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Abstract: Recently, studies have focused more attention on surface feature extraction using thermal
infrared remote sensing (TIRS) as supplementary materials. Innovatively, in this paper, using
three-date (winter, early spring, and end of spring) TIRS Band 10 images of Landsat-8, we proposed
an empirical normalized difference of a seasonal brightness temperature index (NDSTI) for enhancing
a built-up area based on the contrast heat emission seasonal response of a built-up area to solar
radiation, and adopted a decision tree classification method for the rapidly accurate extraction of
the built-up area. Four study areas, including one major experimental study area (Tangshan) and
three verification areas (Minqin, Laizhou, and Yugan) in different climate zones, respectively, were
used to empirically establish the overall strategy system, then we specified constrained conditions
of this strategy. Moreover, we compared the NDSTI to the current built-up indices, respectively,
for extracting the built-up area. The results showed that (1) the new index (NDSTI) exploited the
seasonal thermal characteristic variation between the built-up area and other covers in the time
series analysis, helping achieve more accurate built-up area extraction than other spectral indices;
(2) this strategy could effectively realize rapid built-up area extraction with generally satisfied overall
accuracy (over 80%), and was especially excellent in Tangshan and Laizhou; however, (3) it may be
constrained by climate patterns and other surface characteristics, which need to be improved from
the view of the results of Minqin and Yugan. In summary, the method developed in this study has
the potential and advantage to extract the built-up area rapidly from the multi-seasonal thermal
infrared remote sensing data. It could be an operative tool for long-term monitoring of built-up areas
efficiently and for more applications of thermal infrared images in the future.

Keywords: built-up area; seasonal response pattern; thermal infrared remote sensing; brightness
temperature; decision tree classification

1. Introduction

A built-up area is generally defined as any anthropogenic materials primarily associated with
human activities and habitation through the construction of buildings and structures [1], with a
particular focus on urban, rural residential, and industrial land. As a key place of material and
energy input, transformation and output, built-up areas have a higher population density and
various social-environmental problems when compared to their surroundings [2–4]. Knowledge
about the extent and pattern of built-up areas can provide the necessary information for expansion
monitoring, environmental change and risk assessment, and disaster management and government
decision-making [5,6] in built-up areas.
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Given the advantage of large and repetitive coverage from satellite imagery, remote sensing
provides an excellent cost-effective and time-saving approach for mapping built-up lands [7] and
for understanding built-up area sprawl over time [7–10]. Various approaches have been developed
for extracting built-up areas via different types of remote sensing imagery in recent years such as
polarimetric target decomposition (PTD), the correlation coefficient method, or the support vector
machines (SVM) method derived from radar data [11–13], a textural signal characteristics measurement
derived from panchromatic satellite data [14]. Recently, built-up areas have tended to be extracted
from high spatial resolution images. For example, Li et al. [15] proposed an approach for built-up
area detection from high-resolution remote sensing images in an unsupervised way. Chen et al. [16]
employed a data field-based method for the automated detection of built-up areas from high-resolution
satellite images. The use of high-resolution images enabled an accurate location and the shape of the
built-up areas, but was limited to efficiency and coverage [17]. In addition, various extraction methods,
such as the supervised classification and unsupervised classification method [18,19], object-oriented
classification [20,21], and decision-tree classification [6,22,23], have been widely adopted for built-up
area mapping. Due to the high spatial and spectral heterogeneity of the built-up areas, the automatic
methods usually have complex steps or limiting accuracy, leading to time consumption and instability.

Recently, some authors have begun to use the thermal infrared remote sensing (TIRS) data as
ancillary information for improving surface feature extraction combing other visible-spectral indices,
vegetation indices, and image transformation methods. Novelli et al. [24] and Apollonio et al. [25] took
the brightness temperature into account, and identified nine synthetic bands as input data for mapping
land cover changes in Italy. Tripathi [26] proposed a new method for built-up area extraction, which
integrated temperature data, NDVI, and the modified normalized difference water index to improve the
overall accuracy. Novelli and Tarantino [27] combined four normalized difference indices (i.e., the green
NDVI, rescaled brightness temperature, plastic surface index, and normalized difference sandy index
(NDSI)) for agricultural plastic cover detection using Landsat-8 Operational Land Imager (OLI) and
TIRS data. These studies of built-up area monitoring have included thermal bands as supplementary
materials, but have focused little on thermal characteristics in a time series for extracting information.
In fact, compared to the surrounding areas, built-up areas are mainly constructed with asphalt and
concrete materials, and tend to have a low specific heat capacity [28], suggesting that brightness
temperature can help separate built-up areas from non-built-up areas [29–31].

Therefore, based on the response variation to solar radiation of built-up areas and their
surroundings during distinctive seasons—particularly rapid heat dissipation in the winter and quickly
absorbing higher solar radiation in the spring—this paper emphasizes multi-temporal thermal infrared
bands for rich information and details, and attempts to develop an empirical normalized difference
index of seasonal bright temperature (NDSTI) using three-date thermal infrared Band 10 data of
Landsat-8. A decision tree classification method was adopted for realizing the rapid extraction of
built-up areas in the major experimental study area (Tangshan). Furthermore, the proposed NDSTI
was compared with other widely known spectral indices for rapid built-up area extraction, and this
strategy was specified in different climate zones including Minqin, Laizhou, and Yugan for its potential,
which is potentially replicable at other regions.

2. Methodology

The proposed methodology for the rapid extraction of built-up areas mainly includes four
parts: data acquisition and pre-processing (including image clipping, radiometric calibration,
and atmospheric correction), multi-seasonal brightness temperature conversing, built-up area
extraction, and accuracy assessment. The specific process details are shown in Figure 1. First, the NDSTI
was established through interpretation signs and spectral characteristic analysis to enhance the thermal
response of the built-up area in the experimental study area. A decision tree classification method was
adopted for rapid built-up area extraction. In addition, Auxiliary OLI Band 4 was used to eliminate the
noise of dark materials (mountain and water). The random sampling method and confusion matrix
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was selected to assess the accuracy of the extracted results. Moreover, we compared the new proposed
index (NDSTI) to the state-of-the-art approaches, and another three areas with different annual climate
pattern (Minqin, Laizhou, and Yugan) were used to verify the suitability of the method.
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Figure 1. Flowchart of the extraction for the built-up area.

2.1. Data Sources and Pre-Processing

The major experimental study area, Tangshan City, is located in the northeast of Hebei province,
North China (ranging from 117◦31′ to 119◦19′E and from 38◦55′ to 40◦28′N) (Figure 2b), it has
a sub-humid warm temperate monsoon climate with an average temperature of −1.5 ◦C, 5 ◦C,
and 19.5 ◦C in February, March, and May, respectively. Furthermore, three verification areas with
different annual climate patterns were validated. One was a subset from Minqin, which is located in
the Hexi Corridor, Gansu Province, Northwest China (Figure 2c) with a temperate arid continental
climate. The second subset was from Laizhou, which is located in the northeast of Shandong Province,
East China (Figure 2d) with the sub-humid warm temperate monsoon climate. The third subset was
from Yugan, which is located in the northeast of Jiangxi Province, Southeast China (Figure 2e) with a
subtropical humid monsoon climate. Details of the study area are shown in Table 1.
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In terms of selecting the thermal infrared band, TIRS Band 10 was only used as the calibration 
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Figure 2. (a) Locations of experimental study area (Tangshan), and verification areas (Minqin, Laizhou,
and Yugan), (b) 2016 Tangshan, (c) 2015 Minqin, (d) 2016 Laizhou; and (e) 2016 Yugan false color
composites of bands 7, 6, and 4 (R, G, and B) with linear 2% stretch, and testing samples (red dots)
for accuracy assessment in the four areas.

Table 1. Study area situation and image list information.

Area Name Year Date Mean
Temperature Path/Row Range

Tangshan 2016
2/7 −1.5 ◦C 122/32

117◦31′–119◦19′E;
38◦55′–40◦28′N3/10 5 ◦C 122/32

5/13 19.5 ◦C 122/32

Minqin 2015
1/2 −8 ◦C 131/33

103◦00′–103◦08′E;
38◦32′–39◦38′N2/19 −4.5 ◦C 131/33

6/11 21 ◦C 131/33

Laizhou 2016
1/8 −2.5 ◦C 120/34

119◦47′–120◦09′E;
37◦10′37◦27′N3/12 9 ◦C 120/34

7/2 28 ◦C 120/34

Yugan 2016
2/16 9 ◦C 121/40

116◦32′–16◦44′E;
28◦38′–28◦47′N3/3 14.5 ◦C 121/40

6/23 26.5 ◦C 121/40
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Therefore, this study selected respective three-date Landsat-8 images of four areas that could
reflect the distinctive thermal pattern characteristics of the target built-up area (Table 1). Each had little
noise from clouds and was downloaded from the United States Geological Survey website [32]. In terms
of selecting the thermal infrared band, TIRS Band 10 was only used as the calibration parameters of
the TIRS 11 thermal infrared band are still unstable and have noise interference [33].

Landsat 8 Level 1 products in terrain-corrected ortho-rectified formats (L1T) were geometrically
corrected using a digital elevation model to eliminate the visual error caused by regional
topography [34]. Therefore, after image clipping, the primary false composite color image data were
converted to top of atmosphere (ToA) radiance using a radiometric calibration module, and images
were atmospherically corrected using the FLAASH atmospheric correction module for radiance to
reflectance conversion. The basic parameter values were obtained from the header files downloaded
with the satellite image data, and all image pre-processing modules used are in The Environment for
Visualizing Images (ENVI) version 5.1.

2.2. Brightness Temperature

The brightness temperatures derived from the Landsat thermal band data could obtain good
approximate (within 1–3 ◦C) ground temperature values on clear days [35,36]. Further calibration was
required to estimate emissivity using local soil and vegetation information [37,38], and may obtain
greater inversion results after correcting the process using the available approaches. Considering
complex operations, we adopted brightness temperature directly as a substitute for land surface
temperature. The radiation brightness temperature inversing was mainly comprised of the following
two steps:

First, the digital numbers (DNs) of Thermal Band 10 were converted to ToA radiance using
Equation (1).

Lλ = ML ×Qcal + AL (1)

where Lλ is the ToA spectral radiance (Watt/(m2·srad·µm); Qcal is the DNs of the band being
processed; ML is the band-specific multiplicative rescaling factor (RADIANCE_MULT_BAND_x,
where x is the band number) from the header file; AL is the band-specific additive rescaling factor
(RADIANCE_ADD_BAND_x, where x is the band number) from the header file.

Second, the ToA radiance was converted to at-satellite brightness temperature according to the
Planck Equation (2):

T =
K2

ln
(

K1
Lλ

+ 1
) − 273.15 (2)

where T is the At-satellite brightness temperature (◦C); K1 is the band-specific thermal conversion
constant from the header file, for TIRS Band 10, K1 = 775.89 W/(m2·sr·µm); K2 is the band-specific
thermal conversion constant from the header file, for TIRS Band 10, K2 = 1321.08 K.

In this study, the brightness temperature of three-date images was obtained using the above
equations, and the results of the experimental study area were combined as Red, Green, and Blue
respectively, to the false color composite of brightness temperature (Figure 3).
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brightness temperature of the built-up area increased rapidly in spring, whereas there was a similar 
elevating response between winter and early spring. 

 
Figure 4. (a) The typical transect line AB comprising built-up area and other land-use types on false 
color composite image of three-date brightness temperature in the experimental study area; (b) the 
link-box-plot of the built-up area (blue box) and non-built-up area (yellow-brown) on transect line 
AB. 

Figure 3. The false color composite image of the three-date brightness temperature (7 February (R),
10 March (G), and 13 May (B)) in experimental study area. The line AB is a typical transects line
comprising the build-up area and others. C, D, and E are the typical urban, rural areas in plain,
and rural mountain areas, respectively.

2.3. Built-Up Area Extraction

2.3.1. The Index for the Built-Up Area Extraction Tree

First, we compared the false color composite visible-infrared image (13 May, Figure 2) and the
false color composite image of the three-date brightness temperature (Figure 3, Table 2) visually.
Based on Table 2, the built-up areas were distinctly separated with other covers in the false color
composite image of the three-date brightness temperature, and more homogenous in color. Based on a
simple visual interpretation, we created a brightness temperature temporal link-box-plot for the typical
transect line AB in the experimental study area (Figure 4). Compared to the contexts, the brightness
temperature of the built-up area increased rapidly in spring, whereas there was a similar elevating
response between winter and early spring.
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Remote Sens. 2017, 9, 1126 7 of 18

Table 2. The comparison of interpretation signs in the experimental study area.

The OLI False Color Composite
Visible-Infrared Image (Band 7
(R), Band 6 (G), and Band 4 (B))

The False Color Composite
Image of Three-Date Brightness
Temperature (7 February (R), 10

March (G) and 13 May (B))

Interpretation signs
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𝐵𝐵3−𝐵𝐵2
𝐵𝐵3+𝐵𝐵2

× 𝐵𝐵2−𝐵𝐵1
𝐵𝐵2+𝐵𝐵1

 values of other land-use types (mainly including body of water) showing negative 
were returned to zero for unified treatment to satisfy the NDSTI’s calculation condition. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

⎩
⎪
⎨

⎪
⎧ 0, 𝑖𝑖𝑖𝑖 

𝐵𝐵3 − 𝐵𝐵2

𝐵𝐵3 + 𝐵𝐵2
×
𝐵𝐵2 − 𝐵𝐵1

𝐵𝐵2 + 𝐵𝐵1
≤ 0

�
𝐵𝐵3 − 𝐵𝐵2

𝐵𝐵3 + 𝐵𝐵2
×
𝐵𝐵2 − 𝐵𝐵1

𝐵𝐵2 + 𝐵𝐵1
 , 𝑖𝑖𝑖𝑖 

𝐵𝐵3 − 𝐵𝐵2

𝐵𝐵3 + 𝐵𝐵2
×
𝐵𝐵2 − 𝐵𝐵1

𝐵𝐵2 + 𝐵𝐵1
> 0

  (3) 

where B1, B2, and B3 represent the brightness temperature of winter, early spring, and the end of 
spring. For experimental study area, B1, B2, and B3 represent the brightness temperature of the 7 
February, 10 March, and 13 May, respectively. 

The establishment of the NDSTI further enlarged the difference in seasonal thermal responses 
of the built-up and non-built-up areas, which were confirmed by statistical analysis in Table 3 
(showing the greatest absolute value of t (|t| = 203.77)). Based on the NDSTI, determining the 
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The two groups, 80 built-up area and 141 non-built-up area pixels on the transect line AB (Figure 4),
further used the Student’s t-test in the Statistical Product and Service Solutions (SPSS) version 19.0
to test whether the brightness temperature difference between an average of the two samples was
significant on three dates, respectively (7 February, 10 March, and 13 May), and the NDSTI between
the two groups was significant. Table 3 shows that all difference of brightness temperature of two
groups was extremely significant (p < 0.01) in the 99% confidence interval, especially on 7 February
(t = −47.47).

Table 3. The statistical analysis for brightness temperature (◦C) and normalized difference of seasonal
brightness temperature index (NDSTI) of the built-up area and non-built-up area.

Built-Up Area Non-Built-Up Area Student’s
t-Test

Min Max Mean SD Min Max Mean SD t P

brightness
temperature

2/7 3.60 5.77 4.65 0.52 7.61 9.89 8.68 0.62 −47.47 0.00
3/10 7.42 10.73 9.42 0.61 12.07 14.73 13.35 0.68 −40.83 0.00
5/13 25.29 27.78 26.66 0.83 22.52 26.11 24.13 0.83 20.47 0.00

NDSTI 0.44 0.48 0.46 0.01 0.21 0.24 0.23 0.01 203.77 0.00

According to brightness temperature seasonal characteristic analysis in distinctive spring and
winter seasons, this paper established an empirical normalized difference seasonal brightness
temperature index (NDSTI) for built-up extraction, the expression of NDSTI as Equation (3), which
was achieved through the Band Math module in ENVI 5.1. During the process of calculation,
the B3−B2

B3+B2 ×
B2−B1
B2+B1 values of other land-use types (mainly including body of water) showing negative

were returned to zero for unified treatment to satisfy the NDSTI’s calculation condition.

NDSTI =

{
0, i f B3−B2

B3+B2 ×
B2−B1
B2+B1 ≤ 0√

B3−B2
B3+B2 ×

B2−B1
B2+B1 , i f B3−B2

B3+B2 ×
B2−B1
B2+B1 > 0

(3)

where B1, B2, and B3 represent the brightness temperature of winter, early spring, and the end of
spring. For experimental study area, B1, B2, and B3 represent the brightness temperature of the
7 February, 10 March, and 13 May, respectively.
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The establishment of the NDSTI further enlarged the difference in seasonal thermal responses of
the built-up and non-built-up areas, which were confirmed by statistical analysis in Table 3 (showing
the greatest absolute value of t (|t| = 203.77)). Based on the NDSTI, determining the optimal threshold
for separating the built-up area from other land use types is vital for built-up extraction. The Jenks
natural breaks classification algorithm, which is a map classification algorithm proposed by Jenks, was
applied to provide the natural points of the NDSTI histogram statistics. Its principle is a method of
data clustering based on the maximum variance between groups and the minimum variance within
the group in order to divide optimally different values into different classes [39,40]. The reliability of
the algorithm has been widely tested in various environments and commonly used in Geographic
Information Systems (GIS) applications [41]. For this study, we used the Jenks algorithm in ArcGIS
(version 10.3) to determine the optimal threshold value for extracting the built-up area with simple
steps. The NDSTI statistical histogram and two natural breakpoints in ArcGIS are shown in Figure 5.
For the empirical study area (Tangshan), 0.39–1.0 was given as the threshold interval of the built-up
area (Figure 5). The optimal threshold determination process was operated again in ArcGIS for other
areas due to the variation of brightness temperature in different climate zones.
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Figure 5. The histogram of NDSTI and the threshold interval of the built-up area in the Tangshan
study area.

As the extraction results of the built-up area with only NDSTI (0.39–1.0) through simple decision
tree segmentation shows, there was still noise generated by mountain shadow as the varied topography
and solar elevation angle resulted in the further complication of energy distribution received from solar
radiance. Considering that vegetation areas and mountain shadows normally have low reflectivity,
but that built-up areas have high reflectivity in the red band (0.630–0.680 µm), we used the NDSTI
and Auxiliary OLI Band 4 (NDSTI-Red) to eliminate the noise of the mountain shadow and vegetation
area hidden inside the built-up area. The optimal segmentation threshold was identified as 0.10 using
training samples of the noise area (mountain shadow and vegetation area) and the built-up area after
several tests.

A simple two-step decision tree in the experimental study area was adopted in this study (Figure 6).
In post-classification processing, the Sieve Classes Module of ENVI5.1 was used to solve the problem
of isolated pixels occurring in classification images, thus reducing the phenomenon “salt and pepper”.
The Sieving Classes algorithm removes isolated classified pixels using blob grouping [42]. A 3 × 3
median filter was applied to smooth the classified images and the group minimum threshold was
entered as nine in this paper. It first looked at the neighboring eight pixels to determine if a pixel was
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grouped with pixels of the same class. Then, those pixels were removed from the class if the number
of pixels in a class that was grouped was less than the value entered.Remote Sens. 2017, 9, 1126  9 of 18 
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Figure 6. The decision tree for built-up area extraction in experimental study area.

2.3.2. Accuracy Assessment

The accuracy assessment includes the acquisition of test samples and the generation of the
confusion matrix [43]. Random sampling is one of the most popular methods of random or probability
sampling in frequentist statistical procedures [44], which eliminates bias by giving all individuals an
equal chance to be chosen. Moreover, its representativeness of the overall means that cost is lower and
data collection is faster than measuring all the locations. This method has also been employed to select
the points to quantitatively examine omission and commission errors of land cover/use classification
and mapping, as a measure of accuracy assessment [26,45]. Considering the cover proportion of the
experimental study area, the distribution of the built-up area in the mountain, urban, and rural areas,
the test samples consisted of 500 random points (pixels) generated in Tangshan using a stratified
random sampling technique as shown in Figure 2b. The samples were judged in Google Earth software
through a visual interpretation of the study area, and finally two strata, the built-up area (125 random
points) and the non-built-up area (375 random points), were created.

The testing samples were converted to the regions of interest (ROIs) in ENVI 5.1, and were
overlaid onto the classification result images to generate the confusion matrix with the Confusion
Matrices Using Ground Truth ROIs tool. Both the extraction results of the simple segmentation of the
image from the NDSTI and NDSTI-Red were assessed quantitatively with the producer accuracy, user
accuracy, overall accuracy, and kappa coefficient.

2.4. Comparison with Other Methodologies

Recently, other spectral index-based methodologies have been widely applied for built-up area
extraction. To demonstrate the potential application value of NDSTI-Red, this study examined and
compared the performance of the state-of-the-art approaches, i.e., the urban index (UI), the normalized
difference built-up index (NDBI), the visible green-based built-up indices (VgNIR-BI), and the visible
red-based built-up indices (VrNIR-BI). The NDBI was used to map urban areas by exploiting the
spectral response difference of built-up lands in the NIR and SWIR1 portions of the electromagnetic
spectrum (Equation (4)) [46]. Based on the same principle, the UI was designed to detect updated
information about the conditions of urban areas from satellite images in the NIR and SWIR2 channels
(Equation (5)) [47]. Two Vis-based indices, i.e., the VgNIR-BI and the VrNIR-BI, were proposed as
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techniques for extracting the built-up areas from the visible green and red channels, respectively,
in combination with the NIR channel (Equations (6) and (7)) [6].

NDBI =
ρSWIR1 − ρNIR
ρSWIR1 + ρNIR

(4)

UI =
ρSWIR2 − ρNIR
ρSWIR2 + ρNIR

(5)

VgNIR− BI =
ρGreen − ρNIR
ρGreen + ρNIR

(6)

VrNIR− BI =
ρRed − ρNIR
ρRed + ρNIR

(7)

where ρGreen, ρRed, ρNIR, ρSWIR1, and ρSWIR2 refer to the atmospherically corrected surface reflectance
values of Band 3, Band 4, Band 5, Band 6, and Band 7 of the Landsat-8 OLI image, respectively.

Taking Tangshan as a case, four typical spectral indices were computed for the Landsat-8
OLI pre-processed image on 13 May (i.e., the date with high spectral variability in visible-infrared
bands) according to Equations (4)–(7) in the ENVI 5.1 module Band Math. The Jenks natural breaks
classification algorithm was also used to find the appropriate threshold that separates the built-up
area from the non-built-up area. The optimal thresholding values shown in ArcGIS were −0.09, −0.16,
0.23, and 0.23 for the NDBI, UI, VgNIR-BI, and the VrNIR-BI images, respectively. To assess the
accuracy of the four spectral built-up indices (NDBI, UI, VgNIR-BI, and VrNIR-BI), we derived their
respective overall accuracy, producer accuracy, user accuracy, and kappa coefficient using the same
testing samples as the Tangshan study area.

2.5. Validation in Another Three Areas

To test its suitability in other areas, we selected another three typical areas with different annual
climate patterns (Minqin, Laizhou, and Yugan) using the same built-up extraction strategy from
thermal infrared images on the appropriate date (Table 1). For threshold determination, we used the
same method in the verification areas (Minqin, Laizhou, and Yugan) in ArcGIS. The NDSTI histogram
results in ArcGIS provided the natural breakpoints of the built-up area, which were 0.85–3, 0.51–1,
and 0.25–0.33 in Minqin, Laizhou, and Yugan, respectively. There was still minor noise generated by
the mountain shadow and vegetation area in Laizhou and Yugan, and Band 4 (optional segmentation
threshold 0.12, 0.80 in Laizhou and Yugan, respectively) was used to eliminate the noise disadvantage.

A simple decision tree only with NDSTI was adopted in the Minqin subset and two-step
(NDSTI-Red) decision tree in the Laizhou and Yugan subsets (Figure 7). Considering the varied
scope of the three regions, the testing samples consisted of 100, 200, and 150 random points (pixels)
generated in Minqin (built-up area: 76 points; non-built-up area: 124 points), Laizhou (built-up area:
41 points; non-built-up area: 59 points), and Yugan (built-up area: 35 points; non-built-up area: 115
points), respectively, and are shown in Figure 2c–e).
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3. Results

3.1. The Extraction Results of the Tangshan Study Area

The extraction results of the study area (Tangshan) are shown in Figure 8, and the accuracy
assessment results in Table 4. The overall accuracy using only NDSTI segmentation was 83.60%, and the
kappa coefficient was 0.57, but coupling Auxiliary OLI Band 4 (the red band), the overall accuracy
improved up to 89.80% and the kappa coefficient was 0.74, respectively. The major improvement in
the extraction of rural settlements was in mountainous areas (Figure 8).

Table 4. Confusion matrix of the experimental study area (units: pixels).

Methodology
Ground Truth Overall

Accuracy (%)
KappaBuilt-Up

Area
Non-Built-Up

Area Total

NDSTI

Built-up area 88 45 133
83.60 0.57Other land

use types
37 330 367

Total 125 375 500

NDSTI-Red

Built-up area 105 31 136
89.80 0.74Other land

use types
20 344 364

Total 125 375 500
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Figure 8. The extraction results of Tangshan study area using only NDSTI (a) and with NDSTI-Red (b).

The decision tree classification results of the no-easy visual interpreting urban and rural areas in
plain (Figure 9a,b) and rural areas in mountains (Figure 9c) of the Tangshan study area were overlaid
on the OLI false color composite visible-infrared image to visually judge the classification accuracy.
As seen in Figure 9, the results had a good match with the realistic surface data. However, there may
be still some commission errors inside the urban area due to the heat diffusion of the built-up area and
some omissions in the mountain area.
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(c) represent C, D, E typical area respectively.

3.2. The Results of a Comparison with Other Methodologies

The final built-up extraction maps of four other conventional spectral built-up indices (NDBI,
UI, VgNIR-BI, and VrNIR-BI) are shown in Figure 10 and the accuracy assessment results are in
Table 5. The overall accuracy using only the NDBI and UI was 48.80% and 56.20%, respectively, and the
kappa coefficient was 0.14 and 0.23, respectively. The VgNIR-BI and VrNIR-BI had similar results and
improved to a 75% overall accuracy with a kappa coefficient of 0.51. However, with the NDSTI and
NDSTI-Red, the overall accuracy improved to 83.60% (kappa coefficient = 0.57) and 89.80% (kappa
coefficient = 0.74), respectively.
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Figure 10. The extraction results of the experimental study area using the normalized difference built-up
index (NDBI) (a), urban index (UI) (b), visible green-based built-up index (VgNIR-BI) (c), and visible
red-based built-up index (VrNIR-BI) (d).

Table 5. Accuracy assessment of four other methodologies and the NDSTI.

Methodology Producer Accuracy (%) User Accuracy (%) Overall Accuracy (%) Kappa

NDBI 86.40 31.12 48.80 0.14
UI 85.60 34.74 56.20 0.23

VgNIR-BI 90.45 62.94 75.00 0.51
VrNIR-BI 90.00 63.16 75.00 0.50

NDSTI 85.17 68.20 83.60 0.57
NDSTI-Red 86.00 77.20 89.80 0.74

Comparing the extraction results (Figures 8 and 10), the four-conventional spectral built-up
indices (NDBI, UI, VgNIR-BI, and VrNIR-BI) overclassified the built-up areas and thus had a higher
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commission error (user accuracy less than 65%) (Table 5), which mainly contributed to confusion
over the bare land because of their similar spectral characteristics [17,48,49]. In contrast, the NDSTI
exploited the distinct seasonal thermal pattern between the built-up area and other covers, helping to
create a more accurate built-up area extraction (over 80%). Furthermore, the NDSTI-Red was better
at reducing the noise of the mountain shadow and vegetation area in the built-up area, thus further
improving the overall accuracy.

3.3. The Validation Results in Three Other Areas

Figure 11 shows the extraction results of the three verification areas, and the accuracy assessment
are listed in Table 6. From the results of the extraction, Minqin (overall accuracy: 81%; kappa coefficient:
0.48) had a lower validation accuracy than Laizhou (overall accuracy: 91%; kappa coefficient: 0.88)
and Tangshan (overall accuracy: 89.80%; kappa coefficient: 0.74), followed by Yugan (overall accuracy:
88.00%; kappa coefficient: 0.71). Existing studies have indicated that the built-up area was easy to
confuse with bare soil [50], and this phenomenon was particularly evident in Minqin. A large area
of a sandy environment blurred the response to solar radiation between the built-up area and the
underlying surface in Minqin. In addition, dry climate and poor economic conditions in Minqin has
created small vegetation coverage and fragmentized built-up patches resulting in poor separation.
For Yugan, located in a subtropical monsoon climate, small temperature variations have weakened the
contrast of seasonal thermal characteristics of the built-up area and the backgrounds.
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Table 6. Accuracy assessment of the four areas.

Regions Producer Accuracy (%) User Accuracy (%) Overall Accuracy (%) Kappa

Tangshan 84.00 77.20 89.80 0.74
Laizhou 97.37 88.10 91.00 0.88
Yugan 97.14 66.67 88.00 0.71
Minqin 51.85 70.00 81.00 0.48

4. Discussion

To summarize, based on the NDSTI, a built-up area rapid extraction method using a decision tree
has more advantages with a small amount of known training areas and reliable accuracy. However,
there may be some constrained conditions when realizing rapid built-up area extraction using
multi-seasonal Landsat-8 thermal infrared Band 10 images. First, based on the response variation to
solar radiation of the built-up area and surroundings in distinctive seasons, better built-up extraction
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results often exist in climates with abundant precipitation and significant temperature changes such as
the sub-humid warm temperate monsoon climate (e.g., Tangshan and Laizhou), and relatively good
results in subtropical monsoon climate zones (e.g., Yugan) and temperate arid continental climate
zones (e.g., Minqin). Tropical climate and temperate maritime climate zones, which usually have
steady reliable temperatures throughout the year, may not be applicable to this strategy. Furthermore,
the Mediterranean climate zone may prove difficult in achieving the desired effect as rainfall and high
temperatures occur in different seasons. Thus, the potential of NDSTI should be further validated in
various annual climate types (i.e., precipitation and temperature).

Second, the thermal response characteristics of the surrounding underlying surface should be
dissimilar to the built-up area. For example, in the desert area, the surrounding sand blurs the
response variation to solar radiation between the built-up area and surrounding underlying surface
(e.g., Minqin), therefore reducing the extraction accuracy. This corresponds to the issue that building
materials also similarly affect the temperature change response of a built-up area.

Third, the selections of representative seasonality of thermal infrared images needed to be treated
differently to exaggerate the thermal response variation between the built-up and surroundings
depending on the located climate zone, which was the critical factor in determining the success of the
extraction results and its transferability to other places.

Based on the existing study, even if the spatial resolution of the Landsat-8 TIRS (100 m) was
only 100 m, it was resampled to 30 m in the delivered data product [33], and spectral mixing plus
the heat diffusion of the built-up area blurred the boundary of the built-up area. Thus, a finer spatial
resolution image of the vis-infrared built-up indices may help sharpen the boundary of the extracted
built-up area from the NDSTI index, or by adopting a resolution merging method to enhance the
overall spatial resolution [51–55]. Furthermore, for rapid urbanization areas, intra-annual changing of
the built-up areas may exist. These on-going changes are difficult to extract not only using singe-date
extraction, but also with multi-seasonal extraction. Considering the minor changes to the built-up area
in a half-year, the influence of built-up areas suffering from change during this time on the NDSTI can
be ignored in land use/cover mapping at a mesoscale. In addition, the conventional spectral indices
just in the vegetation growing date (13 May in Tangshan) with the best contrasting built-up areas with
other covers was compared with the NDSTI, while the other two dates with more bare land areas were
not considered in this study.

In summary, the developed strategy with the NDSTI has the potential for rapid built-up area
extraction with a satisfactory overall accuracy. Furthermore, this approach is applicable when using
other thermal infrared data (e.g., Landsat TM, Enhanced Thematic Mapper (ETM+) thermal bands
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal data)
theoretically with proper seasonal images and climate zones.

5. Conclusions

This paper was based on the contrast heat emission seasonal response of a built-up area to
solar radiation for rapid extraction. The new index (NDSTI) was better at separating the built-up
area from other land use types in comparison to the conventional methods. Based on the NDSTI,
the two-step decision tree classification with NDSTI deriving from three-date landsat-8 TIRS images
and Auxiliary OLI Band 4 in the study area was demonstrated to be a simple and effective method for
the extraction of a built-up area with an overall accuracy of 89.80% in the experimental study area,
Tangshan. Additionally, after validation in another three areas (Minqin, overall accuracy: 81%; Laizhou,
overall accuracy: 91%; Yugan, overall accuracy: 88.00%), the performance of the proposed empirical
NDSTI and constrained conditions (e.g., underlying surface characteristics and climate patterns) of this
strategy were specified. In summary, the developed rapid extracting built-up area method with NDSTI
and Auxiliary OLI Band 4 data has the potential and advantage of efficient long-term monitoring of a
built-up area.
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