the individual FVC estimation
models are weighted by their posterior probability, and the predictive PDF for the combination
FVC estimation is a weighted average of the individual models’ PDFs [56–59]. Therefore, the BMA
method combines FVC estimates by adjusting the predictive PDF to achieve a good fit to the field FVC
measurements. According to the law of total probability, the predictive PDF, p(y), can be expressed as

p(y| f1, f2, . . . , fK) =
K

∑
k=1

p(y| fk)·p( fk|yT) (14)

where y is the predictive variable, { f1, f2, . . . , fK} is the ensemble model for variable y, K (K = 2, 3, 4, 5, 6, 7)
is the number of the combined model. p(y| fk) is the predictive PDF when using model fk alone.



Remote Sens. 2017, 9, 1121 8 of 15

p( fk|yT) is the posterior probability that model fk is correct for the given field FVC measurement yT ,
and can generally be regarded as a statistical weight wk reflecting how well the model matches the

given field survey data, and
K
∑

k=1
wk = 1. It seems reasonable to assume that the conditional PDF p(y| fk)

meets a normal distribution with a mean f̃k and a standard deviation σ, that is, F| fk ∼ N( f̃k, σ2).
Therefore, the conditional expectation E, which is the predictive FVC of the BMA method combining
the FVC estimates from the individual models, can be expressed as:

E(y| f1, f2, . . . , fK) =
K

∑
k=1

wk· f̃k (15)

where f̃k is the estimated FVC of the kth model.

2.6. Accuracy Assessment

To evaluate the performances of the individual FVC estimation models and those of the
combination methods, three regular accuracy assessment indices including the root mean square
error, the determination coefficient (R2) and bias, were used in this study. The RMSE was used to
measure the deviation between the measured values and the predicted values. R2 was an index that
measured the linear correlation degree between the measured values and the predicted values. The bias
could measure the offset of the estimated results compared with the field survey data as a whole.

3. Results

In the study area, agriculture crops and desert soil were the major vegetation and soil types.
The endmembers of agriculture crops and desert soil were regarded as pure vegetation and pure
soil pixels in the pixel dimidiate models and the TGDVI models, respectively. Therefore, in the pixel
dimidiate models, the NDVIveg, NDVIsoil , EVIveg and EVIsoil derived from the spectral reflectances of
the endmembers of agriculture crops and desert soil were 0.941, 0.068, 0.919 and 0.066, respectively.
Similarly, the spectral reflectance of agriculture crops was used to calculate the parameter dveg in
the TGDVI models, and the values of dveg for TGDVI, MTGDVI1 and MTGDVI2 were 3.471, 3.825
and 3.666, respectively.

Figure 4 shows the FVC estimates from the seven individual models and the two combination
methods (MLR and BMA) on 10 July 2012, in the most luxuriant period of vegetation. It can be seen that
the spatial distribution of FVC was coincident with the actual land cover distribution. The farmland
regions presented high FVC values, whereas desert regions presented low FVC values. Comparing
the FVC estimates from the individual models and the two combination methods (Figure 4), it can be
found that pixel dimidiate models using NDVI (A), EVI (B), and SMA4 (G) had higher FVC values,
and the others had lower values in the farmland. In addition, TGDVI models (C, D and E), SMA3 (F)
and SMA4 (G) had lower FVC values in the low FVC regions. The MLR (H) and BMA (I) combination
methods had similar performances. The result of SMA3 (E) was in the middle level compared to
the other six individual models and was similar to the results of the two combination methods.
In the northwest part of the farmland, the results from (A) to (E) could distinguish the river from the
desert and the farmland, and the river region had very low FVC values because the VIs used in these
models could distinguish water from other land cover types. However, the results from SMA3 and
SMA4 showed slightly poorer performance in the river region because there was no river endmember
selected. The result from the MLR method in this region was also influenced. However, the BMA
method performed well in this condition. To obtain more accurate FVC estimates in the SMA models,
the water region could be masked before FVC estimation.
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In addition, the bias of the TGDVI models became larger when the FVC had larger values. The SMA3 
(F) had the best performance of the seven individual models with the lowest RMSE and bias as well 
as the highest R2. On the other hand, the SMA4 (G) model had a relatively poor performance with 
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Figure 4. FVC estimates from the individual models and the two (multiple linear regression (MLR)
and Bayesian model averaging (BMA)) combination methods. (A) Pixel dimidiate model using
normalized difference vegetation index (NDVI); (B) Pixel dimidiate model using enhanced vegetation
index (EVI); (C) three gradient differential vegetation index (TGDVI); (D) modified three gradient
differential vegetation index 1 (MTGDIV1); (E) modified three gradient differential vegetation index
2 (MTGDVI2); (F) spectral mixture analysis with three endmembers (SMA3) model and (G) spectral
mixture analysis with four endmembers (SMA4) model; (H) MLR method using seven individual
models; (I) BMA method using seven individual models.

The accuracy assessment indices (R2, RMSE and bias) of the seven individual models, and the
two combination methods (MLR and BMA) were calculated based on field FVC measurements
(Figure 5). The accuracy assessment was coincident with Figure 4. For the seven individual models,
the pixel dimidiate models using NDVI (A) and EVI (B) had higher R2, whereas the FVC estimates
were overestimated compared to the field FVC measurements. The bias of the pixel dimidiate model
using EVI was higher than that of using NDVI. For the TGDVI models, the R2 and RMSE of MTGDIV1
(D) and MTGDVI2 (E) were higher than that of TGDVI (C), and the biases of the three TGDVI models
were negative which indicated that these models underestimated the actual values. In addition, the
bias of the TGDVI models became larger when the FVC had larger values. The SMA3 (F) had the best
performance of the seven individual models with the lowest RMSE and bias as well as the highest
R2. On the other hand, the SMA4 (G) model had a relatively poor performance with regards to FVC
overestimation compared with the other six models. This result might have been caused by the orchard
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endmember, which only occupied a small part of the study area. As for the two combination methods,
the MLR method had the best performance (R2 = 0.913, RMSE = 0.063, bias = 0) compared to the seven
individual models and the BMA method. In addition, the BMA method (R2 = 0.898, RMSE = 0.069,
bias = 0.002) also performed better than the seven individual models. This could indicate that the
combination strategies could effectively improve FVC estimation accuracy.

 

Figure 5. Accuracy assessment of the individual models and the two (MLR and BMA) combination
methods. (A) Pixel dimidiate model using NDVI; (B) Pixel dimidiate model using EVI; (C) TGDVI;
(D) MTGDIV1; (E) MTGDVI2; (F) SMA3 model and (G) SMA4 model; (H) MLR method using seven
individual models; (I) BMA method using seven individual models.

4. Discussion

Different FVC estimation models have their own advantages and complementary information for
FVC estimation. The two combination methods can both effectively combine the advantages of each
individual model and achieve better FVC estimates. The MLR method obtains the coefficients of each
individual model in the combinations, which does not require the summation of the coefficients equal
to 1. Therefore, it can combine the results from different models to achieve a better performance even
though they are all overestimated or underestimated. Different from the MLR method, BMA method
requires the summation of the weights of each individual model equal to 1. Therefore, when the
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individual models are all overestimated or underestimated, the combination result will still be
overestimated or underestimated.

Based on the number and type of individual models used, the combination methods may achieve
different FVC estimation results. Therefore, it is important to investigate how many models and which
models are suitable to be used in the combination methods in order to achieve a better result. Tables 2
and 3 show the results using MLR and BMA methods based on different combinations of individual
models, when the best accuracy is achieved in a certain number of individual models used. It can be
seen that R2 increases and RMSE decreases with an increase in the number of individual models used
in the MLR method (Table 2). However, the accuracy increase is small when the number of individual
models used reaches a certain level. It can be seen that when two suitable models are combined
a good performance can be achieved, and adding more models in the MLR method only presents
a small improvement. Therefore, it can be concluded that a satisfactory result can be achieved using
two suitable individual models and that there is no obvious improvement in accuracy by adding
more models to the MRL combination method. Moreover, the coefficients of individual models can be
positive or negative and the summation of coefficients in each combination varied from 0.86 to 1.29.
Therefore, there is no direct relationship between the summation of coefficients and the accuracy.

Table 2. Accuracy performances of different combinations of individual models using the MLR method
(K standards for the number of individual models used in the combination method). RMSE is the root
mean square error. R2 is determination coefficient.

K NDVI EVI TGDVI MTGDIV1 MTGDVI2 SMA3 SMA4 Sum(ak) R2 RMSE Bias

7 0.2032 0.2627 −0.1904 −3.4923 2.8553 2.4834 −1.0023 1.1196 0.9134 0.0629 −0.0008
6 0.1184 0.2576 — −4.4273 3.6012 2.3678 −0.8536 1.0641 0.9134 0.0629 −0.0009
5 0.305 — — −4.8727 4.022 2.412 −0.814 1.0523 0.9133 0.0629 −0.0007
4 0.2533 — 0.1862 — — 0.2171 0.3434 1.2909 0.912 0.0634 −0.0005
3 — — — −5.5966 4.7892 1.6725 — 0.8651 0.9103 0.064 0.0000
2 0.6726 — — — — 0.2405 — 0.9131 0.9059 0.0658 −0.0021

Table 3. Accuracy performances of different combinations of individual models using the BMA method
(K standards for the number of individual models used in the combination method).

K NDVI EVI TGDVI MTGDIV1 MTGDVI2 SMA3 SMA4 Sum(ak) R2 RMSE Bias

7 0.1661 0.1198 0.1602 0.1219 0.1324 0.1998 0.0998 1 0.8957 0.0693 0.0016
6 0.1869 0.1364 — 0.1519 0.1651 0.2457 0.1141 1 0.8965 0.0697 0.0102
5 0.1869 0.1364 0.2054 — 0.1705 0.2553 — 1 0.8973 0.0686 −0.0005
4 0.2533 0.1862 — 0.2171 — 0.3434 — 1 0.9001 0.0688 0.0097
3 0.3251 — 0.302 — — 0.3729 — 1 0.9003 0.0683 −0.005
2 0.418 — — — — 0.582 — 1 0.9043 0.0692 0.0146

As for the BMA combination method, the R2 of the combinations is decreased and there is almost
no improvement in RMSE as the number K increased (Table 3), which is different from the case of the
MLR method. The BMA method can achieve good accuracy when the two individual models, including
the pixel dimidiate model using NDVI and the SMA3 model, are combined, and more individual
models used in the BMA method cannot improve the FVC estimation accuracy. The coefficients in
the BMA method are all positive and the summation of coefficients in each combination is equal to 1.
This may be the reason why accuracies are different from those in the MLR method. Therefore, it can
be indicated that the BMA method can achieve a satisfactory result when two suitable individual
models are used, and the accuracy will slightly decrease when more individual models are used in the
combination. Additionally, the pixel dimidiate model using NDVI and the SMA3 model are present
in almost all the combinations using the MLR and BMA methods. It can be indicated that the pixel
dimidiate model using NDVI and the SMA3 model are two stable methods for FVC estimation in the
agriculture region using Landsat 7 ETM+ data.

There are also some potential limitations regarding this study. Firstly, only Landsat 7 ETM+ data
were used in this study, whereas the performances of FVC estimation models and the combination
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methods might be influenced by the remote sensing data according to their technical characteristics
such as spatial resolution, spectral bands, and radiometric resolution. Therefore, more remote sensing
data from different sensors should be investigated in order to evaluate their performance on FVC
estimation in a more complex environment. In addition, only NDVI and EVI were used in the pixel
dimidiate model, and more vegetation indices could be used for FVC estimation, such as soil adjusted
vegetation index (SAVI) and modified SAVI (MSAVI) [26,60,61]. Therefore, more FVC estimation
methods using remote sensing data could be evaluated in future work. Furthermore, the number
of validation samples was not large and many of them exhibited an FVC value between 0.4 to 0.8,
thus the study was limited to medium-to-high green vegetation cover in an arid area with bright soil.
More validation samples covering various vegetation types and growth conditions would be a good
complement to this study, which could be future work.

5. Conclusions

This study investigated the performances of several FVC estimation models using Landsat 7
ETM+ data in the oasis of the Heihe region and proposed two combination methods to improve
FVC estimation accuracy. Based on the validation results, the following conclusions could be made:
(1) the SMA3 achieved the best performance of the individual models for FVC estimation in this
study; (2) the MLR and BMA combination methods could both integrate the advantages of individual
models and effectively improve FVC estimation accuracy; and (3) satisfactory results could be achieved
by combining two appropriate individual models using both MLR and BMA methods, and adding
more models in the combination methods had little effect on improving FVC estimation accuracy.
Though combination methods can achieve better FVC estimation accuracy, improving individual
models and checking the possible generalization of these models is also an important issue for
further research.
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