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Abstract: Observation with coarse spatial and temporal sampling can cause large errors in
quantification of the amount, intensity, and duration of precipitation events. In this study, the errors
resulting from temporal and spatial sampling of precipitation events were quantified and examined
using the latest version (V4) of the Global Precipitation Measurement (GPM) mission integrated
multi-satellite retrievals for GPM (IMERG), which is available since spring of 2014. Relative mean
square error was calculated at 0.1◦ × 0.1◦ every 0.5 h between the degraded (temporally and spatially)
and original IMERG products. The temporal and spatial degradation was performed by producing
three-hour (T3), six-hour (T6), 0.5◦ × 0.5◦ (S5), and 1.0◦ × 1.0◦ (S10) maps. The results show generally
larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is
almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative
error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward
of 20◦S–20◦N. Similarly, the relative error of T3 exceeds S5 poleward of 20◦S–20◦N, but does not
exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios
are generally less sensitive to seasonal changes. The results also show that the spatial and temporal
relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal
relative errors are observed over ocean than over land. Quantification of such spatiotemporal
effects provides additional insights into evaluation studies, especially when different products are
cross-compared at a range of spatiotemporal scales.
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1. Introduction

Accurate quantification of precipitation events is directly related to the temporal and spatial
sampling of the observing system. A robust sensor with complete spatial coverage (e.g., radar or
satellite) should be able to capture both temporal and spatial patterns of a precipitation system through
its high spatiotemporal sampling. However, in practice, spatiotemporal sampling of observing systems
is often limited and thus can result in errors in quantification of precipitation events. Figure 1 shows
a schematic representation of temporal and spatial errors resulting from poor temporal (Figure 1a)
and spatial (Figure 1b) sampling. In Figure 1a a hypothetical precipitation event (shown in blue
curve) is sampled every three hours, which has been a common temporal sampling for satellite
precipitation products (e.g., the Tropical Rainfall Measuring Mission (TRMM) 3B42 product [1]).
Over- and under-estimation errors can be defined as the difference between the actual precipitation
rate (blue curve) and precipitation rate from that can be approximated from the three-hour sampling
(e.g., using linear interpolation or fixed values shown in yellow and gray color, respectively). Figure 1b
shows an example of error resulting from poor spatial sampling (shown on the right) of a hypothetical
precipitation event with regions of moderate and intense precipitation (shown on the left).
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While both temporal and spatial sampling can result in errors, their magnitude can depend
on the type of precipitation system. For example, precipitation from an isolated convective system
may be more sensitive to the spatial and temporal sampling than precipitation from a stratiform
system. The relative magnitude of temporal errors compared to spatial errors can also be different
depending on precipitation environment and geographical conditions. For example, sampling errors
associated with a fast-moving frontal system are expected to be larger than errors from a similar but
slower-moving system. Furthermore, one can expect larger sampling errors over mountainous regions
(e.g., due to sharp intensity gradient caused by orographic lifting) than a flat region.

The quantification of errors resulting from poor spatial and temporal sampling is important as
they can largely affect several studies such as hydrologic simulations and applications. Nijssen and
Lettenmaier [2] studied the effect of error in accumulated precipitation, due to periodic sampling
of the precipitation rate, and found that streamflow errors were large for small drainage areas but
decreased rapidly for drainage areas larger than about 50,000 km2. Steiner et al. [3] used ground radar
data set over the Great Plains in the United States and evaluated the sampling-related uncertainty
of rainfall estimate as a function of rainfall rate, domain size, accumulation period, and sampling
period. Furthermore, in evaluation studies, precipitation products are often mapped onto a common
spatiotemporal resolution prior to cross-comparison of products. What is often not carefully considered
is that by smoothening of the higher resolution products, errors are added to the estimates that may
lead to an unfair assessment of the high resolution products.

Here we quantify and examine the precipitation spatiotemporal sampling errors over global land
and ocean and compare their relative magnitudes in different regions and seasons. This global analysis
is not feasible using ground stations or radars, but has become possible through recent precipitation
estimates from space that offer higher accuracy and spatiotemporal sampling than before.
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Figure 1. A schematic representation of temporal and spatial errors resulted from poor temporal
(a) and spatial (b) sampling. The low resolution grid in Figure 1b (right side) is shown in light blue that
represents average of intense (shown in dark blue), moderate, and zero (in white) rain rate shown in
the left panel.
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2. Dataset and Method

2.1. Datasets

In this study, we used precipitation estimates from the latest version (V4) of the Global
Precipitation Measurement (GPM) mission [4] integrated multi-satellite retrievals for GPM (IMERG) [5]
product, released in spring of 2017. The GPM core observatory satellite was launched in February
2014 and carries two important instruments for precipitation measurements: (1) the dual-frequency
precipitation radar (DPR) including Ku/Ka (13.6/35.5 GHz) bands and (2) the GPM microwave imager
(GMI) which has 13 channels with frequencies ranging from 10 GHz to 183 GHz. These instruments
have geographical coverage between 65◦ N–65◦ S. By blending precipitation estimates from multiple
sensors (constellation of several radiometers and infrared imagers), IMERG provides gridded
precipitation maps with high spatiotemporal resolution (0.1◦ × 0.1◦ every 0.5 h) within the latitude
band 60◦ N–60◦ S since spring of 2014. However, the plan is to extend the product back in time to 1998,
so it can cover the Tropical Rainfall Measuring Mission (TRMM) era. In brief, the retrieval method
includes four main steps: (1) precipitation estimates from the GPM constellation radiometers are
gridded, inter-calibrated to the GPM combined radar-radiometer product, and blended into half-hourly
0.1◦ × 0.1◦ fields; (2) maps of half-hourly IR precipitation rate are calculated using an IR-based
precipitation retrieval method [6]; (3) by utilizing the Climate Prediction Center Morphing-Kalman
Filter (CMORPH-KF) Lagrangian time interpolation scheme [7], MW and IR estimates are used to create
half-hourly estimates, and (4) in the final run the multi-satellite half-hour estimates are adjusted so
that they sum to a monthly satellite-gauge combination. The relatively high spatiotemporal resolution
of IMERG and its global coverage provide a good opportunity to quantify quasi-global spatiotemporal
sampling errors over land and ocean. Furthermore, by using IMERG, the present study provides
insights on the amount of errors that can be added to the high resolution product (i.e., through
smoothening it to a coarser resolution) prior to comparison with coarser resolution products.

2.2. Method

In order to determine the errors resulting from temporal and spatial sampling of precipitation
events, precipitation maps at IMERG resolution were degraded to lower spatial (0.25◦ × 0.25◦,
0.5◦ × 0.5◦, and 1.0◦ × 1.0◦) and temporal (three and six hours) resolutions. The spatial degradation
was performed by averaging all fine resolution grids that fall inside the grid with coarser resolution.
We also used a more sophisticated method by using the “griddata” function in MATLAB, which
enables triangle-based linear interpolations. We found that the two methods yield fairly similar
results and do not affect the conclusions of this study. Degradation of temporal resolution was
performed by averaging all the times steps falling within the coarser time window. By assuming
uniform distribution, the degraded precipitation maps were mapped onto IMERG original resolution
(0.1◦ × 0.1◦ every 0.5 h) for comparison. These resolutions were selected as they are often produced by
popular precipitation products. For example, TRMM 3B42 produces precipitation at 0.25◦ × 0.25◦ every
three hours, reanalyses (e.g., MERRA; [8]) provide precipitation estimates at about 0.5◦ resolution, and
the Global Precipitation Climatology Project (GPCP; [9]) product and several climate models offer
precipitation at 1.0◦ × 1.0◦ resolution or coarser. The comparisons were conducted using two full years
of data (2015–2016), separately for annual, extended boreal winter (November–March), and extended
boreal summer (May–September) months. Root-mean-square error (RMSE) was used as a metric for
errors between the degraded and original (i.e., 0.1◦ × 0.1◦ every 0.5 h) IMERG products. Since RMSE
often increases with increases in precipitation rate, relative error defined by error (RMSE) divided by
mean precipitation (from IMERG with its original resolution) was used. However, regions with mean
daily precipitation of less than 0.5 mm/day were excluded from comparisons as at lower precipitation
rates the relative errors become unstable. Note that one could also calculate BIAS, but BIAS is subject
to the cancelation effect and thus a low seasonal or annual BIAS does not carry sufficient information
about the magnitude of the overall errors.
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3. Results

Figure 2a–c show maps of annual, winter, and summer mean precipitation rates for IMERG at a
0.1◦ × 0.1◦ resolution. Maps of percent relative-error for the different resolution-scenarios (described
in Section 2.2) are shown in Figure 2d–o. The three-hour and six-hour scenarios are referred to in T3
and T6, respectively. The 0.5◦ × 0.5◦ is about five times coarser than IMERG original resolution in
each dimension and hereafter is referred to as S5. Similarly, we refer to 1.0◦ × 1.0◦ as S10. To reduce
redundancies we did not report the results of the 0.25◦ × 0.25◦ experiment. T3 shows that by degrading
the temporal resolution of IMERG from 0.5 h to three hours, relative error exceed 30% in most regions.
The errors are generally larger over land than ocean, especially over mountainous regions such as the
Rocky Mountains in western North America, the Andes along the western edge of South America,
and the Tibetan Plateau. By degrading the temporal resolution to six hours (T6), the errors will further
increase, but the general pattern remains similar to T3. Large errors over ocean (e.g., over the Southern
Ocean) are also observed, which is likely related to the fast moving precipitation systems affected by
the polar and subtropical jet streams. The impact of spatial resolution degradation are displayed in
the bottom two rows (Figure 2j–o): (a) land and mountainous region generally show higher relative
errors than ocean, and (b) smaller relative error for both S5 and S10 are observed in high latitudes
compared to the lower latitudes. This could be related to the fact that tropical regions contain a higher
fraction of convective and small scale precipitation than higher latitudes [10]. Furthermore, there is a
tendency towards less convective and more cellular cloud structures in high latitudes, resulting from
cold air advection over warmer ocean surfaces [11], and thus precipitation in high latitudes might
be less sensitive to changes in spatial resolution of the products. It should be noted that part of the
observed zonal dependence of the results could be related to the use of equal latitude–longitude grids
in IMERG, so a grid in lower latitudes covers a larger area than a grid in higher latitudes.

Figure 2 suggests that spatial and temporal relative errors can have different patterns. This can be
better seen in the scatter plots of different pairs of relative errors (e.g., S5, S10, T3, and T6) shown in
Figure 3. The Pearson correlation coefficients (CC) between the pairs are also shown in each panel
to quantify the relationships. Overall, higher correlations between the spatial and temporal relative
errors are observed over land than over ocean. This might be partly related to the fact that, over some
regions (e.g., topographically complex areas), both spatial and temporal degradation cause large errors
(see Figure 3).
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coefficients (CC) are shown in each panel. Note the axes show relative errors and are dimensionless.
The top and bottom rows represent land and ocean, respectively.

We recognized that, even after removing areas with low mean precipitation rate, some regions
display large relative errors mainly due to dividing the errors by small mean precipitation rates (e.g.,
regions around tropical subsidence zone). In order to mitigate this effect we also plotted ratios of
relative errors that are shown in Figure 4. As expected T6 shows higher relative error than T3, and S10
shows higher relative error than S5. In fact, these ratios (T6/T3 and S10/S5) are fairly uniform across
land and ocean and for different seasons. The ratios between temporal and spatial relative errors are
especially interesting as T3/S5 suggests that relative error of T3 is larger than S5 over high latitudes,
but is equal or less in lower latitudes. Even T3/S10 shows that the relative error of T3 exceeds S10 over
ocean between latitudes 50◦ and 60◦ in both hemispheres. It was found that T6/S5 is always greater
than one over land and ocean and across all seasons, while in large regions over tropical ocean, and
over land T6 and S10 show similar error ratios.
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Figure 4. The differences can be better seen in zonal mean plots of the relative-error ratios shown
separately over land (Figure 5) and ocean (Figure 6).
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Figure 5a shows that relative error of T6 is almost 20% larger than T3 over tropical land and
gradually decreases to about 10% in higher latitudes. This ratio is also larger in warm seasons than
cold seasons. Figure 6a shows a similar pattern over ocean, but ratios are about 10% larger than over
land (e.g., ~30% instead of 20% and 20% instead of 10%). Over land, relative error of S10 is about
20–25% larger than S5 within 40◦S–40◦N (Figure 5b). Poleward of 40◦N this ratio increases in winter
(30%), but remains almost the same in summer. The results over land area south of 40◦ S is unstable
due to limited land areas. Over ocean relative error of S10 is about 25% larger than S5 in the tropics
and gradually increases by moving towards higher latitudes (e.g., ~40% near 60◦ S). Figure 5 shows
that over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative
error than S10 only poleward of ~20◦S/N. Similarly, the relative error of T3 exceeds S5 poleward of
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~20◦S/N, but does not exceed S10, except at very high latitudes. Similar results are also seen over
ocean, but the ratios are generally larger and less sensitive to seasonal changes (See Figure 6c,d).

Figures 5 and 6 also show that the seasonal sensitivity of the results is generally larger over
tropical land than tropical ocean, which can be inferred from the wider spread of the winter, summer,
and all-season plots. In higher latitudes, the effect of seasonal differences is large over both land and
ocean. This suggests that, in order to accurately account for spatiotemporal errors, it is important to
perform the analyses by region and season, separately over land and ocean.

4. Summary and Concluding Remarks

In this study, the errors resulted from temporal and spatial sampling of precipitation events
were investigated using the latest version (V4) of IMERG, providing precipitation estimates at
0.1◦ × 0.1◦ resolution every 30 min within the latitude band 60◦N–60◦S since spring of 2014. RMSE
divided by mean precipitation was used to calculate climatology errors at 0.1◦ × 0.1◦ every 0.5 h
between the degraded (temporally and spatially) and original IMERG products. The temporal and
spatial degradation was performed by producing three hour (T3), six-hour (T6), 0.5◦ × 0.5◦ (S5),
and 1.0◦ × 1.0◦ (S10) maps from IMERG. To enhance the stability of results, regions with annual or
seasonal mean precipitation less than 0.5 mm/day were excluded from comparisons. The study was
conducted using two years (2015–2016) of data, separately for all seasons, winter, and summer months.
The results generally show larger errors over land than ocean, especially over mountainous regions.
The relative error of T6 is almost 20% larger than T3 over tropical land and gradually decreases to
about 10% in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes,
while T6 has larger relative error than S10 only poleward of ~20◦S/N. Similarly, the relative error of
T3 exceeds S5 poleward of ~20◦S/N, but does not exceed S10, except at very high latitude. Similar
results are also seen over ocean, but the ratios are generally larger and less sensitive to seasonal
changes (see Figure 6c,d). Furthermore, we found that the spatial and temporal relative errors are not
necessarily correlated. Overall, lower correlations between the spatial and temporal relative errors are
observed over ocean than over land.

We would like to emphasize that in addition to product-specific algorithmic errors,
in practice [2,12] one should consider errors that can be originated from differences in spatiotemporal
resolutions of products. For example, in mountainous basins, products that offer coarse spatiotemporal
resolution may result in large errors in hydrologic simulations, despite the accuracy of the retrieval
method used in these products. Even a spatial resolution of 0.1◦ × 0.1◦ may not be sufficient in such
regions. Nevertheless, it is important to recognize that creating gridded products with finer spatial
resolution than what input level-two products offer may not be suitable. While in this study we
limited our analysis to few popular spatial and temporal resolutions, further analysis can include other
resolutions and can be performed over a specific region [13], watershed, or at an event scale. Such
analyses can provide additional insights on the type of observing systems or products needed for
various studies.
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Abbreviations

The following abbreviations are used in this manuscript:

CC correlation coefficients
GPCP Global Precipitation Climatology Project
GPM Global Precipitation Measurement
IMERG integrated multisatellite retrievals for GPM
RMSE root-mean-square error
S10 spatial degradation by 1.0◦ × 1.0◦

S5 spatial degradation by 0.5◦ × 0.5◦

T3 temporal degradation by three hours
T6 temporal degradation by six hours
TRMM Tropical Rainfall Measuring Mission
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