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Abstract: Producing accurate crop maps during the current growing season is essential for effective
agricultural monitoring. Substantial efforts have been made to study regional crop distribution from
year to year, but less attention is paid to the dynamics of composition and spatial extent of crops within
a season. Understanding how crops are distributed at the early developing stages allows for the
timely adjustment of crop planting structure as well as agricultural decision making and management.
To address this knowledge gap, this study presents an approach integrating object-based image
analysis with random forest (RF) for mapping in-season crop types based on multi-temporal GaoFen
satellite data with a spatial resolution of 16 meters. A multiresolution local variance strategy was used
to create crop objects, and then object-based spectral/textural features and vegetation indices were
extracted from those objects. The RF classifier was employed to identify different crop types at four
crop growth seasons by integrating available features. The crop classification performance of different
seasons was assessed by calculating F-score values. Results show that crop maps derived using
seasonal features achieved an overall accuracy of more than 87%. Compared to the use of spectral
features, a feature combination of in-season textures and multi-temporal spectral and vegetation
indices performs best when classifying crop types. Spectral and temporal information is more
important than texture features for crop mapping. However, texture can be essential information
when there is insufficient spectral and temporal information (e.g., crop identification in the early
spring). These results indicate that an object-based image analysis combined with random forest has
considerable potential for in-season crop mapping using high spatial resolution imagery.
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1. Introduction

The timely availability of the spatial distribution of crop types is required for statistical and
economic purposes as well as agrarian policy actions related to subsidy payments or implementation
of agro-environmental measurements [1,2]. Understanding the dynamic progress of the composition
and spatial structure of mosaicking crops is critical for a diversity of agricultural monitoring activities
(e.g., crop acreage estimation, yield modeling, harvest operations schedules and greenhouse gas
mitigation) [3–5]. Recently, there has been an increasing demand for delivering information on the
spatial distribution and dynamics of different crop types as early as possible, as in-season the crop
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maps are curtailed when taken as input to crop area forecasting, hazard prediction, or water use
calculations [6]. However, high accuracy and early identifications of crop distribution across an entire
growing period is challenging [7,8]. Since traditional agricultural statistics on crop acreages are usually
provided by the end of the season or later, in-season agricultural production managers lack necessary
information about the current year’s crops [9,10]. Alternatively, remote sensing satellites, owing to
their synoptic and repetitive nature, have proven to be an effective means for mapping and monitoring
crop extent [11–13].

The spectral characteristics recorded by the sensors provide a reliable basis for crop mapping.
Crop leaf pigment, leaf water and canopy structure all have a strong effect on spectral response.
However, the inherent spectral variability of crop types is frequently influenced by local weather or
farmer decisions. Specifically, different crops in the same region may share similar spectral signatures,
while the same crop types may present different spectral signatures in different locations [14,15].
Fortunately, each crop has a specific crop calendar with well-defined planting times as well as unique
seasonal growth and development rhythms, resulting in variation among apparent spectral reflecting
performance within the crop-growing season [16]. Therefore, temporal features are extremely necessary
for accurate crop classification. However, the tradeoff between spatial resolution and temporal
coverage makes it difficult to acquire data at simultaneously high levels [17].

The Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used in long
time-series research at regional or global scales, but often suffer from high mixtures of crop types due
to coarse spatial resolution (i.e., >250 m). Alternatively, spatial resolution of a few tens of meters, such
as Landsat data, can describe spatial details of land cover well, but Landsat-like data are hardly used
to capture changes in crop phenology and growth due to low temporal repeat cycles and frequent
cloud contamination. Thus, crop mapping based on satellite data desperately requires high-quality
spatial and temporal data, particularly in China where agricultural landscapes are complex with a
diversity of cropping systems and small field sizes [18]. New sensors, such as Chinese GaoFen and
overseas Sentinel-2A sensor, were designed for data enhancement to offer unprecedented perspectives
on land cover/use and vegetation [19–22]. These new missions revisit the same area more frequently
(every four or ten days) [23,24]. These data’s fine spatial resolution, global coverage and relatively fine
temporal resolution make them of great utility for mapping crop distribution [25,26]. In fact, such high
spatial resolution time series with multiple bands and possible derivations contribute large volumes of
data that present significant challenges for in-season crop mapping.

For the challenges due to crop variability and pixel heterogeneity, traditional pixel-based
classification methods are unable to incorporate the detailed spatial information, which limits
their application mainly in the regions where crop fields are fragmented with high spectral
variability [27,28]. To overcome the “salt-and-pepper” effect, object-based approaches have been
increasingly implemented in remote-sensed image analysis [29,30]. Since object-based methods can
avoid being affected by spectral similarity between different crops or crop mosaicking variability,
techniques based on objects become a more useful approach to map crop types [31]. In addition to the
reflectance signal captured by the sensors, textural features can correspond to crop consistency and
canopy structure [32,33]. Object-based methods can calculate these textural features, which describe
spatial and structural attributes of crops at the object-based scale. However, conventional supervised
classifiers (e.g., maximum likelihood method) are inefficient for determining the separabilities of a
large volume of features (such as spectral, temporal, texture and vegetation indices) at an object-scale
under complex cropping conditions.

Recently developed nonparametric machine learning algorithms, i.e., support vector machine
(SVM) and random forest (RF), provide effective tools to identify different land cover classes, as they
are not constrained by the assumption that the input parameters are normally distributed [34–36].
RF classifier has been given increasing attention with regards to crop mapping [37–39]. The RF classifier
has been proven to be stable and relatively efficient to yield overall accuracy levels that are either
comparable to or better than other classifiers such as decision trees, neural networks and SVM [40].
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Additionally, RF can not only deal with a large volume of spectral, temporal and texture features (even
those that are highly correlated), but it can also measure feature importance and enable automatic
generation of a structured knowledge, which may be a promising method for crop classification
when using high spatial resolution images. Therefore, the performance of a combination of RF
approaches with object-based image analysis for crop mapping has garnered much attention [25,41,42].
However, few studies have paid much attention to producing the early seasonal crop type maps
for decision-maker management and mapping crop seasonal dynamics based on new “two high
resolution” satellite data.

This paper aims to address the knowledge gap for the timely production of in-season crop maps
to detail the composition and spatial distribution of crops and their seasonal changes during crop
growing stages. A combined object-based image analysis with random forest for mapping in-season
crop types (OBRFIC) is introduced to produce the multiple crop type maps from early spring to
autumn. To demonstrate the utility of this method, multiple temporal Chinese GaoFen satellite no. 1
Wide Field-of-View camera (GF-1 WFV) data located in Beian City in northeast China from 2014
were employed. We first segmented the GF-1 WFV imageries and tested the optimal segmentation
parameters for crop objects. Then, object-based spectral, temporal, textural features and vegetation
indices were extracted. Ten different feature combinations were designed and their performance
was assessed. Finally, we mapped the in-season crop types and ranked feature importance with
RF. Compared to post-season crop mapping, this work provides the advantage of using multiple
seasonal features for mapping in-season crop types during crop growth to support agricultural
production management.

2. Study Area and Datasets

2.1. Study Area

The study area is located to the west of Beian City, Heilongjiang, China (Figure 1). It covers
approximately 4647.83 km2 between 47.54◦–48.57◦ N in latitude and 126.26◦–127.50◦ E in longitude.
Beian City is an agriculturally dominated region and is also the leading soybean production region.
It is characterized by a flat terrain and a cold temperate regional climate. Winters are long and frigid,
and summers are short and cool, with an annual average temperature ranging from −0.6 ◦C to 2.7 ◦C.
Annual precipitation averages 500–700 mm, with precipitation occurring mainly in summer. The major
crop types in this region are soybeans and corn, accounting for two-thirds of the total cropland area [43].
In addition, there is some rice and spring wheat cultivation in the study area. Due to the limited
accumulated heat and sunshine, the four major crops are cultivated once each year and have relatively
stable calendars (Figure 2). In general, soybean and corn are usually planted in mid- to late-May.
The harvest dates of these two crops are different, ranging from late September to as late as mid-October.
Wheat is sowed earliest and harvested earliest among the four crops. Rice are transplanted in early
June and harvested in late September, experiencing a relatively long growing period.

2.2. GF-1 WFV Data

The GF-1 WFV sensor data were chosen for in-season crop mapping in this study because
of their high spatial resolution and temporal repeat interval. Launched on 26 April 2013, GF-1 is
the first optical satellite of the “Chinese high-resolution satellite” program. The GF-1 WFV sensor
has four spectral channels, i.e., blue (450–520 nm), green (520–590 nm), red (630–690 nm) and near
infrared (770–890 nm). GF-1 WFV image has a spatial resolution of 16 m and swath width of 800 km
with four cameras combined, as well as a 4-day revisit cycle. Four GF-1 WFV images in 2014 were
downloaded from the China Centre for Resource Satellite Data and Application [44]. Considering the
availability of cloud-free images and crop calendar, four GF-1 WFV scenes, acquired in early spring
(no crop cover stage; 24 April 2014), spring (green-up stage; 24 May 2014), summer (growing peak
stage; 25 July 2014), and autumn (harvest stage; 24 September 2014) were selected to characterize the
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variations of crop planting pattern across time. These data cover the key growing phases of targeted
crops and were of good quality. All those images were georeferenced to the UTM WGS84 (zone
52N-WGS84) projection system. Atmospheric corrections were implemented to these images using Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI 5.1 software.Remote Sens. 2017, 9, 1184  4 of 20 

 

 
Figure 1. Location of the study area and the sampling points in summer.  Figure 1. Location of the study area and the sampling points in summer.

2.3. In-Season Sample Data

To build the RF classification model and assess the accuracy of the in-season crop maps, extensive
field surveys were carried out across different crop growth period. A detailed survey schedule was
designed according to the crop calendar. Sample plots were chosen according to the adequate number
of crop samples to capture the existing land system, the size of the field and their accessibility. Only the
field with area greater than 256 m2 (16 m × 16 m) was selected as the sample plot. A distance of
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no less than 1 km was chosen as the sampling interval so as to guarantee their spatial homogeneity
and representativeness of intra-class variations. A total of 1777 sample plots was collected and were
distributed throughout the whole study area (Figure 1), including 1121 crop samples (located in
cropland corn, soybeans, rice and wheat) and 656 non-crop classes (mainly village, road, water, forest
and grassland) samples. Then, the field investigations were monthly conducted to collect crop types
for four stages, i.e., they are respectively no crop cover stage, green-up stage, growing peak stage and
harvested stage. The specific dates for surveying sampling point data were assigned at the end of every
month and these seasons are characterized by different vegetation coverage type. The locations of
sample plots were first recorded by GPS and then digitized as points over the available fine resolution
GF-1 WFV images. Then, these sample plots were randomly divided into 70% and 30% for the training
and validation points, respectively. The numbers of training and validation samples for each crop type
are listed in Table 1.Remote Sens. 2017, 9, 1184  5 of 20 
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Table 1. Targeted crop types and associated number of training and validation samples at different
crop growing phrases in 2014.

Survey Date Crop Types Samples Training Samples Validation Samples

20 April Cropland 1121 789 332
Others 656 516 140

20 May
Wheat 68 53 15

Non-wheat 1053 736 317
Others 656 516 140

20 July

Corn 415 275 140
Soybean 474 334 140

Rice 164 126 38
Wheat 68 53 15
Others 656 516 140

20 September

Corn 415 275 140
Soybean 474 334 140

Rice 164 126 38
Wheat-other 68 53 15

Others 656 516 140
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3. Methodology

The workflow of OBRFIC schedule involved three parts: (1) image segmentation to create the
meaningful entities; (2) object-based feature extraction to select and build a training database for
different season; (3) running the trained RF for each season and assessing the crop maps. The flow
diagram in Figure 3 outlines the main processing and analysis steps, which are described in detail in
the following sub-sections.
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3.1. Overview of In-Season Crop Classification

The in-season classification scheme based on OBRFIC is implemented to produce a series of crop
maps for early prediction during the crop developing period. The four seasons and their identified
crop types are summarized in Table 2. While land preparation was occurring, non-crop class was
identified during plowing and tilling period. Thus, cropland was preliminarily discriminated from
other land cover types (village areas, natural vegetation, water bodies, etc.) in early spring (ES).
Then some of cropland became colonized by wheat. The extraction of the spatial distribution of wheat
was performed in spring based on the combination of two GF-1 imageries acquired in April and May
(SP). In summer, corn, soybean and rice with high biomass developed as the dominant green crop,
while wheat was mostly senescent. The summer crop distribution was extracted by combining three
available imageries in summer (SM). In autumn, summer crops were senescent, while wheat had been
reaped. We combined all the key growing-stage imageries ranging from early spring to harvested stage
to understand ongoing crop type changes in the region (AT). Based on OBRFIC approach, various
experiments were carried out for the dynamic crop development:

• A multiresolution algorithm was used for image segmentation and the appropriate segmentation
scale and the parameters associated with heterogeneity criterion were selected according to
local variance;

• Evaluation on the performance of the features for different crop types according to their types
(spectral reflectance, texture, temporal features and vegetation indexes);

• Analysis of the contribution of different feature types to the classification accuracy.
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Table 2. Four different seasons and its mapping crop types.

In-Season ID Period of Mapping Targeted Types

ES Early spring Cropland/Others
SP Spring Non-wheat/Wheat/Others
SM Summer Corn/Soybean/Rice/Wheat/Others
AT Autumn Corn/Soybean/Rice/Wheat-other/Others

3.2. Image Segmentation

The segmentation of GF-1WFV imageries includes two steps: (1) the delimitation of homogeneous
crop objects using a multiresolution segmentation algorithm; (2) the selection of optimal segmentation
parameter combination based on local variance (LV).

The first step to identify homogeneous crop objects is image segmentation. Objects, basic
processing units, were generated using a multiresolution segmentation algorithm implemented in the
eCognition Developer 8.7 platform (Trimble GeoSpatial Imaging), which is a bottom-up region-merging
technique [45]. The outcome of the segmentation process for producing homogeneous objects is
controlled though specifications and weighting of a scale factor and a heterogeneity criterion. The scale
factor is indirectly related to the average size of the detected objects. The heterogeneity criterion
controls the merging decision process and is determined by two mutually exclusive properties
(i.e., color and shape). Shape is composed of two equally exclusive properties: smoothness and
compactness. However, land use/cover types differ in spectral and spatial characteristics as well
as various shape and structure, the inherent properties of land use/cover and landscape pattern
impact on the scale levels for individual land cover types in order to match structures in the real world.
Therefore, the multiresolution segmentation is an optimization procedure for the average heterogeneity
and produces highly homogeneous image objects so that the subsequent classification process can be
greatly simplified and the mapping accuracy can be significantly improved [46].

A local variance strategy was used here for optimizing segmentation. To do so, we firstly set
the different segmentation scales ranging from 1 to 100 with an increment rate of 1. In addition,
the shape parameters were set as 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. Additionally, the segmentation
performance of different parameter combinations was assessed by the Estimation of Scale Parameter
(ESP) tool. The fundamental principle of ESP is to select the segmentation scales based on the Rate of
Change (ROC) curve for the calculated Local Variance (LV) of object heterogeneity at various scales [47].
The scales corresponding to the peaks of ROC curves were deemed as the potentially optimal
segmentation scales at the specific shape parameters. The segmentation results of different parameter
combinations were visually examined whether the image objects matched the boundaries well.

3.3. Feature Extraction

Four types of variables were considered: temporal (Tm), spectral (S), textural features (Tx) and
vegetation indexes (V). Several variables were calculated from multi-temporal GF-1 WFV images
(4 seasons). Mean blue, green, red and near-infrared spectral features were computed from the values of
all pixels forming an object, showing information related to leaf pigment and vegetation status [48,49].
The textural features related to crop structure, soil background and planting patterns, including
gray-level co-occurrence matrix (GLCM) correlation, dissimilarity and entropy, were calculated from
GF-1 WFV bands (blue band to near infrared band) [50,51]. The texture features were calculated
within the object. These textural features provided information on the pixels organization that is
complementary to spectral information. Four vegetation indices, such as Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI) and
Redness Index (RI) derived from GF-1 wavebands, were calculated during the crop growing periods.
These indices have been widely used in crop monitoring and they have enhanced the information of
spectral reflectance. To evaluate the relative usefulness of spatio-temporal features of GF-1 WFV for
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in-season crop identification, a series of feature scenarios were devised in which different combinations
of feature type were tested as input to the classifier. A complete list of feature scenarios and used
variables is given in Table 3.

• S: The spectral features from a single image per season were taken as input. Only four available
spectral bands of each scene were selected.

• STx’: The spectral bands and texture features acquired from a single image were taken as
input. Four available spectral bands (4 features) and GLCM correlation, GLCM dissimilarity,
and GLCM entropy from each band (12 features) acquired in specific season were selected.
This experiment represents the case where spatio-spectral feature type information is employed
for crop identification.

• SV: In addition to spectral features, NDVI, EVI, RVI and RI from GF-1 WFV data acquired
in specific season were taken as input to enhance the spectral information. This experiment
represents the case where multiple spectral information but little temporal information and
non-spatial information are employed for crop identification.

• SVTx’: Along with the spatio-spectral features from a single image, vegetation indices were
taken as input. This experiment represents the case where multiple spectral information but little
temporal information and spatial information are employed for crop identification.

• TmS: Multi-temporal available spectral features collected during the crop present growth stages
were taken as input. This experiment represents the traditional “multiple-dates” approaches. It is
a case of employing multiple temporal information but little spectral information (without spectral
enhancement, lack of vegetation indices) and non-spatial information for crop identification.

• TmSTx: Multi-temporal spectral and multi-temporal texture features were taken as the input.
For each available date, the four bands and 12 texture features were selected. This experiment
represents the cases of employing multiple spectral, multiple temporal and multiple texture
information for crop identification.

• TmSTx’: Multi-temporal spectral and in-season texture features were taken as the input.
Only 12 texture features were extracted from the special spectral bands acquired in present
season. This experiment represents the case of employing multiple temporal, multiple spectral
but little texture information to enhance the present information on crop structure and planting
pattern for crop identification.

• TmSV: Multi-temporal spectral features and vegetation indices were taken as input.
This experiment represents the case of employing multiple temporal information and multiple
spectral information for crop identification.

• TmSVTx: The available spatio-temporal spectral and vegetation indices collected during the crop
present growth stages were taken as input.

• TmSVTx’: Only the specific texture features were added into the multi-temporal spectral features
and vegetation indices datasets.

Table 3. Groups of input variables for in-season crop classification. Numbers in dark color means the
group is included in the selection.

Feature Scenario
ES SP SM AT

S Tm Tx V S Tm Tx V S Tm Tx V S Tm Tx V
S 4 4 4 4

STx’ 4 12 4 12 4 12 4 12
SV 4 4 4 4 4 4 4 4

SVTx’ 4 12 4 4 12 4 4 12 4 4 12 4
TmS 8 2 12 3 16 4

TmSTx 8 2 24 12 3 36 16 4 48
TmSTx’ 8 2 12 12 3 12 16 4 12
TmSV 8 2 8 12 3 12 16 4 16

TmSVTx 8 2 24 8 12 3 36 12 16 4 48 16
TmSVTx’ 8 2 12 8 12 3 12 12 16 4 12 16
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A set of accuracy metrics including Misclassification Error Rate (MER) and F-score values were
used to evaluate the performances of different feature scenario. MER, defined as the total proportion
of incorrectly classified fields, was derived from the confusion matrix to assess the accuracy of crop
maps in spatial location. The F-score is a per category measure that gives equal importance to the
errors of omission and commission and corresponds to the harmonic mean of producer’s accuracy
(PA) and user’s accuracy (UA). For each crop type, a class-wise accuracy measure ranges from 0 to 1,
among which value 1 indicates the best result and value 0 indicate the worst.

To decrease the classification error, the classification model was repeated five times. The results
were averaged by five random selections of training and validation samples to avoid the accidental
errors due to the low representativeness of one-time sampling.

3.4. Random Forest Classification

In this study, the RF algorithm was implemented and trained using version 3.2.2 of the 64-bit
version of R in order to identify the relative useful features to conduct in-season crop classification and
evaluate feature importance. RF was chosen because it has produced more accurate mapping results
in land cover classification studies compared to other classifiers [52].

RF is an ensemble classification algorithm and consists of a group of tree-based classifiers [34,53].
Each tree is obtained from bootstrapping, an equiprobable random selection technique with
replacement. The RF trees are built without pruning and by randomly selecting at each node a
subset of input variables. The forest of classification trees is built by performing an individual learning
algorithm that splits the input features into subsets based on the value of Mean Decrease Accuracy
(MDA, the difference in prediction accuracy before and after permutation of the interested variable) or
Gini coefficient. At each node in the trees, a random subset of the predictor variables is used to identify
the most efficient split. Thus, the result is an ensemble of low bias and high variance regression trees,
where the final predictions are derived by averaging the predictions of the individual trees. An internal
unbiased estimate of the generalization error and confusion matrix was also generated to assess the RF
model accuracy. A RF classifier based on MDA was widely used to assess the performance of features.

The critical steps of RF classification are the selection of the number of predictors at each decision
tree node split (mtry) and the number of decision trees to run (ntree) [52]. The mtry parameter was set
to the square root of the total number of input features within different feature scenarios (see Table 3),
and the ntree parameter was set to a relatively high number (set as 1000) for each feature scenarios
to allow for convergence of the Out-Of-Bag (OOB) error statistic since values larger than the default
(500) are known to have little influence on the overall classification accuracy [34,51,54]. The RF model
was constructed using a set of field data that was randomly divided 70%/30% for training and testing,
and examined by using 10-fold cross-validation to optimize classification performance. Additionally,
based on the results of feature ranking, the importance of features for different seasons were analyzed
and compared to evaluate how spectral, vegetation indices, temporal and textural features impact crop
classification accuracies.

4. Results

4.1. The Optimal Segmentation Scale of Crop Type

Figure 4 shows the potentially optimal segmentations scales for different land cover types were
30, 60 and 90, where the local variances changed abruptly. At each scale peak, the segmented objects
visually match with geographic entity and characteristics for the different land cover types. After the
segmentation, the objects at different scale levels respond to different landscape types, as scales always
related to the resolution of remote sensing data and landscape patterns. After visual comparison
between before- and after-segmentation images, we found these scales reflect three levels of image
objects of GF-1 WFV at 16 m spatial resolution in agriculturally dominated regions: (1) crop fields
with a clear boundary at scale parameter of 30, (2) blocks of artificial surface corresponding to the
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scale parameter of 60, and (3) the broadest land cover classes (e.g., forest) as depicted by their rough
and uneven texture of crowd structure, corresponding to scale parameter of 90. Therefore, 30 was
deemed as the optimal segmentation scale for crop type, which was expected to produce high-accuracy
crop maps.

Remote Sens. 2017, 9, 1184  10 of 20 

 

set to the square root of the total number of input features within different feature scenarios (see 
Table 3), and the ntree parameter was set to a relatively high number (set as 1000) for each feature 
scenarios to allow for convergence of the Out-Of-Bag (OOB) error statistic since values larger than 
the default (500) are known to have little influence on the overall classification accuracy [34,51,54]. 
The RF model was constructed using a set of field data that was randomly divided 70%/30% for 
training and testing, and examined by using 10-fold cross-validation to optimize classification 
performance. Additionally, based on the results of feature ranking, the importance of features for 
different seasons were analyzed and compared to evaluate how spectral, vegetation indices, temporal 
and textural features impact crop classification accuracies. 

4. Results 

4.1. The Optimal Segmentation Scale of Crop Type 

Figure 4 shows the potentially optimal segmentations scales for different land cover types were 
30, 60 and 90, where the local variances changed abruptly. At each scale peak, the segmented objects 
visually match with geographic entity and characteristics for the different land cover types. After the 
segmentation, the objects at different scale levels respond to different landscape types, as scales 
always related to the resolution of remote sensing data and landscape patterns. After visual 
comparison between before- and after-segmentation images, we found these scales reflect three levels 
of image objects of GF-1 WFV at 16 m spatial resolution in agriculturally dominated regions: (1) crop 
fields with a clear boundary at scale parameter of 30, (2) blocks of artificial surface corresponding to 
the scale parameter of 60, and (3) the broadest land cover classes (e.g., forest) as depicted by their 
rough and uneven texture of crowd structure, corresponding to scale parameter of 90. Therefore, 30 
was deemed as the optimal segmentation scale for crop type, which was expected to produce high-
accuracy crop maps.  

 
Figure 4. Local variance and its rate of change graph calculated by the ESP tool. 

Besides the scale of segmentation, shape parameter also impacts the performance of 
segmentation, especially for geographic entities possessing regular shapes (Figure 5). Cropland, as 
the main geographic entity type in study area, was monitored at spatial resolution of 16 m (Figure 
5a). A quantitative test was implemented, and the box plot shows that the value of local variance 
accelerated with the increase of the shape factor (Figure 5e). The local variance noticeably increased 
by 62.5% as shape grew from 0.1 to 0.9, with the step size of 0.1. Additionally, the highest local 
variance occurred at the shape value of 0.9, while the lowest one happened at the shape value of 0.1. 
Increasing the shape parameter results in a significant discrepancy in the performance of 
segmentation (Compared Figure 5c with 5d). Thus, the optimum image objects are segmented at 

Figure 4. Local variance and its rate of change graph calculated by the ESP tool.

Besides the scale of segmentation, shape parameter also impacts the performance of segmentation,
especially for geographic entities possessing regular shapes (Figure 5). Cropland, as the main
geographic entity type in study area, was monitored at spatial resolution of 16 m (Figure 5a).
A quantitative test was implemented, and the box plot shows that the value of local variance accelerated
with the increase of the shape factor (Figure 5e). The local variance noticeably increased by 62.5% as
shape grew from 0.1 to 0.9, with the step size of 0.1. Additionally, the highest local variance occurred
at the shape value of 0.9, while the lowest one happened at the shape value of 0.1. Increasing the
shape parameter results in a significant discrepancy in the performance of segmentation (Compared
Figure 5c with Figure 5d). Thus, the optimum image objects are segmented at shape parameter of 0.1.
From the above analysis, scale and shape parameters should be optimized for crop field to obtain the
best segmentation.
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Figure 5. Image segmentation at two scale levels and with two shape parameters: (a) Standard
false color composites (band rank: near-infrared, red, and green) of GF-1 WFV layer stack imagery;
(b) Segmentation at scale value of 10 and shape parameter value of 0.1; (c) Segmentation at scale value
of 30 and shape parameter value of 0.1; (d) Segmentation at scale value of 30 and shape parameter
value of 0.9; (e) Box plot depicting local variance (LV) against the different shape parameter settings at
a scale value of 30 of the multiresolution segmentation algorithm.
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4.2. Performances of Different Feature Subspaces on Crop Classification

By combining the spectral, temporal, spatial features and vegetation indices of the input data,
the average MERs of 10 scenarios for each season are presented in Figure 6. The overall performance of
ten feature groups achieves acceptable accuracies, suggesting that the features directly acquired from
GF-1 remote sensed images are capable of distinguishing in-season crop types. However, all MERs are
lower than 0.30. It is also observed that MERs significantly decrease as spatio-spectral information
increases, and MER ranges from 28.96% to 8.16%. The single spectral information (S) has the worst
performance and produces the lowest overall accuracies during the crop developing and harvest stages.
After adding texture (compared S with STx), the improvements in performance are not remarkable and
MERs just decrease by 0.51–1.12%, as a result of providing information on the organization of objects
that is complementary to spectral information, however extra texture information does not work
in ES. The vegetation indices, the efficient enhancement of spectral features, are the most beneficial
information in crop classification when available spectral information is limited, and SVTx’ work best
using single temporal data for in-season crop mapping with an MER of 12.17 to 21.26%. When more
temporal features are available in crop growing periods, MERs decease dramatically to 2.89–13.37%
(compared TmS with S). Additionally, multi-temporal vegetation indices are able to notably improve
accuracies. However, multi-temporal textures are less helpful than in-season textures (compared
TmSTx with TmSTx’), especially in the lager volume of feature scenarios (compared TmSVTx with
TmSVTx’). In contrast, Scenario TmSVTx’ works best for each season, with an MER of 8.16 to 12.17%
(SVTx’ in ES is equal to TmSVTx’ for in-season crop mapping during the early spring). The same
feature composition during different crop developing seasons indicates the time-scale scalability to the
other growing seasons.
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The different sensibility of in-season crops was measured using scenario TmSVTx’ based on
average F-score (Figure 7). These dynamic changes in the F-score mirror the occurrence of phenological
events and the appearance of crop developing throughout the crop growing seasons. The summer
crops (corn, soybean and rice) yield the best classification in season AT, with the average F-score of
greater-than 86.00%. Due to extra temporal and in-season texture features, the discrimination between
the pairwise crop types was facilitated by the fact that differences of crop status are larger between late
summer and autumn than for early summer. For instance, the capacity of identification for corn has an
increasing F-score value of 6.16% in autumn; the F-score value already achieves a desired average value
of 90.23% for soybean in summer; there is a remarkable improvement of F-score for rice in autumn,
with an increase value of 9.57%. Conversely, the decrease of the F-score value, provided for wheat,
is founded in Season SM, with an average decrease of 1.85%. Because the earlier sowing ahead of
other summer crops, wheat is in early development in spring but close to senescing in summer. Thus,
the spring date is more feasible to discriminate wheat and is helpful to optimize the spatio-temporal
collection schedule.
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4.3. In-Season Crop Mapping

Figure 8 presents in-season crop maps obtained via OBRFIC, of which the overall accuracies
average over 87.00% (Table 4). The different seasons differ not only in the crop extraction but also in the
error structure of the in-season maps. Cropland is firstly distinguished in early spring with an overall
accuracy of 87.73% and a kappa coefficient of 0.7421 (Figure 8a). Cropland is classified with PA and
UA values of approximately 90.00%, while the PA and UA values for the non-cropland class are under
86.00%. The wheat already shows green cover during spring with the result that the wheat class is
further separated from cropland by using early spring and spring imagery (Figure 8b). This is mapped
with an overall accuracy of 91.26%, reaching a kappa coefficient of 0.8263. Several vegetation indices
related to crop vegetation vigor in early summer, plus in-season texture features, were combined to
discriminate these fields. Nearly 92.38% of the non-wheat class is correctly labeled in spring season,
which is attributed either to emergency stage or to bare soil in this period. The mapping result of SM is
shown in Figure 8c with an overall accuracy of 87.88% and a kappa coefficient of 0.8305, distinguishing
corn, soybean, rice, and senescent wheat. However, both producer's accuracy (97.14%) and user’s
accuracy (64.15%) of the wheat class in summer are slightly lower than the one in spring (PA: 97.22%,
UA: 66.04%). The overall accuracy also slightly increases to 91.72% after adding the spatio-temporal
information in autumn, demonstrating that this season is decisive for the success of the general crop
identification. All the summer crop types have their highest classification accuracy, especially rice
which occupies the watercourses.

Table 4. Classification accuracy for in-season crop mapping.

Season ID Classification Type UA (%) PA (%)

ES

Cropland 90.86 89.05
Others 82.95 85.60

Overall accuracy = 87.73%
Kappa coefficient = 0.7421

Season ID Classification Type UA (%) PA (%)

SP

Non-wheat 92.38 92.44
Wheat 66.04 97.22
Others 88.76 86.09

Overall accuracy = 91.26%
Kappa coefficient = 0.8263

Season ID Classification Type UA (%) PA (%)

SM

Corn 85.81 89.39
Soybean 89.22 90.85

Rice 77.98 78.23
Wheat 64.15 97.14
Others 93.21 86.98

Overall accuracy = 87.88%
Kappa coefficient = 0.8305

Season ID Classification Type UA (%) PA (%)

AT

Corn 90.55 97.65
Soybean 94.01 93.18

Rice 81.75 91.15
Wheat-others 73.59 95.12

Others 95.54 87.99

Overall accuracy = 91.72%
Kappa coefficient = 0.8839
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5. Discussion

In-season crop mapping is difficult to characterize using the traditional classification methods
due to complex crop planting patterns and dynamic crop developing status. The proposed in-season
crop mapping strategy (OBRFIC) offers the advantage of characterizing the seasonal crop distribution
based on the optimized feature subset. Overall, our in-season classification results achieved desired
accuracies. These good results mean that the crop maps could potentially be incorporated into a
range of environmental models to predict how crop productivity may respond to unfavorable growing
conditions during the current growing season.

We evaluated the performance of different segmentations in agriculturally dominated region.
Previous studies have shown that, the multi-resolution segmentation, scale parameter is a key factor
for obtaining the best segmentation results [11]. According to the local variances, it greatly affected
the size of objects. For the crop category, a large number of small objects are acceptable but undesired
because textural characters are always subject to a high level of variability, resulting in the homogeneity
of objects decreasing with scale. Additionally, an excessive number of objects may increase the risk
that part of a given crop field, which contains the same crop type, are mislabeled thereby affecting
overall crop identification [42]. We also paid much attention to the influence of shape parameter on
the segmentation in this agriculturally dominated region. Visually, larger shape parameters failed
to delimit crop field borders, since segmentation errors stem from boundaries not being clear or
fields not being wide enough between crops. In the other words, increasing the shape parameter
meant that the segmented objects were no longer well aligned with the crop field boundaries. Thus,
the combination of the optimal scale and shape parameters for segmentation shows great potential
for some regular shape structures like cropland. However, in reality this optimal segmentation was
not very far off from the combination that was used in this study area, which is also affected by crop
structure and fragmentation.

For the performance of different feature scenarios, the results indicated that the spectral features
are fundamental for in-season crop classification, and temporal features extracted from high resolution
time series significantly improves the classification accuracy relative to the case of using a single image,
which is also consistent with the findings of the previous studies [55–59]. Ideally, each feature would
provide extra information and improve classification accuracy. Nevertheless, high correlations between
the variables and information redundancy undermine classification accuracy when all features are
used. Thus, TmSVTx’ performed best by contrast. Additionally, this study evaluated what information
is the most important for mapping in-season crops. For example, spectral diversity or enhancement
of the spectral information (e.g., adding vegetation indices) is more helpful for extracting the wheat
spatial distribution than temporal features due to the earlier development. The other summer crops,
by contrast, are more dependent on the multi-temporal information, resulting in sharing similar crop
calendar. However, the optimal feature scenario shown in this study is a combination of spectral,
temporal, in-season texture information and vegetation indices, and it is hard to determine which
feature type makes a greater contribution to the high crop accuracies.

We ranked the importance of the top 40% of all in-season features to test the contribution
of the improved classification accuracy (Figure 9). In the early spring, GLCM correlation feature
extracted from the near-infrared band in the early spring performed similarly as EVI, RVI and
NDVI (Figure 9a). This indicates that textural features provide information on the organization
of objects that is complementary to spectral information, which is consistent with the findings of other
studies [14]. Similarly, the pattern of features in spring and multi-temporal vegetation indices occupied
the importance top-rankings, with the in-season textures being more useful than those extracted from
early spring data (Figure 9b). When the majority of summer crops have high vegetation vigor, RI is
the most beneficial feature in crop classification, and it works best in the summer image (Figure 9c).
The spectral feature extracted from the green band in summer is the most efficient texture feature,
which can be attributed to the increase of MSE when feature scenarios lack in-season textures. When a
large volume of features was taken as input, multi-temporal spectral and vegetation indices play an
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important role in improvement of accuracy (Figure 9d). However, in-season textures, which were
extracted based on September imagery, were absent in top ranking. In contrast, GLCM correlation
feature, respectively extracted from the green band in spring and near-infrared band in early spring,
still work well for desiccated vegetation or crop harvested in autumn. In general, the texture features
contributed relatively little due to different crop calendars. The period where texture features were
least influential was the one possessing the autumn period. In this period, spectral and temporal
features contributed the most.
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Figure 9. Importance of RF feature sets for in-season crop mapping at different crop growth seasons:
(a) ES; (b) SP; (c) SM; (d) AT. B blue spectral band; G green spectral band; R red spectral band;
N near-infrared spectral band; E gray-level co-occurrence matrix entropy; D gray-level co-occurrence
matrix dissimilarity; C gray-level co-occurrence matrix correlation; 4 features extracted from the early
spring imagery; 5 features extracted from the spring imagery; 7 features extracted from the summer
imagery; 9 features extracted from the autumn imagery; ES in the early spring season; SP in the spring
season; SM in the summer season; AT in the autumn season.

The tested OBRFIC approach performs with very good accuracy and promises high flexibility.
Additionally, this approach shows great potential for early stage crop identification. For instance,
wheat can be identified in spring with the highest accuracy, while the acceptable accuracy of soybean
can be obtained in summer. However, classification errors are still inevitable during the different
crop-growing stages. In ES, the acceptable omission error of cropland is partly attributable to spectral
cross-correlation between grassland and cropland covered by crop residuals. Second, during the
emergence period of wheat, its weak spectral signature due to low-vegetation cover limits the ability
to differentiate between wheat and grassland, although the vegetation indices are helpful in spring.
In SM, soybeans were partly classified as corn in the southwest of the study area and grassland was
partly classified as rice. This is because soybean and corn, as well as rice and grassland, have similar
seasonal and spectral behavior resulting in respective misclassifications. When the OBRFIC is applied
to seasonal GF-1/WFV imagery, the larger feature sets weaken the interclass spectral similarities and
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high intraclass spectral variability. The combination of object-based and RF increases the robustness of
the mapping approach in each monitoring stage. In the presented research, the OBRFIC approach was
employed to classify the in-season crop types, and the classification accuracy and certainty remained
stable when additional features were used and crop types became complex.

Several factors potentially affected the results of this proposed approach. First, the number of
cloud-free images and the date that correspond to crop phonological phrases influenced the quality
of in-season classifications. Although the temporal resolution with GF-1 WFV data was substantially
finer than other data (e.g., Landsat data), it is still difficult to obtain dense GF-1 WFV time series due
to cloud contamination. Only having four clear observations introduces some uncertainty. A second
limitation is the determination of segmentation parameters. A multiresolution local variance strategy
has inherent instability and depends on the spatial resolution of the imagery and the a priori knowledge.
Segmentation evaluation metrics, such as a modification of the Global Score, should be tested with this
method to make the segmentation reproducible and less subjective [60]. Third, it is well known that
using multi-source data can improve crop classification accuracy, as different information can capture
crop characteristics from alternative perspectives. Thus, the combination of optical and Synthetic
Aperture Radar data, such as Sentinel-1/2 data, is expected to improve the accuracies of in-season
crop maps in the future.

6. Conclusions

This paper presented an in-depth study on in-season crop mapping using an approach of
integrating object-based image analysis with random forest (RF) based on multi-season GF-1 WFV
data. Four crop maps for different seasons in Beian City of Heilongjiang were produced and were
assessed by the field observation data. Results showed an overall accuracy of each crop map extracted
from early spring to autumn is more than 87% for 2014. These seasonal crop maps described the
dynamics of composition and the spatial extent of crops across different seasons as well as the progress
of crop growth. Such in-season crop extent information is particularly essential for regional agricultural
decision making, such as structural adjustment of agricultural planting.

Key findings and conclusions relevant for in-season crop mapping are listed below:

• The map in the fourth season has the highest accuracy since it has the largest number of features
and thus contains more useful information for classification. Therefore, for multiple-season
crop mapping, more attention should be paid to the early seasons that may suffer from the
insufficient information.

• Texture can be essential information for crop mapping when there is insufficient spectral and
temporal information at the beginning of crop-growing period, whereas in-season texture helps
increase the chance for mature crop classification, not only in addition to multi-temporal spectral
information, but also avoiding redundancy and maximizing the classification accuracy.

• Even though we focus on the Beian City in 2014, our methods can be extended to other years
for in-season crop monitoring since this robust approach possesses of the time-scale scalability.
In addition, future work could address the issues on how to use multi-source finer spatial
resolution data to improve the quality and timeliness of in-season crop mapping.

Acknowledgments: This study was financially supported by the National Key Research and Development
Program of China (2017YFD0300201). Special thanks are also due to C. Atzberger and four anonymous reviewers
for their constructive recommendation and insightful suggestions on this paper writing. The authors would like
to thank the fellows at the Remote Sensing Technology Center, Heilongjiang Academy of Agriculture Sciences,
for supporting the essential field investigation and crop samples.

Author Contributions: Qian Song, Wenbin Wu, Huajun Tang and Qingbo Zhou proposed the idea; Qian Song,
Qiong Hu, and Mingtao Xiang conceived and designed the experiments; Qian Song performed the experiments;
Qian Song and Qingbo Zhou analyzed the data; Qian Song, Ciara Hovis and Qiong Hu wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 1184 17 of 19

References

1. Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using
MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [CrossRef]

2. Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using independent
component analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [CrossRef]

3. Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for
crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [CrossRef]

4. Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte
communities using multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218–233.
[CrossRef]

5. Wu, W.B.; Yu, Q.Y.; Peter, V.H.; You, L.Z.; Yang, P.; Tang, H.J. How could agricultural land systems contribute
to raise food production under global change. J. Integr. Agric. 2014, 13, 1432–1442. [CrossRef]

6. Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.; Brivio, P. In-season mapping of crop type with optical
and x-band sar data: A classification tree approach using synoptic seasonal features. Remote Sens. 2015, 7,
12859–12886. [CrossRef]

7. Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese
Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269.
[CrossRef]

8. Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.;
Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery.
Remote Sens. Environ. 2017, 188, 9–25. [CrossRef]

9. Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid central
Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [CrossRef]

10. Song, X.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.;
Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium
resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [CrossRef]

11. Singha, M.; Wu, B.F.; Zhang, M. Object-based paddy rice mapping using Hj-1A/B data and temporal features
extracted from time series MODIS NDVI data. Sensors 2017, 17, 10. [CrossRef] [PubMed]

12. Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.;
Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last
millennium using remote sensing. Int. J. Appl. Earth Obs. 2009, 11, 114–129. [CrossRef]

13. Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimate from MODIS-EVI
time series using the crop proportion phenology index. Remote Sens. Environ. 2012, 119, 232–242. [CrossRef]

14. Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple
vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316.
[CrossRef]

15. Fan, H.; Fu, X.; Zhang, Z.; Wu, Q. Phenology-based vegetation index differencing for mapping of rubber
plantations using Landsat OLI data. Remote Sens. 2015, 7, 6041–6058. [CrossRef]

16. Le, Yu; Liang, L.; Wang, J.; Zhao, Y.Y.; Cheng, Q.; Hu, L.Y.; Liu, S.; Yu, L.; Wang, X.Y.; Zhu, P.; et al.
Meta-discoveries from a synthesis of satellite-based land-cover mapping research. Int. J. Remote Sens. 2014,
35, 4573–4588.

17. Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An enhanced spatial and temporal
data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like
data. Remote Sens. 2013, 5, 5346–5368. [CrossRef]

18. Hu, Q.; Wu, W.; Song, Q.; Lu, M.; Chen, D.; Yu, Q.; Tang, H. How do temporal and spectral features matter
in crop classification. J. Integr. Agric. 2017, 16, 324–336. [CrossRef]

19. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

20. Mansaray, L.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping rice fields in urban Shanghai, Southeast China,
using Sentinel-1a and Landsat 8 datasets. Remote Sens. 2017, 9, 257. [CrossRef]

http://dx.doi.org/10.1016/j.agrformet.2010.11.012
http://dx.doi.org/10.1016/j.rse.2010.01.006
http://dx.doi.org/10.1016/j.rse.2006.11.021
http://dx.doi.org/10.1016/j.rse.2015.10.020
http://dx.doi.org/10.1016/S2095-3119(14)60819-4
http://dx.doi.org/10.3390/rs71012859
http://dx.doi.org/10.1016/j.rse.2015.08.004
http://dx.doi.org/10.1016/j.rse.2016.11.004
http://dx.doi.org/10.3390/rs2041035
http://dx.doi.org/10.1016/j.rse.2017.01.008
http://dx.doi.org/10.3390/s17010010
http://www.ncbi.nlm.nih.gov/pubmed/28025525
http://dx.doi.org/10.1016/j.jag.2008.11.002
http://dx.doi.org/10.1016/j.rse.2011.10.011
http://dx.doi.org/10.1016/j.rse.2011.01.009
http://dx.doi.org/10.3390/rs70506041
http://dx.doi.org/10.3390/rs5105346
http://dx.doi.org/10.1016/S2095-3119(15)61321-1
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.3390/rs9030257


Remote Sens. 2017, 9, 1184 18 of 19

21. Jia, K.; Liang, S.L.; Gu, X.F.; Baret, F.; Wei, X.Q.; Wang, X.X.; Yao, Y.J.; Yang, L.Q.; Li, Y.W. Fractional vegetation
cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191.
[CrossRef]

22. Song, Q.; Zhou, Q.; Wu, W.; Hu, Q.; Lu, M.; Liu, S. Mapping regional cropping patterns by using GF-1 WFV
sensor data. J. Integr. Agric. 2017, 16, 337–347. [CrossRef]

23. Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land cover classification based on fused data from GF-1 and
MODIS NDVI time series. Remote Sens. 2016, 8, 741. [CrossRef]

24. Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252.
[CrossRef]

25. Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A combined random forest and
OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using
multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens. 2017, 9, 259. [CrossRef]

26. Wu, M.; Zhang, X.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. Reconstruction of daily 30 m data from
HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring. Remote Sens. 2015, 7, 16293–16314.
[CrossRef]

27. Hu, Q.; Wu, W.B.; Xia, T.; Yu, Q.Y.; Yang, P.; Li, Z.G.; Song, Q. Exploring the use of google earth imagery and
object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [CrossRef]

28. Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series
data. Remote Sens. 2015, 7, 16091–16107. [CrossRef]

29. Costa, H.; Carrão, H.; Bação, F.; Caetano, M. Combining per-pixel and object-based classifications for
mapping land cover over large areas. Int. J. Remote Sens. 2014, 35, 738–753. [CrossRef]

30. Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso
bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [CrossRef]

31. Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.;
de la Orden, M.S.; González-Audicana, M. Object- and pixel-based analysis for mapping crops and their
agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agric. 2009, 68, 207–215.
[CrossRef]

32. Ursani, A.A.; Kpalma, K.; Lelong, C.C.D.; Ronsin, J. Fusion of textural and spectral information for tree
crop and other agricultural cover mapping with very-high resolution satellite images. IEEE J. Sel. Top. Appl.
Earth Obs. 2012, 5, 225–235. [CrossRef]

33. Zhang, H.X.; Li, Q.Z.; Liu, J.G.; Du, X.; Dong, T.F.; McNairn, H.; Champagne., C.; Liu, M.X.; Shang, J.L.
Object-based crop classification using multi- temporal SPOT-5 imagery and textural features with a random
forest classifier. Geocarto Int. 2017, 1–19. [CrossRef]

34. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training

data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [CrossRef]
36. Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop classification of upland fields using

Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [CrossRef]
37. Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J.

Remote Sens. 2012, 45, 421–432. [CrossRef]
38. Fletcher, R.S. Using vegetation indices as input into random forest for soybean and weed classification. Am. J.

Plant Sci. 2016, 7, 2186–2198. [CrossRef]
39. Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Parameter tuning in the support vector machine

and random forest and their performances in cross- and same-year crop classification using TerraSAR-X.
Int. J. Remote Sens. 2012, 35, 260–267. [CrossRef]

40. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with
selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG
imagery. Remote Sens. Environ. 2012, 118, 259–272. [CrossRef]

41. Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of
multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526.
[CrossRef]

http://dx.doi.org/10.1016/j.rse.2016.02.019
http://dx.doi.org/10.1016/S2095-3119(16)61392-8
http://dx.doi.org/10.3390/rs8090741
http://dx.doi.org/10.1016/j.rse.2016.10.030
http://dx.doi.org/10.3390/rs9030259
http://dx.doi.org/10.3390/rs71215826
http://dx.doi.org/10.3390/rs5116026
http://dx.doi.org/10.3390/rs71215820
http://dx.doi.org/10.1080/01431161.2013.873151
http://dx.doi.org/10.1080/01431161.2013.875634
http://dx.doi.org/10.1016/j.compag.2009.06.004
http://dx.doi.org/10.1109/JSTARS.2011.2170289
http://dx.doi.org/10.1080/10106049.2017.1333533
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431160701395203
http://dx.doi.org/10.1016/j.compag.2015.05.001
http://dx.doi.org/10.5721/EuJRS20124535
http://dx.doi.org/10.4236/ajps.2016.715193
http://dx.doi.org/10.1080/01431161.2014.978038
http://dx.doi.org/10.1016/j.rse.2011.11.020
http://dx.doi.org/10.1080/01431161.2011.649864


Remote Sens. 2017, 9, 1184 19 of 19

42. Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image
analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large
areas. Remote Sens. Environ. 2012, 123, 553–562. [CrossRef]

43. Bureau, H.S. Heilongjiang Statistic Yearbook; Bureau of Heilongjiang Statistic: Harbin, China, 2015.
44. China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/CN/

(accessed on 17 December 2014).
45. Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale

image segmentation. J. Photogramm. Remote Sens. 2000, 58, 12–23.
46. Mathieu, R.; Aryal, J.; Chong, A.K. Object-based classification of Ikonos imagery for mapping large-scale

vegetation communities in urban areas. Sensors 2007, 7, 2860–2880. [CrossRef] [PubMed]
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