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Abstract: Object reconstruction from airborne LiDAR data is a hot topic in photogrammetry and
remote sensing. Power fundamental infrastructure monitoring plays a vital role in power transmission
safety. This paper proposes a heuristic reconstruction method for power pylons widely used in high
voltage transmission systems from airborne LiDAR point cloud, which combines both data-driven
and model-driven strategies. Structurally, a power pylon can be decomposed into two parts: the pylon
body and head. The reconstruction procedure assembles two parts sequentially: firstly, the pylon
body is reconstructed by a data-driven strategy, where a RANSAC-based algorithm is adopted to
fit four principal legs; secondly, a model-driven strategy is used to reconstruct the pylon head with
the aid of a predefined 3D head model library, where the pylon head’s type is recognized by a shape
context algorithm, and their parameters are estimated by a Metropolis–Hastings sampler coupled with
a Simulated annealing algorithm. The proposed method has two advantages: (1) optimal strategies
are adopted to reconstruct different pylon parts, which are robust to noise and partially missing data;
and (2) both the number of parameters and their search space are greatly reduced when estimating
the head model’s parameters, as the body reconstruction results information about the original point
cloud, and relationships between parameters are used in the pylon head reconstruction process.
Experimental results show that the proposed method can efficiently reconstruct power pylons, and
the average residual between the reconstructed models and the raw data was smaller than 0.3 m.

Keywords: airborne LiDAR; 3D pylon reconstruction; RANdom Sample Consensus (RANSAC);
Metropolis–Hastings sampler; simulated annealing

1. Introduction

Object reconstruction from airborne LiDAR data has been an inspirational issue for researchers in
photogrammetry and remote sensing in the past decades. Many research projects have been conducted
on the 3D reconstruction from LiDAR data, and great progress has been made in modeling both
natural features and man-made objects [1]. The reconstructed 3D models can be significantly applied
in various areas, for example, urban planning, navigation, and emergency response [2].

High voltage transmission systems, as the fundamental infrastructure for power transmission
in long distance, assume enormous importance in the national economy’s development and daily
production. To ensure the safe and stable operation of power systems, it is indispensable to periodically
monitor the high-voltage transmission systems. As a key object of high voltage transmission systems,
considering the safety of transmission and the uniformity of force, the power pylon is well-designed
with specific structures, and its reconstruction is attracting growing attention in the 3D digitalization of
transmission corridors. The reconstructed 3D pylon model is not only helpful for disaster management

Remote Sens. 2017, 9, 1172; doi:10.3390/rs9111172 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7952-0521
https://orcid.org/0000-0002-3162-0566
https://orcid.org/0000-0001-6049-8005
https://orcid.org/0000-0002-7799-650X
http://dx.doi.org/10.3390/rs9111172
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 1172 2 of 24

and urban planning, but is also critical to environmental protection, and urban development policy
planning [2]. For example, the accurate positions and parameters of pylons can be obtained through
reconstruction, which is meaningful for disaster recovery and radiation testing [3].

However, limited by rugged field environments and data acquisition technologies, it is hard to
obtain high accuracy data of power pylons and reconstruct them automatically. Over the past few
decades, the most widely used method for pylon reconstruction has been manual modeling with
AutoCAD or 3dmax from draft designs, which cannot well match with the as-built pylons in the field
and do not record the structure modifications [4]. Given the rapid development of LiDAR technology
however, the acquisition of high accuracy high density point cloud of power transmission corridor
has become easier and cheaper. Advanced LiDAR technology provides an efficient solution for real
pylon model reconstruction, but adds complexity to data processing. A highly efficient and precise
reconstruction method is desperately needed for administrative departments responsible for power
grid systems.

1.1. Related Work

Because of power pylons’ structural complexity and type diversity, few research projects have
been devoted to power pylons’ automatic reconstruction from LiDAR point cloud. Han [5] proposed
a data-driven method to model power pylons, where 3D grids were firstly built with a line tracing
algorithm on the binary image. However, in this instance, the reconstructed models consisted of
only tangled lines without correct topological relations. Chen et al. [6] proposed a semiautomatic
model-driven method to rebuild pylons; this method was further improved by Li and Chen et al. [1].
In their work, the point cloud of a pylon was firstly decomposed into three parts according to their
density features: legs, body, and head. Then, the pylon body was reconstructed with four principal
planes while the pylon head was identified by a SVM (Support Vector Machine) algorithm from a pylon
head model library. However, this approach is not fully automatic. The SVM classifier is applied
just to classify the head type, and the final head models are manually processed [2]. In addition,
a decomposition method only using the density feature is not feasible for some complex pylons.
Kwoczyńska and Dobek [7] introduced a semiautomatic pylon modeling function on the MicroStation
V8i software using special overlays – TerraScan and TerraModeler of Finnish Terrasolid Company, in
which extremely simplified pylon templates were used, thus the reconstructed models cannot accurately
describe the structure of the original power pylon. To fully automate the pylon reconstruction workflow,
Guo et al. [2] introduced a stochastic geometric method to reconstruct power pylons, in which the type of
the pylon and all the parameters of the pylon body and pylon head were solved together by a Reversible
Jump Markov Chain Monte Carlo (RJMCMC) sampler with a simulated annealing algorithm. However,
this RJMCMC-based method is time-consuming [8], since a large proportion of iteration times are
wasted in recognizing the pylon type. In addition, geometric relations between the pylon parameters
are not considered, leading to estimation of redundant parameters.

To seek a better solution for automatic power pylon reconstruction, attentions are firstly turned
to technologies for other man-made object reconstruction, and then potentially useful ideas are
adopted to improve the processing flow and methods for pylon reconstruction. Although there are
many varieties of object reconstruction methods, the most reported methods can be divided into
three general categories [9]: data-driven, model-driven and hybrid-driven.

Data-driven: Generally, data-driven reconstruction methods adopt a bottom-up strategy. They
firstly extract basic features, such as planes, lines, or points, and then through a combination of features
and their topological relations, a complete model is reconstructed. In buildings, reconstruction usually
contains two key processes: building roof edge segmentation and topological reconstruction [1]. Since
plane features of buildings are more stable than point or line features, for complex roof structures
with high-density point cloud data, methods based on plane segmentation is first adopted, such as
ridge or edge-based and voxel-based region growing [10,11], cross-line element growth (CLEG) [12],
RANSAC [13,14], classification or feature clustering [15–18]; then, point or line features are obtained
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by intersection of plane features. Reconstruction results of data-driven methods are not limited by
the integrity of the model library, and they theoretically allow the generation of a model in any
shape [19]. Data-driven methods provide accurate descriptions of simple objects when the data
are complete. For example, Laefer and Truong-Hong [20] introduced a method to automatically
identify structural steel members and generate their geometry from a terrestrial LiDAR data for
building information modeling (BIM) usage. Experiments shows that the 3D model can be derived
by assembling the 3D sub-models of all individual members. However, deviations or reconstruction
failures will occur when raw data are sparse, noisy or partially occluded [21]. To overcome this problem,
more and more multi-platform and multi-view data are fused to improve data integrity. For example,
Kedzierski and Fryskowska [22,23] integrated data from different laser scanning technologies, such as
terrestrial and airborne, to reconstruct buildings more precisely.

Model-driven: Contrary to data-driven methods, model-driven methods use a top-down strategy,
which is based on a predefined model library. There are two key steps for model-driven methods:
(1) the optimal model matching between existing models in the predefined library and the original data;
and (2) the appropriate parameter estimation of the optimal selected model. For most model-driven
building reconstruction methods, there is a common assumption that a building is a collection of roof
primitives, such as gable roofs and hipped roofs [24]. Several Monte Carlo Simulation approaches,
such as RJMCMC [25,26], have been adopted to solve model parameters and great potential has been
shown in object reconstruction. Model-driven methods are known to be robust with respect to data
quality and suitable for large scenes [2]. Because topological relations of models are predefined in
the model library, it is advantageous for low-density point cloud data, and it can guarantee topological
correctness of reconstructed models [1]. For example, Cheng et al. [27] proposed a full framework to
reconstruct multilayer interchange bridge. An interchange bridge was firstly divided into structure
units; then its obscured structures was detected and restored; finally, by modeling each structure
unit, the interchange bridge was reconstructed. However, the reconstruction results are limited by
the integrity of the predefined model library [9], and it is can be quite time-consuming, especially
when large amounts of parameters need to be estimated.

Hybrid-driven: Because of the complexity in structure and diversity in shape, it is hard to meet
the reconstruction requirements of complex objects by merely using either data-driven or model-driven
methods. Therefore, hybrid approaches combining both data-driven and model-driven strategies have
been put forward in recent years. Construction constraints (e.g., coplanarity, symmetry and parallelism)
are brought into the process of object reconstruction to optimize models. For example, Xiong et al. [28]
introduced flexible building primitives for 3D building modeling. In this method, the point cloud of
buildings was firstly segmented into roof patches, and then through combining the predefined building
primitives, buildings could be well reconstructed. Kwak and Habib [29] developed a framework
for fully-automated building model generation where the building’s approximate boundary was
firstly generated by a data-driven method and then integrated by a model-based processing strategy.
Zheng et al. [9] proposed a hybrid approach for generating Level of Detail 2 (LoD2) building models.
Buildings could be completely and correctly reconstructed through this method by assembling basic
models. Cabaleiro et al. [4] proposed a method for the detection and automatic 3D modeling of metal
frame connections from LiDAR data. In their method, the information of connections was firstly
extracted, and then through a parametric model of connections, the geometric model of the frame
could be completed. Compared with the single reconstruction strategy, hybrid approaches combine
both advantages: on the one hand, it is more flexible than model-driven methods; on the other hand,
it is more robust than data-driven methods.

1.2. Contribution

As power pylons are one kind of man-made objects with certain construction constraints, the above
three object reconstruction strategies can also apply to power pylons, as data-driven and model-driven
strategies have been adopted to reconstruct the whole pylon or its components, for example, Han’s
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method [5] belongs to data-driven while Guo’s approach [2] belongs to model-driven. However,
differed from other man-made objects, the power pylon in high voltage systems is well-designed
with specific structures, which is much more complex in structure and diverse in type, leading
the existing object reconstruction approaches could not be directly applicable for the pylon problem.
Thus, this paper focus on power pylons widely used in the high voltage transmission systems in China,
and proposes a heuristic method for power pylon reconstruction, combining both data-driven and
model-driven strategies.

The processing flowchart of the proposed method is shown in Figure 1. Structurally, a pylon is
firstly decomposed into two parts: the pylon body and head. Then, optimal strategies are adopted to
reconstruct different pylon parts: for the pylon body with a single type and simple structure whose
shape is determined by four principal legs, a data-driven method is applied, where a RANSAC-based
algorithm is adopted to fit each principal leg with a 3D line; for the pylon head with various types
and complex structures, as they are constructed with regular construction constraints, a model-driven
method is applied with a predefined model library, where the pylon head type is recognized by
a shape context algorithm, and their parameters are estimated by a Metropolis–Hastings (MH) sampler
coupled with a Simulated Annealing (SA) algorithm. Body reconstruction results, information about
the original point cloud, and geometric relations between parameters are used in the process of head
reconstruction to reduce the number and search space of parameters.
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Figure 1. Processing flowchart of the proposed method.

1.3. Overview

The rest of the paper is organized as follows. Section 2 introduces the pylon decomposition
method and corresponding strategies to reconstruct the pylon body and pylon head. Experimental
data and results are, respectively, shown in Sections 3 and 4. The robustness and influence factors of
reconstruction are discussed in Section 5. Finally, conclusions drawn from experiments are presented
in Section 6.

2. Methodology

As mentioned in Section 1, according to power pylons’ structure characteristics, the pylon body
and pylon head are reconstructed with different strategies. Preprocessing and decomposition methods
are firstly introduced in Sections 2.1 and 2.2. Then, a data-driven strategy based on line features to
reconstruct the pylon body is introduced in Section 2.3, while a model-driven strategy to reconstruct
the pylon head is introduced in Section 2.4.



Remote Sens. 2017, 9, 1172 5 of 24

2.1. Preprocessing

After the point cloud of a pylon is extracted, it can be in arbitrary orientation in the global
coordinate system. Before the decomposition and reconstruction of the pylon body and head, the point
cloud should be normalized in a convenient 3D pylon coordinate system. The defined 3D pylon
coordinate system is located in the bottom center of the pylon body, among three axes of length, width
and height, whose definition are illustrated in Figure 2.
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vertical view.

Once the 3D pylon coordinate system is established, the point cloud of the pylon can be translated
and rotated to a given coordinates system.

2.2. Pylon Decomposition Based on Statistical Analysis

Structurally, a pylon can be decomposed into two parts: the pylon body and head. To explicitly
distinguish the pylon body and head, a waist plane is defined, and the part above it is defined as
the pylon head while the part below is the pylon body. The waist plane has two types: (1) the low
chords of the cross arm in Figure 3a; and (2) the rapidly changed cross-section in Figure 3e.

Although the waist planes’ types are different, there are two common statistical characteristics:
(1) the local maximum density used in Li et al. [1]; and (2) the local minimum length. The density is
defined as the number of point in each bin, and the length is the maximum distance to the center of each
bin. To automatically obtain the waist plane’s height, a statistical analysis on pylon points is carried out.

The pylon points are firstly divided into bins with the equal elevation interval ∆h, and each
bin’s density and length are calculated to form the density and length histograms. The value of ∆h
must ensure that each bin contains enough points so that its shape features retained. Next, a forward
and backward moving window with the size L × 1 is, respectively, used on both two histograms to
find the local maximum density and the local minimum length. As shown in Figure 3b,c, the bins
with the local maximum density are colored in red, while the bins with the local minimum length
are colored in green. Finally, the bin with both characteristics is automatically extracted as the waist
plane, and the position of the bin’s best fitting plane determined by RANSAC is regarded as the waist
plane’s height. As shown in Figure 3d,h, the points whose height is under the waist plane’s height are
regarded as the body points, while others are head points.
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2.3. Pylon Body Reconstruction Based on a Data-Driven Strategy

For the pylon body with a single type and simple structure whose shape is determined by
the four principal legs, a data-driven reconstruction method based on line features is applied: corner
points of the pylon body are firstly extracted and segmented into four subsets, which is introduced
in Section 2.3.1; then, a RANSAC-based algorithm is adopted to fit each subset with a 3D line, and
the pylon body model is refined under construction constraints, which are introduced in Section 2.3.2.
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2.3.1. Extraction and Segmentation of Corner Points

As principal supporting structures, the size of four principal legs are larger than that of other
auxiliary components, leading to the number of points falling on the four principal legs of the pylon body
being greater than that of auxiliary components; correspondingly, the color of the four principal legs are
darker than other auxiliary components in Figure 4a. Therefore, the line features of four principal legs
are opted to reconstruct the pylon body.

To correctly extract and segment corner points, the pylon body is equally divided into bins in
the elevation direction. As shown in Figure 4a, each bin can be viewed as rectangles with the same
center from the top view. Those parallel rectangles range from the bottom to the top, and the four
corresponding corners of all rectangles are collinear. For each bin, a convex hull algorithm [30] and
a polygon simplification algorithm are used to extract corner points [22,23].
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At first, the convex hull algorithm is used to construct a contour polygon from points in each bin.
As shown in Figure 4b, the contour polygon contains corner points and other points. Then, to detect
the corner points, a pipe algorithm [31] is applied to simplify the contour polygon (Figure 4c). Finally,
the detected corner points of all bins are segmented into four subsets according to their orientation to
the center of the minimum enclosing rectangle (MER). As shown in Figure 4d, each subset of corner
points can be approximately described as a 3D line.

2.3.2. Corner Line Fitting Based on RANSAC

To get corner lines’ equation from corner point set, which might contain non-corner points,
a RANSAC-based [32,33] approach is applied. It consists of two key steps: generating a hypothesis by
random samples and verifying the hypothesis by the remaining data [34].

Firstly, two points P1 (x1, y1, z1) and P2 (x2, y2, z2) are randomly selected, as shown in Figure 5a.
The equation of the 3D line L calculated by the two points is as Equation (1):

X− X1

X2 − X1
=

Y−Y1

Y2 −Y1
=

Z− Z1

Z2 − Z1
, (1)

Then, the distances from the remaining points to the line L are calculated. If the current point’s
distance to the line L is smaller than distance threshold Td, then the current point is defined as the inlier;
otherwise, it is defined as the outlier. This process is repeated until a predefined sampling number
or some other condition are met, and the line with the most inliers is taken as the final estimation
(as shown in Figure 5b).
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After the four principal legs are fitted independently (as shown in Figure 5c), three construction
constraints are taken into consideration to refine the pylon body reconstruction results: (1) the coplanarity
and reflectional symmetry of any two adjacent legs; (2) the reflectional symmetry of any two opposite
legs; and (3) the parallelism of the top plane and the bottom plane. The refined reconstruction results
of pylon body are shown in Figure 5d. In addition, the pylon body reconstruction results can be used
as the constraints in the process of head reconstruction. For example, as shown in Figure 5d, after
the body is reconstructed, the length and width of the waist plane can be derived as known parameters
tdx, tdy in the pylon head reconstruction.

2.4. Pylon Head Reconstruction Based on a Model-Driven Strategy

For the pylon head with various types and complex structures, as they are constructed with
regular construction constraints, a model-driven method is applied: a 3D parametric model library
of pylon heads is firstly predefined in Section 2.4.1; and then the type of pylon head is recognized by
a shape context algorithm, which is introduced in Section 2.4.2; finally, a Metropolis–Hastings sampler
is used to estimate the appropriate parameters of the selected head model with a simulated annealing
algorithm, which is introduced in Section 2.4.3.

2.4.1. 3D Parametric Model Library of Pylon Heads

Model-driven methods are based on a predefined model library. In general, although there is
little change in the auxiliary or local part of pylon heads, architecturally, most of pylon heads with
the same type have the same specific structure, which can be expressed in a unified structural model.
By referring to the specification widely used in China for pylon construction, a 3D parametric pylon
head model library is predefined.

The integrity of the model library is directly related to the generality of the reconstruction
method: if it is too limited, the method loses generality [2]. At present, the model library includes
the common pylon heads widely used in high voltage transmission systems in China (shown in Figure 6),
as ultrahigh-voltage power-line systems are still under development in China [2]. However, the content
of the model library could be widened if required.
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In the model library, the principal components including outer and inner contours are defined.
For simplicity, head models in the library are defined with a series of key points, and connected by
the predefined relations (such as topological and geometric relations). To get the coordinate of key
points, model parameters are specified as the feature height, feature length and feature width. These
parameters only give the relative relation of key points and they can be adjusted to fit the data optimally.
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As Figure 6 shows, each type is defined with many parameters, which will lead to expensive
time cost. To reduce the number of parameters and their search space, the body reconstruction
results, information about head points, and geometric relations between parameters are utilized.
The parameters of four pylon head models shown in Figure 6 are listed in Table 1. The unknown
parameters are the parameters to solve, while the known parameters can be inferred from geometric
relations between parameters, information about head points and body reconstruction results.
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Table 1. Parameters of different types.

Type Unknown Parameters Known Parameters

Model 1 H1 H2 L1 L2 Length Height tdx tdy H3 L3
Model 2 H1 H2 H3 H4 L1 L2 L3 Length Height tdx tdy H5 H6 L4 L5 L6 L7
Model 3 H1 H3 H4 H5 H6 L1 L2 L5 L9 Length Height tdx tdy H2 H7 L3 L4 L5 L6 L7 L8
Model 4 H1 H2 H3 L1 L2 Length Height tdx tdy H4 H5 L3 L4 L5

As shown in Table 1, most pylon heads have four basic parameters: tdx, tdy, Height, and Length.
tdx and tdy are, respectively, the length and width of the waist plane, which can be derived from
the results of body reconstruction as mentioned in Section 2.2. Height and Length are the size of
the pylon head, which can be derived from the original pylon head point cloud information. Especially,
some parameters can be inferred from other parameters. For example, in Model 1 (as shown in
Figure 7a), H3 can be inferred by Equation (2) according to geometric relations, while L3 can be inferred
by Equation (3) according to collinearity (in Figure 7a).

H3 = Height− H1 − H2, (2)

L3 = tdx− H3 ∗ (tdx− L2)

H2 + H3
, (3)

The above discussed head models describe only the 2D projection of 3D pylon head on
the length-height plane. Another dimension width is also important in the head reconstruction. Similar
to length and height parameters, width parameters are used to describe the key points distribution,
and some width information about head models can be inferred from the body reconstruction results.
As shown in Figure 7b, to make the pylon uniformly stressed, the two contours of pylons head and
body are collinear from the side view. After the pylon body is firstly reconstructed (colored in blue),
the 3D linear equations of l1 and l2 can be obtained. Then, according to their collinearity, the head width
of the side view can be derived.

In addition, the search space of each parameter can also be inferred according to the geometric
relations. In this way, the number and search space of parameters is greatly reduced.
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2.4.2. Pylon Head Type Recognition by Shape Context

There is a great variation in shape of pylon heads, but they tend to fall into a series of distinct
types aimed to recognize. In this step, the head point cloud and rough models are firstly zoomed to
the same scale and transformed into binary images, and then a shape context algorithm [35] is applied
to recognize the type of pylon head.

The shape context is a feature descriptor for measuring shape similarity and recovering points
correspondences. It has been widely applied in many areas, such as digit recognition, silhouette
similarity-based retrieval, trademark retrieval and 3D object recognition. The basic idea is to pick
n points P = {p1, p2, p3, . . . , pn} on each contour of shapes, as shown in Figure 8a,b, and compute
the shape context of each point pi. The shape context of pi is defined as the relative coordinates of
the remaining n − 1 points. For simplicity, the relative coordinates are replaced with the number
of points in each sector of the target template which is shown in Figure 8c. N concentric circles are
established at logarithmic intervals in the region where the current point pi is the center and R is
the radius, and the region is divided into M bins in a circumferential direction.
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Figure 8. Point sampling and its shape context for pylon head type recognition: (a) the sampled edge
of pylon head point; (b) the sampled edge points of head model; and (c) the target template used to
compute the shape context of point pi.

To minimize the effect of distortion, a thin plate spline (TPS) transformation that wraps the edges
of the model to the point cloud is adopted. Then, the matching cost between each pair of points on
the points image and model image are calculated by Equation (4). After the matching cost between
each model in the model library and original point cloud are calculated, the model with the minimum
total cost is chosen as the right head model.

Ci,j = C(pi, qj) = 0.5 ∗
K

∑
k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
, (4)

where Ci,j is the matching cost between point i and point j, hi(k) is the pi’s shape histogram of points,
hj(k) is the qj’s shape histogram of models, k = {1, 2, 3, . . . , K}, and K = M × N.

Because the distribution over relative position is a robust, compact, and highly discriminative
descriptor, the shape context is demonstrated to be robust to deformation, noise, and partial data
missing. Although the pylon head points are incomplete and distorted, this method accurately
recognizes the pylon head’s type from other model types by finding the minimum total matching cost.

2.4.3. Optimizations

In this section, the pylon head reconstruction process is transformed into a Gibbs energy
optimization issue. Gibbs energy is defined as the similarity between the raw pylon head points
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and the head model. To find the approximate solution of model parameters, the Metropolis–Hastings
sampler is adopted coupled with simulated annealing algorithm.

(1) Gibbs Energy

The Gibbs energy function [2] is used to quantitatively evaluate the similarity between
the reconstructed head model and original point cloud. To reduce the deviation caused by the local
optimum, the similarity u(x) consist of two simple distance: the average distance from model to head
points um(x) and the average distance from head points to model up(x).

u(x) = aum(x) + bup(x), (5)

a + b = 1. a and b are two weights which represent the contribution to the energy.
The shape of pylon head is determined by the inner contour and outer contour. To reduce the effect

of non-contour points, the key points of model and head points on the contours are extracted by alpha
shape algorithm [36]. Thus, the distance um(x) is simplified as the average distance from each model
key point to the closest head point (Equation (7)), while up(x) is average distance from each head key
point to the closest model point (Equation (8)). Through minimizing the Gibbs energy, the head points
and the model can be well matched.

um(x) =
1
n

n

∑
i=0

um(xi), (6)

up(x) =
1
m

m

∑
i=0

up(x′i), (7)

where n is the number of model key points, and m is the number of head key points.

(2) Metropolis–Hastings and simulated annealing algorithms

As the most popular Markov Chain Monte Carlo (MCMC) method, Metropolis–Hastings (MH)
algorithm is widely adopted to estimate the approximate value of model parameters. The key idea is
that through statistical sampling, a complex combination problem can be approximated by a much
simpler problem [8]. Target distribution p(x) and proposal distribution q(x∗|x) are involved in the MH
sampling process. Firstly, a candidate value x∗ of the current value x is sampled in space X according
to q(x∗|x) . Then, the acceptance probability A(x, x∗) is calculated by Equation (9). If the acceptance
probability is bigger than the predefined threshold, then, the Markov chain will move towards x∗;
otherwise, it rejects and remains at x. By constantly sampling, the value x∗ tends to converge.

A(x, x∗) = min
{

1,
p(x∗)q(x∗|x)
p(x)q(x|x∗)

}
, (8)

In this paper, a Gaussian distribution is selected as the proposal distribution, and the Gibbs energy
is set as the target distribution. Due to the symmetry of the proposal distribution, the q(x∗|x) is equal
to q(x|x∗) , therefore, the acceptance ratio is simplified as Equation (10).

A(x, x∗) = min
{

1,
p(x∗)
p(x)

}
, (9)

The MH sampler is of low efficiency, because random samples are rarely from the proximity of
the mode [8]. To make the sampling procedure more efficient, the simulated annealing (SA) algorithm

is used, whose target distribution at iteration i is p
1
Ti (x) instead of p(x) in MH sampler. The annealing

process starts with a high initial temperature (T0 = 1), and the decreasing cooling schedule Ti is
required as limi→∞Ti = 0 [8]. As shown in Figure 9, with the temperature Ti cooling, the probability of
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accepting worse solutions explored in the search space will decrease. When the temperature T is low
enough, the target distribution p(x) eventually tends to be global optimal as it can jump out the local
optimal solution with high probability.
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Figure 9. Decreasing of Gibbs energy.

Most convergence results for simulated annealing typically state that, if for a given Ti,
the homogeneous Markov transition kernel mixes quickly enough, then convergence to the set
of global maxima of p(x) is ensured for an appropriate sequence Ti. To cool the temperature T
quickly, an exponential cooling schedule is chosen. Combining the Gibbs energy and the MH sampler,
the detailed procedure of simulated annealing is shown in the Appendix A.

3. Experimental Data

To verify the feasibility of the proposed method, a set of experiments are conducted on the LiDAR
data of power pylons, which were collected from Guangdong Province, China. The original point
cloud data were collected by a Riegl VUX-1 laser measurement system. Details about data acquisition
are shown in Table 2.

Table 2. Details about the data acquisition.

ALS
System Flying Height Horizontal

Distance
Flying
Speed

Scanning
Speed Rate Accuracy Data Density

RIEGL
VUX-1

50 m above
the powerline

30 m to the
powerline 30 km/h 200 lines/s 550 khz 10 mm 500 pts/m2

The average distance of the original point cloud used in the experiments is about 0.05 m.
An example area of the original data is shown in Figure 10. The size of the shown transmission
corridor is about 1881 × 40 m2, and the points amount is 43,879,821, including six power pylons.
The point density of the example area is about 500 pts/m2 on average.
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In the experiments, the point cloud of power pylons is firstly extracted from the original data by
software, and then they are transformed to the pylon coordinate system automatically. Four typical
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extracted pylons are shown in Figure 11. As shown in Figure 11a, after the pylon is extracted, there are
some vegetation and power line points around the pylons, which may influence the reconstruction
results. As shown in Figure 11b, some data are missing, which will lead to partial reconstruction
deviation. The pylon bodies of four types approximately are quadrangular frustum pyramids, and
their shapes are determined by four principal legs. The pylon heads are more varied in shape and
parameters of each type are different, adding complexity to head reconstruction.
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4. Results

In this Section, experiments are conducted on power pylons of several transmission lines with
the proposed method, and the results are shown as follows: the accuracy of pylon decomposition
is firstly listed in Section 4.1; then, the pylon body reconstruction accuracy is shown in Section 4.2;
the head type recognition results are shown in Section 4.3; and the accuracy and efficiency of pylon
head reconstruction are, respectively, listed in Sections 4.4 and 4.5.

4.1. Decomposition Results of Different Pylon Types

Decomposition of the power pylon into the body and head is a basic step of the process, and it is
directly related to the correctness of final reconstruction. To verify the proposed method, it is applied
to data comprising four types of pylon, and each type has 10 examples. Then, the height of 10 pylons’
waist plane is compared with the height extracted interactively in CloudCompare. When the elevation
interval ∆h of each bin is set to 0.3 m and the distance threshold of plane fitting based on RANSAC
is set to 0.1 m, the correctness of the waist plane extraction and the average error dh of waist planes’
height is listed in Table 3, while the correctness is the ratio of the correctly decomposed pylons’ amount
to the total pylons’ amount of the same type.

Table 3. The decomposition accuracy of waist planes.

Accuravy Type 1 Type 2 Type 3 Type 4

dh (m) 0.08 0.06 0.10 0.07
Correctness 90% 90% 100% 100%
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In the experiment, two pylons are decomposed incorrectly, both due to the unfiltered power line
points around the waist plane. They are both correctly decomposed after the unfiltered power line
points are manually removed. Results indicate that the decomposition method based on statistical
analysis is feasible, and most waist planes of different types are correctly identified, and the location
error of the waist plane is less than 0.10 m.

4.2. Precision of Pylon Body Reconstruction

In this experiment, the proposed data-driven method to reconstruct the pylon body is applied
to the 40 decomposed pylons. To evaluate the feasibility of the method, the fitting residual between
the extracted corner points and fitting lines, and related accuracy between the reconstructed model
and the original point cloud of pylon body are calculated.

To evaluate the fitting accuracy of the extracted corner points, the number of extracted corner
points Ni, the ratio of inliers ri, and the fitting residual δi of each leg i between the fitted line and inliers
of extracted corner points are calculated. The fitting residual δi is defined as Equation (11):

δi =
1
n

n

∑
k=1

δk, (10)

where δk is the distance of inlier pk to the fitting line L, and n is the number of inliers.
Table 4 shows the fitting residual of 12 randomly selected pylons from four types. The distance

threshold Td is set to 0.1 m. Table 4 demonstrates that the maximum fitting residual of each leg is
0.022 m, and the accuracy of body reconstruction is not related to pylon types.

Table 4. Fitting residual of four principal legs.

T N1 r1 (%) ffi1 (m) N2 r2 (%) ffi2 (m) N3 r3 (%) ffi3 (m) N4 r4 (%) ffi4 (m)

1 163 40 0.008 207 74 0.005 180 37 0.016 197 63 0.011
1 148 58 0.006 185 65 0.007 93 84 0.006 133 81 0.005
1 120 83 0.007 210 71 0.005 172 48 0.010 209 77 0.007
2 132 37 0.022 211 76 0.004 196 66 0.007 149 39 0.014
2 128 74 0.005 171 81 0.007 84 56 0.008 140 61 0.014
2 188 71 0.008 210 74 0.008 121 48 0.022 200 42 0.015
3 115 50 0.013 217 57 0.011 196 54 0.011 201 46 0.015
3 112 57 0.012 234 60 0.003 227 48 0.010 175 31 0.022
3 248 58 0.006 414 69 0.007 360 50 0.005 398 44 0.010
4 91 80 0.007 131 74 0.007 107 83 0.005 142 58 0.019
4 131 44 0.016 293 52 0.007 286 41 0.013 327 41 0.013
4 204 48 0.008 269 45 0.013 188 49 0.023 179 34 0.010

To visually check the results of pylon body reconstruction, the original point cloud of pylon body
and reconstruction results are shown in Figure 13. The reconstruction results are colored in blue, while
the original point cloud is in black. It can be seen from both front and side views that the reconstructed
body models are in good agreement with four principal legs in shape.

To give a quantitative precision of the reconstructed body models, related accuracy between
the reconstructed model and the original point cloud are measured in the CloudCompare, which is
defined as the maximum 2D distance from the pylon points to the four reconstructed legs in the front
and side projected plane. The results of the 12 pylon bodies are listed in Table 5. The maximum and
average 2D distance to the front plane is 0.153 m and 0.061 m while the maximum and average distance
to the side plane is 0.109 m and 0.072 m, and they are sufficiently accurate to meet the requirements of
3D digitalization.
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Table 5. The related accuracy of pylon body reconstruction.

Pylon Body Type The Front Plane (m) The Side Plane (m)

1 1 0.061 0.052
2 1 0.041 0.062
3 1 0.037 0.056
4 2 0.038 0.090
5 2 0.059 0.074
6 2 0.048 0.080
7 3 0.153 0.075
8 3 0.064 0.109
9 3 0.134 0.071
10 4 0.053 0.090
11 4 0.028 0.051
12 4 0.020 0.050

4.3. Recognition of Pylon Head Type

In this experiment, 12 selected pylons mentioned in Section 4.2 are tested. All heads types are
correctly recognized by the shape context algorithm, and the matching cost of four randomly selected
models are listed in Table 6.

Table 6. Matching Cost matrix between the head points and models T.

Model 1 Model 2 Model 3 Model 4 Type

Pylon 1 0.240 0.153 0.035 0.097 3
Pylon 2 0.047 0.068 0.105 0.117 1
Pylon 3 0.078 0.028 0.120 0.037 2
Pylon 4 0.121 0.070 0.098 0.024 4

Among the four pylon heads, the head of pylon 3 (Figure 12a) has a big data loss in the right side,
whose matching cost to Model 2 (Figure 12b) and Model 4 (Figure 12c) are both small, but the ratio of
the smallest cost and the second smallest cost reaches 0.76, still robust enough to choose the Model 2
as the right model. The experiment shows that the shape context algorithm can robustly identify
the four typical pylon head types even with deformation, noise, and partial data missing.
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4.4. Precision of Pylon Head Reconstruction

In this experiment, 12 selected pylons mentioned in Section 4.2 are tested to verify the feasibility
of the head reconstruction method. To make reconstruction results clearly visible, four typical pylons’
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reconstruction results are shown in Figure 13, where the reconstructed head models are colored in
yellow and the original pylon points are in black. As shown in Figure 13, all reconstructed pylon head
models are attached to the original point cloud well, even with noise, and partial data missing.Remote Sens. 2017, 9, 1172  17 of 24 
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Figure 13. Four typical pylon reconstruction results. The pylon body reconstruction results are colored
in blue, while the pylon head reconstruction results are colored in yellow. (a,b), (c,d), (e,f) and (g,h) are
the reconstructed model of Type 1, Type 2, Type 3 and Type 4, respectively.
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To quantitatively evaluate the accuracy of head reconstruction results, the number of key points
extracted by an alpha shape algorithm ncount, the average distance Dave and maximum distance
Dmax between the reconstructed head model and the original point cloud are, respectively, calculated
according to Equations (12) and (13).

Dave =
1
n

n

∑
i=1

(dis(pi, qi)), (11)

Dmax = max(dis(pi, qi)), (12)

where dis(pi, qi) is the distance from the model key points pi to the corresponding closest point qi of
the original pylon point cloud, and n is the number of model key points.

The head reconstruction accuracy of four typical pylons (shown in Figure 13) are listed in Table 7.
For the four pylon heads, 522 key points of the original head point cloud are extracted by an alpha
shape algorithm on average. The average distance Dave of four pylon heads is 0.196 m on average,
while the maximum distance Dmax of the four pylon heads is 0.333 m.

Table 7. Pylon head reconstruction accuracy.

Pylon Ncount Dave (m) Dmax (m)

1 333 0.176 0.274
2 440 0.231 0.283
3 995 0.253 0.578
4 320 0.122 0.202

4.5. Efficiency of Pylon Head Reconstruction

To evaluate the efficiency of the head reconstruction method, 12 selected pylons mentioned
in Section 4.2 are tested on an Intel Core i7-6770HQ PC on an ASUS notebook powered by Intel
Core i7-6770HQ 2.6 GHz CPU. The number of unknown parameters Np (mentioned in Section 2.3.1),
the head size of original point cloud, the number of points ncount, and the time consumption Time are
calculated. Table 8 shows the reconstruction time of the 12 pylons, which is sorted by Time.

Table 8. The efficiency of Head reconstruction.

Pylon Type Np Head Size (Length × Width × Height) Ncount Time (s)

1 1 4 14.2 m × 7.9 m × 10.4 m 15,114 6
2 1 4 13.0 m × 9.2 m × 10.5 m 22,315 6
3 1 4 13.9 m × 8.7 m × 10.0 m 12,520 6
4 4 5 11.0 m × 5.5 m × 12.5 m 3152 6
5 4 5 11.1 m × 4.7 m × 12.5 m 4272 7
6 4 5 11.0 m × 5.4 m × 12.7 m 5095 7
7 2 7 14.0 m × 5.4 m × 12.7 m 5762 10
8 2 7 13.7 m × 5.5 m × 13.0 m 3619 11
9 2 7 13.7 m × 6.4 m × 13.0 m 5008 12

10 3 9 17.9 m × 4.4 m × 28.8 m 12,821 23
11 3 9 19.0 m × 7.5 m × 29.5 m 14,080 24
12 3 9 21.7 m × 14 m × 29.0 m 28,331 28

As Table 8 shows, the time consumption of the head reconstruction is mostly determined by
the head type and size, as the various types lead to different numbers of parameters, while the head
size is related to the search space of parameters. As the number of unknown parameters increases,
more running time is required to estimate the appropriate value of parameters. For pylon heads with
the same type, the time consumption has a slight fluctuation, which is affected by the search space of
parameters, and the larger the search space is, the more reconstruction time is required.
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As the proposed head reconstruction method makes use of the body reconstruction results,
information about the original point cloud, and relationships between parameters to reduce the number
of parameters and their search space, the head model is efficiently reconstructed. However, due to
the limitation of the model library, the model-driven method is not suitable to reconstruct pylon heads
whose type is not predefined in the model library, especially in different countries or different rank
power transmission systems. Because the pylon heads are usually constructed with specification
and the models can be parameterized [2], the updating of library can be done conveniently. After
the new types of pylon heads have been added in the model library, the pylon can be efficiently and
precisely reconstructed.

5. Discussion

In this section, the robustness of the proposed body reconstruction method will be analyzed in
Section 5.1, and the factors that influence the pylon head reconstruction accuracy will be discussed in
Section 5.2.

5.1. Robustness to Noise of Pylon Body Reconstruction

Bad pylon body reconstruction results are usually caused by the sparseness or incompleteness
of the original point cloud, or points that do not belong to pylon such as vegetation or power line
points. As Figure 14a shows, there are many unfiltered vegetation points around leg 1 and leg 3 of
the pylon body. When extracting the corner points of pylon body, the vegetation points can also be
extracted, which will lead the inliers ratio of the effected legs being much lower than the unaffected
legs. Figure 14b shows the body reconstruction results of the same pylon after the vegetation points
are manually filtered. Without vegetation points effect, more corner points are correctly extracted and
participate in the body reconstruction, which results in higher confidence and accuracy.
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Figure 14. Comparison of the pylon body reconstruction in two situations: (a) the top view of the pylon
with vegetation points effect; and (b) the same pylon without vegetation points effect.

To evaluate the influence of unfiltered vegetation points, the accuracy of the pylon body in
the two situations are calculated and shown in Table 9. For the situation in Figure 14a, the inliers ratio
of the two affected legs (leg 1 and leg 3) are only 40% and 37%, while the two unaffected legs (leg 2 and
leg 4) are up to 74% and 63%. For the situation in Figure 14b, without the effect of vegetation points,
the inliers ratio of leg 1 is up to 83%, which is much more than 40%. However, the fitting deviation
of leg 1 in the two situations is very small, which only changes from 0.008 m (with noise) to 0.006 m
(without noise). A conclusion can be drawn obviously that the noise leads to low inliers ratio, but has
a very small impact on the fitting residual.
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Table 9. Fitting residual comparison of principal legs in two situations.

N1 r1 (%) ffi1 (m) N2 r2 (%) ffi2 (m) N3 r3 (%) ffi3 (m) N4 r4 (%) (m)

1 163 40 0.008 207 74 0.005 180 37 0.016 197 63 0.011
2 120 83 0.006 207 73 0.007 168 50 0.009 207 74 0.008

From the comparison, a conclusion can be drawn that the RANSAC-based algorithm to reconstruct
pylon body is robust to noise. It can robustly solve parameters of a certain mathematical model even
from data containing a large amount of noise, and noise tends to have small or no influence on the values.

5.2. Influence Factors of Pylon Head Reconstruction

Theoretically, the pylon head reconstruction results are affected by the reconstruction method and
data quality. Therefore, in this section, two typical influence factors will be analyzed: (1) key points
extraction; and (2) data loss.

5.2.1. Key Points Extraction

Key points extraction is quite important in the pylon head reconstruction process. If the extracted
key points can well represent the inner and outer contour of pylon head shape, the result is ideal;
otherwise, the deviation will occur. To compare the effect of key points extraction results on the head
reconstruction, three alpha values of the alpha shape algorithm are applied, and the extracted key
points and reconstructed models are shown in Figure 15.
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As shown in Figure 15 and Table 10, as the alpha value decreases from 1 m to 0.1 m, more and
more non-contour points are extracted as key points; especially when the alpha value is 0.1 m, almost
all points (1077) are extracted as contour points. Correspondingly, with the alpha value decreasing,
the average distance Dave between the reconstructed models and the original point cloud increase from
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0.176 m to 0.244 m, while the maximum distance Dmax increases from 0.274 m to 0.435 m, showing that
the quality of reconstructed model also decreases. Thus, the alpha value should be selected carefully
to capture the detail of head contour while not introducing non-contour points.

Table 10. Accuracy comparison of three different alpha values.

Alpha (m) Ncount Dave (m) Dmax (m)

1 333 0.176 0.274
0.5 439 0.177 0.322
0.1 1077 0.244 0.435

5.2.2. Data Loss

To test the method’s sensitivity to data loss, three levels of data loss are tested. In Figure 16,
the point cloud in Figure 16a is complete without data loss; in Figure 16b, some points are missing but
do not affect the completeness of head structure; and, in Figure 16c, the whole points of the left section
are missing.
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some data loss; and (c) the head data with whole sections of the structure missing.

The reconstruction result in Figure 16a is closest to the original points, as all contour information
of the pylon head is reserved. In Figure 16b, it is clearly shown that the difference between Figure 16a,b
is small. This is because the topological constraint relationships, such as parallel, symmetric, have
already been implied when defining the models, which makes the reconstruction model with high
regularization. In Figure 16c, the structure of the model is still correct but the details of reconstruction
are not precise. It is because that pylon parts with few points contribute little to the data coherence
term in the energy calculation. The MH sampler and simulated annealing usually cannot find
an absolute optimization.

6. Conclusions

In this paper, a heuristic pylon reconstruction method combining both data-driven and
model-driven strategies is introduced. Compared with existing pylon reconstruction methods,
the proposed method has several characteristics, and shows potential in pylon reconstruction from
LiDAR data. The major contributions of the proposed method mainly exist in four aspects: (1) using
the statistics analysis method, which combines both the local maximum density and the minimum
length, to automatically decompose a pylon into body and head which is more applicable than
Li et al. [1] method for various pylon types; (2) reconstructing the pylon body and head with optimal
strategies, which are robust to noise and partially missing data; (3) the flow of body reconstruction
method is simpler than Li et al. [1], using a RANSAC based 3D line fitting method to reconstruct
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four principal legs of a pylon body, improving the stability of body reconstruction, which can also
ensure the reconstruction accuracy; and (4) using a shape context algorithm to recognize the head
type, and a Metropolis-Hastings (MH) sampler coupled with Simulated Annealing (SA) algorithm
to solve the head parameters, improving the robustness of head type recognition while reducing
the parameters of optimization. Meanwhile, pylon body reconstruction results and the original
point cloud information are utilized in the model parameters solving process. Overall, the pylon
reconstruction results are accurate and efficient for 3D digitalization.

However, the proposed method also has some limitations. One is that this method is only
applicable for pylons with four legs, and the pylon head reconstruction results are limited by
the integrity of the predefined model library. As the pylon head types vary greatly in different
situations, the head model library should be widened and new pylon head models should be
introduced into the library to ensure the integrity of the model library. An extra effort should be
applied to determine the generalization of the proposed approach to model different pylon structures
and different pylons. In addition, the proposed method currently only focuses on the reconstruction
of principal pylon components, which is the first and most important work in the digitalization of
power pylon. Next, the reconstruction of material size and auxiliary structure will be considered,
which is useful to improve the 3D visualization effect. Meanwhile, multi-platform multi-sensor data,
such as terrestrial laser scanning and optical image, can be introduced to reconstruct the power more
accurately, and in more detail. In addition, as the first step of pylon and power line reconstruction,
automatic classification and extraction of point cloud data will be studied to improve the automation
of the whole procedure.
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Appendix A. Detailed Procedure of Simulated Annealing Algorithm

Input: space X, original state x0, initial temperature T, iteration number N at each temperature and the cooling
rate γ

While T > Tmin
{

For i = 0 to N
sample x* according to q(x∗|xi) in space X

if A(xi, x∗) = min
{

1, p
1
Ti (x∗)

p
1
Ti (xi)

}
> random (0, 1)

xi+1 = x*;
else

xi+1 = xi;
T = T*γ;

}
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