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Abstract: Many Indian capitals are rapidly becoming megacities due to industrialization
and rural–urban emigration. Land use within city boundaries has changed dynamically,
accommodating development while replacing traditional land-use patterns. Using Landsat-8 and
IRS-P6 data, this study investigated land-use changes in urban and peri-urban Hyderabad and their
influence on land-use and land-cover. Advanced methods, such as spectral matching techniques with
ground information were deployed in the analysis. From 2005 to 2016, the wastewater-irrigated area
adjacent to the Musi river increased from 15,553 to 20,573 hectares, with concurrent expansion of the
city boundaries from 38,863 to 80,111 hectares. Opportunistic shifts in land-use, especially related to
wastewater-irrigated agriculture, emerged in response to growing demand for fresh vegetables and
urban livestock feed, and to easy access to markets due to the city’s expansion. Validation performed
on the land-use maps developed revealed 80–85% accuracy.

Keywords: peri-urban; urban sprawl; urban agriculture; bi-spectral plots; urban land-use/land-cover
change; IRS-P6; MODIS; Landsat-8; Hyderabad

1. Introduction

Rapid urbanization and population growth, particularly in developing countries, are expected to
increase pressure on agricultural production by expanding into croplands, competing for resources,
and leading to loss of biodiversity. By 2050, China, India, and Nigeria alone are expected to add about
900 million urban residents in the megacities of these countries [1]. Managing urban expansion in the
future is critical for ensuring agricultural growth and food security, while also providing common
amenities such as housing, water, and employment for the growing population. Four of India’s cities
(Ahmedabad, Bengaluru, Chennai, and Hyderabad), which currently have 5–10 million inhabitants,
are projected to become megacities (population of >10 million) in the coming years, with a total of
seven megacities projected in the country by 2030 [2].

Hyderabad is located in Telangana state in southern India and is the sixth largest metropolis
in the country. It comprises twelve municipalities, including the Greater Hyderabad Municipal
Corporation (GHMC). Hyderabad is located in the Musi sub-basin (11,000 km2), which is
part of the Krishna river basin. Rapid development, especially in the information technology
(IT) sector, has attracted skilled and unskilled labor from other parts of India, further increasing
the city’s population. There is thus an urgent need for city planning to mitigate the impact
that rapid development will have on natural resources in the Hyderabad area. In this regard,
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accurate knowledge of the spatio-temporal pattern of urbanization is very important for policy making,
natural resource management, and decision making [3].

Peri-urban agriculture contributes significantly to ecosystem services, serving as a sink for
stormwater runoff, a recharge zone for groundwater table, as well as adding to aesthetic beauty
and food security [4]. A majority of families in the peri-urban areas of Hyderabad sustain themselves
by providing food and animal feed to the city, making these areas important for the local economy [5,6].
A growing population and development in cities increases competition for natural resources
(e.g., water and land) and natural diversity [7,8], and shrinks surrounding agricultural areas [9,10].
These changes pose a great challenge to urban developers and the service sector in Hyderabad.
Furthermore, urban water demand has grown exponentially in the past two decades and water
availability within the city limits of Hyderabad is now inadequate to supply the growing demand,
due to encroachment on freshwater lakes to build houses and public offices. Transporting water from
nearby rural villages has become a necessity [10]. Agricultural land within the city’s boundaries
has been diminishing further with people migrating from rural areas in search of employment and
better wages, which is overburdening social and infrastructure services.

Several studies have analyzed sprawl and other land-use/land-cover (LULC) changes in
urban areas using satellite imagery. For example, Alqurashi et al. [11] analyzed expansion of
urban growth and land-cover changes in five Middle East cities using object-based image analysis,
while Cao et al. [12] conducted a study on urban expansion and its impact on land-use patterns
using radar graph and gradient-direction methods and landscape matrices. Liu et al. [13] monitored
urban expansion in China over the past four decades using satellite imagery while Gumma et al. [9]
conducted a study on expansion of urban areas and wastewater-irrigated areas in Hyderabad, India,
using Landsat images and supervised classification. Most of these studies used temporal analysis
of Landsat imagery. Many studies have demonstrated how to map agricultural areas [14–19] using
advanced techniques in satellite image analysis; e.g., Parece and Campbell [20] delineated urban
impervious surfaces using Landsat imagery and high-resolution aerial photographs in a study
conducted in Roanoke, USA. Myint et al. [21] accurately classified urban land cover using high
spatial resolution imagery and object-based classification. Zhang et al. [22] assessed impacts of urban
expansion on ecosystem services using shared socioeconomic pathways (SSPs) and the land-use
scenario dynamics-urban (LUSD-urban) model. However, mapping of urban agricultural areas,
including fragmented irrigated areas, has proven to be a challenge due to the diverse range of irrigated
plot sizes, crops, and water sources used by farmers [23,24], and the literature has not been able to
adequately capture agricultural land-use changes in urban expansion zones. Many studies have used
normalized difference vegetation index (NDVI) for monitoring cropland and LULC changes over a set
period [25–31].

The main objective of this study was, therefore, to monitor changes in agriculture and LULC
in the areas around Hyderabad, and thereby capture the effects of urban sprawl on land-use.
The remote sensing imagery used was Landsat-8 data, IRS-P6 data, and MODIS 250 m 16-bit time
series data, combined with ground survey data. Monitoring of agricultural areas is very difficult to
capture with single-date imagery [32]. Therefore, the specific methodological contribution of this
study relates to the use of unsupervised classification with clusters identified based on bi-spectral
plots with high-resolution Google Earth images, spectral profiles, and ground survey data in a
combined approach.

The aim in developing an approach based on analyzing high-resolution and coarse-resolution
temporal imagery with advanced techniques was to help monitor agriculture and other LULC changes,
to understand spatially how urban sprawl influences food security and sustainability in the city
of Hyderabad.
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2. Study Area

Rapid development, economic growth, and increasing employment opportunities in Hyderabad
(301,403 ha) (Figure 1) have attracted people from all over the country, increasing the city’s population
to around 8.7 million [33]. The land under agriculture within the city’s boundaries has decreased with
infrastructure development, while migration of people from rural areas in search of employment and
better wages will only further stress public services. Efforts by the state government of undivided
Andhra Pradesh in the 1990s to establish Hyderabad as one of the best IT hubs in the country led to
several changes in policies on the development of infrastructure and facilities, as well as in relevant
public sectors.

Such development has not been without consequences. For example, the Musi river, a tributary
of the Krishna, flows through the city of Hyderabad and has become extremely polluted with
discharges from the city. Nevertheless, year-round water supply in the river has encouraged
wastewater-irrigated agriculture, within and around the city boundaries, despite the pollution [9,34].
The crops cultivated range from perishable vegetables to cereal crops and animal feed crops,
depending on the season, distance from the city, and proximity to markets. In the last two decades,
livelihood practices of marginal farmers have changed with urban expansion.
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Figure 1. Maps of the study area showing different features: (a) Greater Hyderabad Municipal
Corporation (GHMC); (b) location of study area and (c) different zones in GHMC.

3. Data and Methods

A detailed flowchart of the method followed in this study is presented in Figure 2. Datasets used
for the study, at medium and coarse resolution, were obtained from different satellites at different
stages of analysis.
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Figure 2. An overviews of the methodology used to map urban areas and other land-use/land-cover
(LULC) changes using Landsat-8 data.

3.1. Satellite Images

Three IRS-P6 images obtained from the National Remote Sensing Centre (NRSC, ISRO) were
used for monitoring LULC changes in the study area. Two Landsat-8 images (January 2014
and January 2016) and three IRS-P6 images (January 2005, January 2008 and January 2011),
which were captured in rabi (postrainy), were extracted from USGS Earth Explorer [35] (see Table 1).
Image preprocessing started with image normalization, which involved converting digital numbers
(DN) to reflectance values.

MODIS vegetation indices (MOD13Q1 product) were used for class identification and
labeling processes. MOD13Q1 data were obtained from USGS LPDAAC [36]. MODIS data were
acquired in 12-bit format (0 to 4096 levels) and later stretched to 16-bit (0 to 65,536 levels) and
were prepared for the cropping year (June to May) 2004–2005, 2007–2008, 2010–2011, 2013–2014 and
2015–2016 [37,38].
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Table 1. Characteristics of satellite data used in this study.

Sensor/Image
Acquisition

Date
Spatial (m) No. of

Bands

Band
Range
(µm)

Irradiance
(W·m−2·sr−1·mm−1) Potential Application

IRS-P6
January 2005
January 2008
January 2011

23.6 2 0.52–0.59 1857.7 Water bodies and also capable of differentiating soil and
rock surfaces from vegetation

3 0.62–0.68 1556.4 Sensitive to water turbidity differences

4 0.77–0.86 1082.4 Sensitive to strong chlorophyll absorption region and
strong reflectance region for most soils.

5 1.55–1.70 239.84 Operates in the best spectral region to distinguish
vegetation varieties and conditions

Landsat-8
January 2014,
January 2016

30 1 0.43–0.45 555 Water bodies and also capable of differentiating soil and
rock surfaces from vegetation2 0.45–0.51 581

3 0.53–0.59 544 Sensitive to water turbidity differences

4 0.64–0.67 462 Sensitive to strong chlorophyll absorption region and
strong reflectance region for most soils.

5 0.85–0.88 281 Especially important for the ecology because healthy
plants reflect it

6 1.57–1.65 71.3 Particularly useful for telling wet earth from dry earth,
and for geology: rocks and soils that look similar in
other bands often have strong contrasts in SWIR.7 2.11–2.09 24.3

MODIS
(2005–2016)

250 1 0.62–0.67 1528.2 Absolute Land Cover Transformation, Vegetation
Chlorophyll

2 0.84–0.88 974.3 Cloud Amount, Vegetation Land Cover Transformation

3.2. Image Normalization

The main purpose of normalization is to normalize the multi-date effect [39,40] of IRS-P6 and
Landsat-8 images, for better classification. Data from different periods have differing radiometric
resolution [41,42] (see Thenkabail et al., 2004, 2003), and hence their respective digital numbers
(DNs) carry different levels of information and cannot be directly compared. Therefore, all data
were converted to absolute units of radiance (W·m−2·sr−1·µm−1), then to apparent at-satellite
reflectance (%), and finally to surface reflectance (%) after atmospheric correction. Details of these
conversions are provided below, due to the uniqueness of the sensors involved.

3.2.1. IRS-P6 Data

Since clear Landsat-8 images were not available for the selected dates (Table 1), we decided to
use a dataset of similar resolution which was available from IRS-P6. We procured images from the
National Remote Sensing Agency (NRSA), India. The IRS-P6 8-bit DN data were converted to spectral
radiance using the equation:

R =
(DN × Gain)

255
(1)

where DN is digital number and Gain is saturation radiance for the band.
A reduction in between-scene variability can be achieved through normalization for solar

irradiance by converting spectral radiance R, as calculated above, to planetary reflectance or albedo [40].
The combined surface and atmospheric reflectance of the earth is computed with the following formula:

ρp =
πLλd2

ESUNλ cos θS
(2)

where ρp is the at-satellite exo-atmospheric reflectance, Lλ is the radiance (W·m−2·sr−1·µm−1), d is
the earth-to-sun distance in astronomic units at the acquisition date (see [27]), ESUNλ is the mean
solar exo-atmospheric irradiance (W·m−2·sr−1·µm−1) or solar flux [43], and θS is solar zenith angle in
degrees (i.e., 90 degrees minus the sun elevation or sun angle when the scene was recorded as given in
the image header file).
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3.2.2. Landsat-8 Data

The following equation was used to convert DN values to TOA reflectance for OLI data:

ρλ′ = MρQcal + Aρ (3)

where ρλ′ is the TOA planetary reflectance (without correction of solar angle), Mρ is the band-specific
multiplicative rescaling factor from the metadata, Aρ is the band-specific additive rescaling factor from
the metadata, and Qcal is the quantized and calibrated standard product pixel value (DN).

TOA reflectance with correction for the sun angle is then:

ρλ =
ρλ′

sin(θSE)
(4)

Where, ρλ is the TOA planetary reflectance, ρλ’ is the TOA planetary reflectance without correction of
solar angle, and θSE is the local sun elevation angle provided in the metadata (SUN_ELEVATION).

3.3. Ground Survey Datasets

Two ground survey datasets were collected, on 13–26 October 2005, for 130 sampling locations
and on 24–29 October 2016, for 132 sampling locations. These locations covered major LULC
changes within the study area. The collected data were divided into two datasets, one for class
identification and labeling, and the other for validation (Figure 3). Samples were collected based
on large continuous homogeneous areas selected as sampling locations. Several parameters were
determined at each location, such as cropland including source-wise irrigation, crop type, urban
extent including settlements and open land, and other land cover including shrubs, grass, water,
fallow, and scrubland. Farmers were interviewed in order to obtain more detailed information on their
agricultural fields, which helped to enhance the training data.
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The ground survey data were grouped into five categories: water bodies, built-up land,
irrigated cropland, rainfed cropland, and “other” LULC.

3.4. Mapping Land-Use/Land-Cover Changes

A comprehensive methodology for mapping cropland areas using IRS-P6 and Landsat-8 data was
taken from the literature [27,31,32,44]. Each image was classified using unsupervised ISOCLASS cluster
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Isodata classification, with 40 classes and 40 maximum iterations and with convergence threshold
of 0.99. The main purpose of unsupervised classification is to capture different LULC types within the
image across a study area. Simultaneously, we generated mean spectral values for all classes using a
signature set option. Class identification and labeling were performed based on spectral properties
(bi-spectral plots), ground survey data, and Google Earth high-resolution imagery.

Spectral values of red and NIR bands extracted from unsupervised classification were plotted as
shown in Figure 4, with reflectance values of red on the x-axis and reflectance values of NIR on the
y-axis) [37,45,46]. In Figure 4, the diagonal line represents the soil line, which differentiated the classes
with vegetation. Classes with similar spectral reflectance depict nearby clusters, which may represent
the same category (same classes) with a slight variation in reflection. Other classes, like water bodies
and shrubland/trees, show large variations in vegetation and can easily be identified and labeled.
Classes closer to the soil line and the two-band (red and NIR bands) reflectance values were similar
and high; they are classified as built-up areas. More highly vegetated areas, like irrigated cropland,
have high reflectance values in NIR and lower reflectance in red.
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red and NIR bands.

Spectral profiles were generated from the MODIS time series composite data, with initially
40 unsupervised classes identified based on NDVI profiles at different crop growth stages in the season.
Identification and labeling of LULC classes were based on bi-spectral profiles, MODIS NDVI
time-series plots, ground survey data, and very-high-resolution images (Google Earth). The specific
protocols included grouping class spectra based on class similarities and/or comparing them with
ground survey data, rigorous protocols for class identification, and labeling with the use of very
high-resolution imagery. After a rigorous classification process, most of the classes were identified,
except for some mixed classes.

Validation was performed based on intensive ground survey information through an error matrix,
which was generated based on a theoretical description in the literature [47]. The columns of an error
matrix contain the ground survey data points, while the rows represent the results of the classified
LULC maps [48]. The error matrix is a multidimensional table in which the cells contain changes from
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one class to another [49]. The 81 points with major LULC and irrigation type observations were used
for classification validation. A validation was performed on each LULC map.

3.5. Urban Expansion and Other Land-Use Changes

After class identification and labeling, final LULC maps were validated with ground survey data
and used to detect change, based on the 2005 LULC map. The ERDAS modeler was used to quantify
changes from 2005 to 2011 and 2005 to 2016, because these three dates were validated using ground
survey data and Google Earth high-resolution satellite imagery during the same year. Equation (5)
was used to assess changes from 2005 to 2011 and on to 2016. Changes were assessed class-wise,
for example, “other” LULC classes and cropland based on the 2005 map were converted to built-up
land as:

CDij = (LULCi × 10) + LULCj (5)

where CDij is the change detected, LULCi is land-use/land-cover for the ith year and LULCj is land
use/land cover for the jth year.

4. Results and Discussion

4.1. Spatio-Temporal Distribution of Land-Use/Land-Cover Changes

Figure 5 depicts observed changes in the urban sprawl of Hyderabad using IRS-P6 (2005, 2008
and 2011) and Landsat-8 (2014, 2016) imagery. The area covered by built-up land, constituting housing
and other buildings, has more than doubled, from 38,863 ha to 80,111 ha, adversely impacting water
bodies and rain-fed cropland, the area of which has decreased by half (37,902 ha in 2016 compared
to 72,817 ha in 2005) (Table 2). There was a drastic increase in built-up areas in the west and east
zones of the city, due to expansion of the IT sector in the former and industrial sector expansion in
these zones. Seasonal water bodies appeared to be most exploited for building in the western, central,
and southern zones. Similarly, the area under rain-fed cropland, which is now almost halved due to
urban expansion, has decreased specifically in the west, east, and north zones. Irrigated cropland
area increased from 2005 to 2011, but decreased slightly by 2016 due to low rainfall. An important
finding in this study was that wastewater-irrigated agriculture, which is practiced along the banks of
the Musi river, has also increased steadily from 2005 to 2016, to support vegetable gardens catering
to the growing urban population. Since the formation of the Hyderabad Metropolitan Development
Authority (HMDA), with a new master plan, many conservation measures have been established
to sustain drinking water sources, such as the lakes Himayath Sagar, Osman Sagar, and Manjeera,
and the water supply has been improved. Moreover, a new drinking water pipeline project has been
implemented in a phased manner, harnessing water from the Nagarjuna Sagar reservoir [50].

Table 2. Selected land-use/land-cover (LULC) data for the years 2005, 2008, 2011, 2014 and 2016.

LULC
Area (Ha)

2005 2008 2011 2014 2016

01. Water bodies 12,535 3584 5417 5694 2283
02. Built-up land 38,863 62,000 68,560 74,131 80,111
03. Irrigated cropland 15,553 14,589 19,966 19,510 19,678
04. Rainfed cropland 72,817 69,601 53,361 46,815 37,902
05. Other LULC 161,635 151,562 154,288 155,445 161,583
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Figure 5. The five land-use/land-cover (LULC) classes developed, based on Landsat-8, IRS-P6,
and MODIS time series data, for the years 2005, 2008, 2011, 2014, and 2016.

4.2. Validation

Validation was performed based on additional ground survey data (which were not used in
classification), and also for individual years. Tables 3–5 show the error matrices for the study area
during 2005, 2011, and 2016, respectively. Validation was performed by error matrix for whether a
known LULC class was correctly classified or not. This process was conducted using 64 ground survey
points that referred to one of five classes, as summarized in Table 3. The user accuracy varied from
71% to 100% across the five classes, with an overall accuracy of 81% for 2005, 83% for 2011, and 86%
for 2016. Thus, on combining all crop classes into one class, the accuracy of rice mapping was very
high (about 95%). The uncertainty in the class results, of about 15%, was due to inter-mixing among
the various LULC classes. The accuracy was very high when distinguishing between cropland and
non-cropland, while built-up areas and water bodies generally had higher classification accuracy than
the “other” LULC and irrigated/rain-fed classes (Tables 3–5).
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Table 3. Validation of land-use/land-cover (LULC) classes in 2005 based on ground survey data.

Classified Data

Reference Data (Ground Survey Data)

01. Water Bodies 02. Built-Up Land 03. Irrigated Cropland 04. Rainfed Cropland 05. Other LULC Row
Total

Number
Correct

Producer
Accuracy

User
Accuracy Kappa

01. Water bodies 11 0 0 0 0 11 11 100% 100% 100%
02. Built-up land 0 6 0 0 0 6 6 75% 100% 100%

03. Irrigated cropland 0 0 3 0 1 4 3 50% 75% 72%
04. Rainfed cropland 0 0 1 10 1 12 10 67% 83% 78%

05. Other LULC 0 2 2 5 22 31 22 92% 71% 54%

Column Total 11 8 6 15 24 64 52

Overall classification accuracy = 81.25% Overall kappa statistic = 0.7422

Table 4. Validation of land-use/land-cover (LULC) classes in 2011, based on ground survey data.

Classified Data

Reference Data (Ground Survey Data)

01. Water Bodies 02. Built-up Land 03. Irrigated Cropland 04. Rainfed Cropland 05. Other LULC Row
Total

Number
Correct

Producer
Accuracy

User
Accuracy Kappa

01. Water bodies 9 0 1 0 0 10 9 100% 90% 88%
02. Built-up land 0 12 0 0 0 12 12 100% 100% 100%

03. Irrigated cropland 0 0 5 1 1 7 5 71% 71% 68%
04. Rainfed cropland 0 0 0 4 2 6 4 44% 67% 61%

05. Other LULC 0 0 1 4 20 25 20 87% 80% 68%

Column Total 9 12 7 9 23 60 50

Overall classification accuracy = 83.33% Overall kappa statistic = 0.7768

Table 5. Validation of land-use/land-cover (LULC) classes in 2016, based on ground survey data.

Classified Data

Reference Data (Ground Survey Data)

01. Water Bodies 02. Built-Up Land 03. Irrigated Cropland 04. Rainfed Cropland 05. Other LULC Row
Total

Number
Correct

Producer
Accuracy

User
Accuracy Kappa

01. Water bodies 8 0 0 0 0 8 8 80% 100% 100%
02. Built-up land 0 12 0 0 1 13 12 100% 92% 91%

03. Irrigated cropland 1 0 7 0 0 8 7 70% 88% 85%
04. Rainfed cropland 0 0 0 1 0 1 1 20% 100% 100%

05. Other LULC 1 0 3 4 31 39 31 97% 79% 62%

Column Total 10 12 10 5 32 69 59

Overall classification accuracy = 85.51% Overall kappa statistic = 0.7838
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4.3. Urban Expansion and Other Changes

Five-year change detection analysis showed similar changes with respect to irrigated agriculture
and other land-use classes (Figure 6). In 2005–2011, the outer ring road (ORR) from the eastern to
the southern part of Hyderabad was built [51]. This was also the period when IT companies were
starting new projects, the real estate business in the city began to boom, and new pharmaceutical, food,
and manufacturing companies were established. This led to immigration of employment seekers from
other parts of the country and a high demand for land. Due to this effect, there was transformation
from one type of land-use to another, and particularly from cropland to built-up area, with the area of
built-up land increasing from 29,684 ha to 41,235 ha during the period (Table 6).

There is a large variety of land uses due to increased urban sprawl in the city of Hyderabad,
as shown by satellite image analysis (Tables 6–8, Figures 6 and 7). Of the 12,535 ha under water bodies
in 2005, around 1900 ha had been converted to agriculture and 1210 ha into built-up land by 2011,
and a total of 3016 ha to agriculture and 1345 ha into built-up land by 2016. As a consequence of
the loss of water bodies, 2302 ha of irrigated area had been converted to rain-fed agriculture and
1500 ha to built-up land by 2011, and 1709 ha to rain-fed agriculture and 2033 ha to built-up area
by 2016. Another important finding was the consistent increase in built-up land from ‘other’ land uses,
e.g., rain-fed cropland lost around 7792 ha by 2006 and 9727 ha by 2011. Rain-fed agricultural area
decreased consistently from 2005 to 2016, while the clean-water irrigated area did not change during
that period.

Table 6. Matrix of Land-use/land-cover (LULC) changes from 2005 to 2011.

Land-Use/Land-Cover (2011)

Land-Use/Land-Cover, Ha (2005)

01. Water
Bodies

02. Built-Up
Land

03. Irrigated
Cropland

04. Rain-Fed
Cropland

05. Other
LULC

01. Water bodies 5011 0 126 94 186
02. Built-up land 1212 38,863 1500 7792 19,180
03. Irrigated cropland 1790 0 4265 5620 8278
04. Rainfed cropland 1114 0 2302 17292 32,604
05. Other LULC 3406 0 7358 42,010 101,367

A significant increase in irrigated area was observed, with water supplied through the use of
underground water or wastewater from the Musi river. There has been a drastic increase in wastewater
because of urban expansion, which resulted in high use of fresh water. It was also observed that
the sprawl is expanding beyond the ORR, which was supposed to regulate the increasingly heavy
transport traffic.

Table 7. Matrix of Land-use/land-cover (LULC) changes from 2005 to 2016.

Land-Use/Land-Cover (2016)

Land-Use/Land-Cover, Ha (2005)

01. Water
Bodies

02. Built-Up
Land

03. Irrigated
Cropland

04. Rain-Fed
Cropland

05. Other
LULC

01. Water bodies 2012 0 71 60 140
02. Built-up land 1345 38,863 2033 9727 28,130
03. Irrigated cropland 1890 0 4361 5339 8069
04. Rainfed cropland 1126 0 1709 11,874 23,155
05. Other LULC 6161 0 7376 45,801 102,114
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Table 8. Changes in the area (ha) of “other” land-use/land-cover (LULC) to built-up land and irrigated
cropland between 2005 and 2011 and between 2005 and 2016.

LULC Changes
Area (Ha)

2005 to 2011 2005 to 2016

01. Other LULC to built-up land 29,684 41,235
02. Other LULC to irrigated cropland 15,688 15,297
03. Other classes 256,221 245,062

Remote Sens. 2017, 9, x FOR PEER REVIEW  12 of 16 

 

 
Figure 6. Land-use/land-cover (LULC) changes between 2005 and 2011 and between 2005 and 2016, 
based on Landsat-8, IRS-P6, and MODIS time series data. 

4.4. Discusssion on Land-Use/Land-Cover 

Mapping built-up land and other LULC using the fusion technique yielded better classification 
accuracy and helped to decipher LULC patterns, while the temporal LULC maps helped to identify 
key changes over time and space. In situations of rapid urbanization, planning is necessary to avoid 
unregulated building, obstruction of drainage lines, and destruction of high-value agricultural lands 
[52]. Bi-spectral plots have previously been used to map agricultural lands and other LULC for 
different purposes, such as mapping and classifying irrigated areas, detecting LULC changes, and 
detecting different land-use categories and cropland categories [28,30,44,53]. Here, we demonstrated 
its ability to differentiate urban sprawl and other LULC categories. We established LULC classes 
based on bi-spectral plots, ground survey data, and NDVI temporal profiles, and verified the results 
using high-resolution maps in Google Earth images for the same years. Alqurashi [11] used object-
based image analysis (OBIA) segmentation and classification for mapping LULC in five cities in Saudi 
Arabia and, depending on the size of patches of LULC, created two levels of image segmentation and 
classification by adjusting the thresholds in the rules applied. Similarly Cao [12] used an OBIA-based 
decision tree process to map 13 land-use types, with visual modification employed to improve the 
classification. Lui et al. [13] used various kinds of automatic classification methods to efficiently map 
urban areas, and also employed the visual interpretation method combined with professional 
knowledge to obtain urban boundaries. Even though the accuracy levels are comparable with these 
different methods, the method developed in the present study is easier and is based on the spectral 
characteristics of the imagery used. The use of bi-spectral plots is faster and easier when diverse land 
uses must be distinguished for mapping. 

Figure 7 illustrates the spatial and temporal land-use changes for 2005, 2011, and 2016. Using the 
methodology developed here, the analysis precisely mapped changes in irrigated cropland area to 
built-up land, and this area was matched with Google Earth high-resolution imagery. The NDVI 
spectral signatures for different classes (Figure 7c) showed crops continuously under irrigation in 
2005, a change to patches of irrigated crops in 2011, and replacement of irrigated cropland with build-
up area in 2016. 

Figure 6. Land-use/land-cover (LULC) changes between 2005 and 2011 and between 2005 and 2016,
based on Landsat-8, IRS-P6, and MODIS time series data.

4.4. Discusssion on Land-Use/Land-Cover

Mapping built-up land and other LULC using the fusion technique yielded better classification
accuracy and helped to decipher LULC patterns, while the temporal LULC maps helped to
identify key changes over time and space. In situations of rapid urbanization, planning is
necessary to avoid unregulated building, obstruction of drainage lines, and destruction of
high-value agricultural lands [52]. Bi-spectral plots have previously been used to map
agricultural lands and other LULC for different purposes, such as mapping and classifying
irrigated areas, detecting LULC changes, and detecting different land-use categories and cropland
categories [28,30,44,53]. Here, we demonstrated its ability to differentiate urban sprawl and other
LULC categories. We established LULC classes based on bi-spectral plots, ground survey data,
and NDVI temporal profiles, and verified the results using high-resolution maps in Google Earth
images for the same years. Alqurashi [11] used object-based image analysis (OBIA) segmentation
and classification for mapping LULC in five cities in Saudi Arabia and, depending on the size of
patches of LULC, created two levels of image segmentation and classification by adjusting the
thresholds in the rules applied. Similarly Cao [12] used an OBIA-based decision tree process to map
13 land-use types, with visual modification employed to improve the classification. Lui et al. [13] used
various kinds of automatic classification methods to efficiently map urban areas, and also employed
the visual interpretation method combined with professional knowledge to obtain urban boundaries.
Even though the accuracy levels are comparable with these different methods, the method developed
in the present study is easier and is based on the spectral characteristics of the imagery used. The use
of bi-spectral plots is faster and easier when diverse land uses must be distinguished for mapping.

Figure 7 illustrates the spatial and temporal land-use changes for 2005, 2011, and 2016. Using the
methodology developed here, the analysis precisely mapped changes in irrigated cropland area to
built-up land, and this area was matched with Google Earth high-resolution imagery. The NDVI
spectral signatures for different classes (Figure 7c) showed crops continuously under irrigation in 2005,
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a change to patches of irrigated crops in 2011, and replacement of irrigated cropland with build-up
area in 2016.
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5. Conclusions

Urban expansion and other LULC changes were analyzed in this study using multi-sensor satellite
data such as IRS-P6, Landsat-8, MODIS time series data, and ground survey data. Land-use classes
were identified based on bi-spectral plots and ground survey data, and the classes obtained were
compared with those in Google Earth high-resolution imagery. The major LULC classes were mapped
with error matrix accuracy between 80% and 86%.

The results demonstrate significant strengths in using IRS-P6 23.6 m and MODIS data together
with ground survey data in identifying fragmented and minor cropland areas with irrigation sources,
such as wastewater irrigation and rain-fed agriculture. However, fragmented mixed cropland areas
are better mapped using IRS-P6 data in fusion with coarser-resolution time series data.

The methodology developed in this study is useful in mapping changes in different land uses
within a specific geographical area. It is also possible to link information derived from remote sensing
to socio-economic variables, which can add a spatial dimension to the picture. In Hyderabad, the most
important land cover loss is of water bodies. An increase in wastewater-irrigated agriculture is the
most important consequence of this. The vegetable and fruit supply for the city comes from peri-urban
areas once under staple food crops (rice, maize, and sorghum), which fed the peri-urban population.
The increase in built-up area from 2005 to 2016 has resulted in the loss of 11,760 ha of agricultural land
in Hyderabad. The associated reduction in food production is irreversible and this burden has shifted
to the surrounding area. The urban sprawl also has impacts on the urban weather profile in terms of
expanded heat islands and temperature differences.
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