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Abstract: The L-band radiometry data and in-situ ground and snow measurements performed during
the 2016/2017 winter campaign at the Davos-Laret remote sensing field laboratory are presented
and discussed. An improved version of the procedure for the computation of L-band brightness
temperatures from ELBARA radiometer raw data is introduced. This procedure includes a thorough
explanation of the calibration and filtering including a refined radio frequency interference (RFI)
mitigation approach. This new mitigation approach not only performs better than conventional
“normality” tests (kurtosis and skewness) but also allows for the quantification of measurement
uncertainty introduced by non-thermal noise contributions. The brightness temperatures of natural
snow covered areas and areas with a reflector beneath the snow are simulated for varying amounts
of snow liquid water content distributed across the snow profile. Both measured and simulated
brightness temperatures emanating from natural snow covered areas and areas with a reflector
beneath the snow reveal noticeable sensitivity with respect to snow liquid water. This indicates the
possibility of estimating snow liquid water using L-band radiometry. It is also shown that distinct
daily increases in brightness temperatures measured over the areas with the reflector placed on the
ground indicate the onset of the snow melting season, also known as “early-spring snow”.

Keywords: L-band radiometry; microwave remote sensing; snow liquid water; LS—MEMLS;
ground permittivity; RFI; Davos-Laret

1. Introduction

Microwave remote sensing is preeminently suitable to achieve quantitative estimates of large-scale
terrestrial state parameters. This is partially due to the high transparency of the atmosphere
regardless of weather conditions, particularly within the low-frequency bands of the microwave
regime. Furthermore, remote microwave observations do not rely on sunlight, which is decisive
to achieve continuous information, especially over the Cryosphere at high latitudes. Another key
advantage of microwave remote sensing, over, for example, optical remote sensing, is the significantly
larger penetration depth of microwaves in media such as snow [1], vegetation, and soils [2] with
moderate amounts of liquid water. However, to retrieve information on terrestrial state-parameters
from remotely-measured brightness temperatures, proper microwave emission models are needed,
which relate such state parameter values to microwave brightness temperatures. Typically, retrieval
approaches involve computationally-expensive iterative procedures employed to optimally fit modeled
microwave signatures to the corresponding measurements. Thus, it is important to develop radiative
transfer models which not only capture the observed scene’s inherent radiative processes as accurately
as possible, but also keep the number of model parameters as low as possible and limited explicitly
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to quantities which are accessible from other sources, such as from models or auxiliary remote
sensing information.

Nevertheless, the development of radiative transfer models with the aforementioned features
necessitates the development and operation of field laboratories allowing for comprehensive,
synchronous and collocated in-situ and near-distance remote sensing measurements. Such field
laboratories, dedicated to the development of methods to optimally exploit microwave remote sensing
of the Cryosphere, are still rare today. Examples of such currently operative research sites include:
(i) the Pallas-Sodankylä supersite in Finland [3,4] operated by the Finnish Meteorological Institute
Arctic Research Centre (FMI-ARC); (ii) the DOMEX site at Dome-C, Antarctica [5]; (iii) the Kernen
Crop Research Farm (KCRF) [6] in Saskatoon operated by the University of Saskatchewan, and (iv) the
Maqu regional SMST monitoring network [7]. The most notable example in the Alps is the snow
laboratory built on the Weissfluhjoch (2540 m a.s.l., Switzerland) in 1936. Data from this field laboratory
include daily records of snow depths and snowfall dating back more than 70 years. During the
1980s, a comprehensive long-term program of microwave-signature studies (summarized in [8]) was
conducted at the Weissfluhjoch snow laboratory. This research laid the foundation for the “microwave
emission model of layered snowpacks” (MEMLS) [9,10], which is one of today’s widely-used tools
to simulate thermal microwave emission of snow [11–16].

Nearly three decades later, the Swiss Federal Research Institute WSL established the Davos-Laret
remote sensing field laboratory in 2016 as the only currently-operating Alpine test site dedicated to the
development of novel retrieval approaches for the estimation of snow properties from microwave
remote sensing data. The present paper provides details on this field laboratory and presents the
in-situ data collected during its first operation in Winter 2016/2017 in Sections 2 and 3, respectively.
The content is then narrowed to what is relevant for L-band radiometry in the retrieval of snow and
ground parameters. In Section 4, we outline the steps taken to achieve calibrated L-band brightness
temperatures from ELBARA-II [17] radiometer raw data. This section includes novel approaches
to mitigate and filter non-thermal disturbances in ELBARA-II measurements, as well as a method
to optimally compensate for thermal noise imposed by transmission losses. With the main purpose
being its use for ground-based measurements and validation campaigns, ELBARA-II is designed
to have very similar technical specifications to the on-board radiometer of the ESA’s SMOS satellite [18].
Thus, ELBARA-II (and subsequent generations) is used by many research institutes around the world
(see for example [7,15,19–21]), indicating that refined data processing methods are beneficial to the
passive L-band remote sensing scientific community.

It is worth noting that the penetration depth of L-band microwaves drops from >300 m in dry
snow to only a few centimeters for wet snow with ~5% snow liquid water content [22,23]. This,
consequently, results in immediate retrieval failure of snow-column properties, or even more so of the
underlying ground, as shown in [15,24,25]. Accordingly, as one of the main research questions
in the Davos-Laret 2016/2017 winter campaign, the impact of snow liquid water content on L-band
brightness temperatures is investigated. Section 5 explains the emission model (Section 5.1) used
to analyze the response of simulated brightness temperatures to snow liquid water for snowpacks over
“natural ground” and over areas covered with a reflecting metal grid (“reflector areas”—Section 5.2).
Afterwards, the temporal and spatial variations of the calibrated L-band brightness temperatures
measured over the 2016/2017 winter campaign are presented and discussed. The specific content
of Sections 4 and 5 is, on the one hand, valuable on its own, and, on the other hand, preparative for
ongoing developments in the retrieval of snow density and ground permittivity [14–16]. In addition,
it is of value for the development of a new retrieval approach for the estimation of snow liquid
water-column from passive L-band radiometry. The latter two instances are further outlined
in Section 6.



Remote Sens. 2017, 9, 1185 3 of 28

2. Test-Site Description

The Davos Laret Remote Sensing Field Laboratory (48◦50′53” N, 9◦52′19” E) in Switzerland
is a 50 m × 50 m area with an approximate elevation of 1450 m above sea level. The ground is mostly
flat with some smooth slopes on the northwestern side of the site. The valley, including the site
area, is surrounded by mountains with an average height difference of ~400 m with respect to the
site. The site area is surrounded by Lake Schwarz on the northwestern side, canopy forest on the
southeastern side and local buildings on the northeastern and southwestern sides. The spring and
summertime vegetation cover of the site is grass.

Dielectric permittivity and temperature of the ground were measured along the two transects
shown in Figure 1 using twelve SMT-100 [26] in-situ sensors. Additionally, two SMT-100 sensors
were installed on a wooden stick 15- and 50-cm above the ground to measure the permittivity and
temperature of the snow at the respective heights (dashed red square in Figure 1). All the sensors
were driven with a DT80 data logger which recorded the measured qualities every five minutes.
Section 3 presents the time series of these in-situ recordings over the 2016/2017 campaign. In the
2016/2017 Davos Laret campaign, three remote sensing instruments were used:
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Figure 1. Schematics of the footprint areas and the location of the in-situ sensors. ELBARA-II was
initially installed at the center (position P1) of the upper-most platform of the tower. The radiometer
scaffold was moved to position P2 (bottom right corner of the tower) on 12 December 2016 for
RFI improvement.

• The second generation ELBARA-II of the ETH L-band radiometer (ELBARA) operating
at horizontal and vertical polarization within the protected part of the L-band (1400–1427 MHz).
ELBARA-II technical specifications and its performance under field conditions are outlined
by Schwank et al. [17,27]. The first generation ELBARA was designed and constructed
in 2001 at the Institute of Applied Physics, University of Bern [28]. A number of ELBARA-II
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radiometers were produced by the company Gamma Remote Sensing AG (Gümligen, Switzerland)
with the main purpose of calibration and validation activities supporting ESA’s SMOS mission [18].
The ELBARA-II assembly, mounted atop an 8-meter tower, includes a tracking system to allow for
automated observations of brightness temperatures Tp

B (θ) at different nadir angles θ and azimuth.
For the work presented here, ELBARA-II is the key remote sensing instrument.

• MORA is a single polarization X-band radiometer operating at 11.4 GHz [29]. It is mounted
on top of the ELBARA-II antenna (as in [30]) to measure collocated and synchronous X-band
brightness temperatures.

• The SnowScat scatterometer is a fully polarimetric, coherent stepped-frequency continuous wave
radar operating in the frequency range 9–18 GHz [31]. It is mounted on a rail and attached
to a 10-m tower, which allows for elevation and azimuth scanning over the site. Using Synthetic
Aperture Radar (SAR) techniques, 3D backscatter maps of the site are made indicating parameters
such as radiation penetration depth and snow water equivalent of dry snow.

3. In-Situ Measurements

The in-situ measurements performed during the first operation in Winter 2016/2017 of the
Davos-Laret field laboratory are presented here, focusing on those used to analyze the collocated and
synchronous passive L-band data. Manual in-situ snow-pit characterization (height hS, mass-density ρS,
and near infrared (NIR) photography) are shown in Section 3.1; automated measurements of ground
permittivities εG and temperatures TG, as well as snow temperatures TS, and meteorological data
(air temperatures Tair, precipitation r) are shown in Section 3.2.

3.1. Snow Density Profiles

The first major snow fall event during the winter of 2016/2017 occurred on 3 January. During the
snow covered period, regular snow-pit measurements were performed manually. Snow height (hS)
and mass-density (ρS) were measured approximately once a week with the first and last measurement
on 9 January and 22 March, respectively. A snow cutter was used to measure snow density with
a depth resolution of .10 cm. The green crosses in Figure 2a,b show measured hS and ρS, where
the latter represents the average density of the bottom 10 cm of the snowpack derived from the
respective profile measurements. Red lines are B-splines fitted to estimate temporal variations of hS and
ρS in between the times of measurements. The reason for showing snow bottom-layer density ρS is that
the snowpack parameter is expected to be the most influential on L-band emission for conditions
as explained in [13,14]. Observed hS and ρS reveal the expected increasing trend throughout the
snow season, while short-term variations are mostly explained by snow metamorphism, settlement,
and melting.

With each of the quantitative snow-pit measurements, a NIR image of the snowpack profile
was taken to qualitatively track the evolution of the snowpack structure. Figure 3a,b shows the
NIR images taken from the newly-formed snowpack on 9 January during the “cold winter period”
and the same snowpack and location on 27 February during the “early spring period”, respectively.
The most distinct structural features that resulted from snowpack evolution associated with changes
in, for example, density and grain size, are marked with dashed green lines. The young snowpack
(Figure 3a) has a simple structure with a homogeneous layer in the lowest ~20 cm which was persistent
throughout the “cold winter period”. The ~5-cm layer above is less dense, and the fine-grained crisp
topmost ~5 cm represents the fresh snow fallen the day before the image was taken. Compared to the
young snowpack, the mature snowpack (Figure 3b), nearly two months later, shows almost no clear
layering structure. The respective increase in complexity is associated with depth hoar, rounded-snow,
and faceted snow formed at the beginning of the “early spring period”. Additionally, the preferential
vertical flow paths are signs of liquid water infiltration caused by, for instance, rain or wet snowfall.
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Figure 2. (a) Measured snowpack height hS; and (b) average bottom-layer snow density ρS over time.
The snow cover quickly melted down in the second half of March 2017 and almost disappeared within
approximately the last 10 day of the measurement campaign.
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Figure 3. NIR photos of the snowpack profile taken on (a) 9 January and (b) 27 February. In addition
to an increased snow height, significantly more complex layering and more variable snow grain size
and types can be observed in the second profile.

3.2. Permittivity, Temperature, and Precipitation

Ground permittivities εG and temperatures TG were measured automatically every 5 minutes
using SMT-100 sensors [26] installed approximately 5 cm below the ground’s surface. Additionally,
two SMT-100 sensors were installed 15 cm and 50 cm above ground to measure either air or snow
temperatures T15 cm and T50 cm depending on snow height hS at time of measurement. The thin lines
in Figure 4a,b show the time-series of εG from the respective six sensors installed along transects one
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and two shown in Figure 1. The thick red line in Figure 4a,b are identical εG resulting from averaging
all twelve ground sensor readings. Likewise, Figure 4c shows TG the average of all ground sensor
measurements. Figure 4d shows the temperatures T15 cm (red), T50 cm (green), and Tair (blue) measured
approximately 8 m above the ground by the PT-100 sensor mounted outside the ELBARA-II radiometer.
Figure 4e shows precipitation rates r (for 10-min time windows) for the time period 28 November
to 15 March, corresponding to the time period shown for the above in-situ measurements.Remote Sens. 2017, 9, 1185  6 of 28 
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Figure 4. Panels (a,b) show the time series of in-situ measured εG along transects 1 and 2
(shown in Figure 1), respectively. Panel (c) shows the average ground temperature TG measured
by the 12 SMT-100 sensors along transects 1 and 2. Panel (d) indicates temperatures Tair, T15 cm,
and T50 cm measured by ELBARA-II’s PT-100 temperature sensor and SMT-100 sensors placed 15 cm
and 50 cm above ground, respectively. Panel (e) shows the recorded precipitation (both rain and snow)
in units of mm/10 min. over the entire campaign.
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The first week of the in-situ time series reveals the rapid freezing of the bare ground surface.
This, of course, results from the low diurnal heat input to the ground associated with air temperatures
mostly below the freezing point. Figure 4c,d indicate that while during afternoons the temperatures
above ground still show short-term peaks above 0 ◦C, ground temperatures steadily decrease until they
fall below the freezing point. However, at the latest by the middle of December, ground permittivities
measured by all sensors drop to 4 ≤ εG ≤ 7 indicating that at least the top 5 cm of the ground
is completely frozen. Around 26 December, a slight thawing event takes place as the result of increased
time-integrated heat input and precipitation to the still bare ground. This, in turn, is reflected
by TG approaching the 0 ◦C curtain, and finally the increased εG recorded that indicate increased
liquid water in the ground surface.

During the “snow-free period” where the ground is frozen, permittivity readings still show
small diurnal variations as the result of partial surface melting caused by increased heat input
during cloudless afternoons and refreezing overnight. These variations almost completely disappear
by 3 January with the onset of snow due to thermal insulation of the accumulating dry snow.
The recorded ground permittivities stay at low levels 4 ≤ εG ≤ 7 between mid-December and
mid-February, indicating that at least the uppermost 5 cm of the ground is frozen during this
approximately two-month period.

As shown in Figure 4a,b, in-situ permittivities start increasing gradually after 31 January,
indicating that the ground surface starts thawing with the beginning of the “early spring period”.
By the middle of March, the ground has almost entirely thawed. Furthermore, deviations between
permittivity readings of the different sensors are greater under not-deeply-frozen ground conditions,
indicating that heterogeneity of ground permittivity is significantly higher under such transient ground
conditions. The most marked example takes place around 21 February, when the readings of sensor
d (black symbols in Figure 4b suddenly increase to ~20, while the other sensors along transect 2 react
in a much less distinct manner. This distinct heterogeneity in ground permittivity is most likely caused
by surface water runoff ponding locally at the position of sensor d.

4. L-Band Radiometry and Raw Data Processing

Brightness temperatures Tp
B (θ) measured at given nadir angles θ and horizontal (p = H) and

vertical (p = V) polarizations are the basis for successful retrievals based on passive L-band remote
sensing. However, calibrated Tp

B (θ) are not directly provided by the ELBARA-II radiometer. Instead,
they are derived from the instrument’s output data using a radiometer-specific raw-data processing
approach. Furthermore, radiometer measurements are sometimes affected by radiative sources other
than the natural scene of interest. These perturbing radiation contributions can include man-made
Radio Frequency Interferences (RFI) and thermal noise from the surrounding area such as a nearby
forest or lake.

Section 4.1 outlines the processing-chain to achieve calibrated Tp
B (θ) from ELBARA-II raw-data

outputs. Section 4.2 explains and demonstrates an updated RFI mitigation approach. Section 4.3
addresses the issue of computing effective transmission line losses with respect to their time-variability.
Finally, the approach used to derive Tp

B,R(θ) emitted exclusively from the “reflector areas” (see Figure 1)
is explained in Section 4.4.

4.1. L-Band Brightness Temperatures

ELBARA-II raw data outputs are voltage samples Ui consisting of i = 1, . . . , nps =
2400 measurements performed at the sampling rate of 800 Hz during the integration time of 3 s [17].
An ELBARA-II measurement cycle includes the sequential acquisition of voltage samples associated
with two internal calibration noise sources (the Active Cold Source (ACS) and the Resistive Source (RS)),
and associated with the noise entering the horizontal (p = H) and vertical (p = V) polarization port of the
radiometer assembly (RMA). Each of these voltage samples are recorded for two 11-MHz channels
ch = 1, 2 within the protected part (1400–1427 MHz) of the L-band. Accordingly, an ELBARA-II
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measurement cycle consists of eight voltage samples Uch
ACS,i, Uch

RS, i, and Up,ch
RMA, i ultimately used

to derive calibrated Tp
B (θ). The processing steps, illustrated in the flowchart in Figure 5 and explained

in Sections 4.1.1 and 4.1.2, exclusively use mean values of voltage samples. This is henceforth indicated
by omitting the sub-index i.
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to compensate for impacts of differences in TL losses along the H and V polarization paths (explained
in Section 4.3), and differences between the RMA transfer functions of the two frequency channels
(ch = 1 and 2). The rest of this section outlines the procedure used to obtain the four ACS noise
temperatures Tp,ch

B (ch = 1, 2 and p = H, V), which are used to eventually derive calibrated Tp
B .

Lossy coaxial transmission lines used to connect the H and V antenna port with the corresponding
RMA input ports add their own thermal noise. Consequently, reference noise temperatures
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Tp
sky = Tp

RMA at the RMA input p = H, V are larger than the un-polarized L-band brightness Tsky ≈ 4.5 K
entering the aperture of the sky-looking antenna:

Tp
sky = Tp

RMA = Tsky + (1− tp
TL)(TTL − Tsky) (1)

Sky brightness temperature Tsky entering the aperture of the sky-looking antenna is simulated
using the model described in [32,33] for the following parameter values: air humidity qair = 10 g kg−1,
rain rate rair = 0 mm h−1, the elevation of the Davos Laret site hsite = 1450 m, the nadir angle θ = 140◦

and Tair recorded by ELBARA-II at the time of the sky measurement. For Tair = 273.15 K = 0 ◦C,
this yields Tsky ≈ 4.4 K. The second summand

(
1− tp

TL

)(
TTL − Tsky

)
in Equation (1) is the noise

added by the TLs (p = H, V) at common physical temperature TTL = Tair. Their power transmission
factor tp

TL is given by the respective transmission loss Lp
TL [dB] as:

tp
TL = 10−Lp

TL/10 (2)

Finally, the four ACS noise temperatures Tp,ch
ACS (p = H, V and ch = 1, 2) are derived from the means

Uch
RS, Uch

ACS, Up,ch
sky of the voltage samples Uch

RS,i, Uch
ACS,i, Up,ch

RMA,i = Up,ch
sky,i and the two reference noise

temperatures TRS and Tp
sky as:

Tp,ch
ACS =

TRS − Tp
sky

Uch
RS −Up,ch

sky

(
Uch

ACS −Up,ch
sky

)
+ Tp

sky (3)

4.1.2. Antenna Brightness Temperatures

Calibrated antenna brightness temperatures Tp
B (p = H, V) measured over ground-areas are derived

as the mean of Tp,1
B and Tp,2

B at the frequency channels ch = 1 and 2:

Tp
B =

Tp,1
B + Tp,2

B
2

(4)

The channel specific Tp,ch
B are expressed by means of noise temperatures Tp,ch

RMA associated with

the mean sample voltage Up,ch
RMA measured for the radiometer pointed towards ground. Again, Tp,ch

RMA at

the RMA-input exceed brightness temperatures Tp,ch
B by the amount of inherent noise added by the TL.

Therefore, in analogy with Equation (1), they are related via:

Tp,ch
RMA = Tp,ch

B +
(

1− tp
TL

)
(TTL − Tp,ch

B ) (5)

Solving Equation (5) for Tp,ch
B immediately yields the channel specific Tp,ch

B corrected by the
TL noise as is used in Equation (4):

Tp,ch
B =

Tp,ch
RMA − (1− tp

TL)TTL

tp
TL

(6)

It should be noted that losses Lp
TL, used to represent the TLs’ inherent noise (second summands

in Equations (1) and (5)), can vary in time for a number of reasons such as temperature effects,
mechanical stress, and immersive moisture. This can cause both reversible changes in Lp

TL, as well
as irreversible increases in Lp

TL as the result of ageing. These variations can be taken into account
by computing and using the effective Lp

TL at any given time during the measurement campaign,
the method of which is explained in Section 4.3.
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Again, in close analogy to Equation (3), the noise temperatures Tp,ch
RMA used in Equation (5) and

ultimately used in Equation (4) to derive the calibrated Tp
B , are computed as:

Tp,ch
RMA =

≡Sp,ch
RMA︷ ︸︸ ︷

TRS − Tp,ch
ACS

Uch
RS −Uch

ACS

(
Up,ch

RMA −Uch
ACS

)
+ Tp,ch

ACS (7)

The radiometer sensitivity Sp,ch
RMA ≈ 0.322 K·mV−1, defined above, is almost independent

of p = H, V and ch = 1, 2. It will be used as part of the novel Radio Frequency Interference (RFI)
mitigation method introduced in Section 4.2 to quantify distortions ∆Tp,ch

B of Tp
B caused by non-thermal

noise contributions. In addition, as part of the RFI mitigation method, the raw data sample mean Up,ch
RMA

used in Equation (7) is replaced with the mean Up,ch
Gauss of the Gaussian-model fitted to the probability

density function (PDF) of the measured voltage sample Up,ch
RMA, i.

4.2. Radio Frequency Interference Detection and Mitigation

RFI can be defined as any electromagnetic signal, other than thermal noise emitted from within
the antenna footprint, contributing to the measured antenna brightness temperature Tp

B . Man-made
RFI sources include spurious signals from other frequency bands, spread-spectrum signals overlapping
the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection
filters [34]. The statistical distribution of a measured sample Up,ch

RMA,i performed on a perfectly
undisturbed thermal noise source should theoretically match a Gaussian probability density function
PDFGauss, whereas its standard deviation results from the uncertainties of the individual Up,ch

RMA,i
determined by the time-bandwidth product (see Section 3.2 in [17]).

Using RFI corrupted Tp
B in remote sensing results in erroneous retrievals [35–37]. Thus,

it is critically important to mitigate, or at least detect, RFI in passive microwave remote sensing.
RFI detection methods used most often are essentially statistical “normality” tests which quantify
the non-Gaussianity of measured sample distributions by means of using thresholds for associated
Kurtosis and Skewness [34]. Among the more sophisticated algorithms are the “Kolmogorov-Smirnov”
(KS) method [38] and the Lilliefors (L) normality test [39]. However, the former can often wrongly
estimate the mean and variance of the normal distribution and the latter has limitations in that it tends
to be more sensitive at the center than near the tail of the distribution.

Widely used “normality” tests (based on Kurtosis and Skewness), were initially tried on our
ELBARA-II data to detect RFI. However, as also reported in [40–43], these simple approaches often
failed even for physically meaningless measurements Tp,ch

B . Consequently, we use a more rigorous
normality test which not only identifies RFI, but also quantifies the extent to which non-thermal
distortion ∆Tp,ch

B affects Tp,ch
B . Quantitative estimates of distortions become valuable especially when

radiometer measurements of Tp,ch
B are used in retrieval schemes because it allows to assign less weight

to Tp,ch
B in accordance with its non-thermal distortion ∆Tp,ch

B .
The RFI mitigation approach used here consists of the following steps. Firstly, the probability

density function PDFm(Up,ch
RMA,i) associated with the measured (m) raw-data voltage sample Up,ch

RMA,i

is computed numerically. Secondly, the measurement based PDFm(Up,ch
RMA,i) is approximated with

a Gaussian model PDFGauss(U
p,ch
RMA,i) including the parameters Ûp,ch

Gauss, Up,ch
Gauss, σ

p,ch
Gauss to represent

optimized values of its peak, mean, and standard deviation, respectively:

PDFGauss(U
p,ch
RMA,i) = Ûp,ch

Gauss · exp

−
(

Up,ch
RMA,i −Up,ch

Gauss

)2

2 · σp,ch
Gauss

 (8)
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To achieve high sensitivity to residuals in the fit of PDFGauss(U
p,ch
RMA,i) with respect to underlying

measured PDFm(Up,ch
RMA,i), the following conditions are imposed on the numerical optimization:

• The starting value of Up,ch
Gauss is set to the mean Up,ch

RMA of the measured sample Up,ch
RMA,i.

• The codomain of Up,ch
Gauss is restricted by the lowest measurement to Up,ch

Gauss ≥ min(Up,ch
RMA)

• The starting value of σ
p,ch
Gauss is set to 0.02 mV corresponding to the typical standard deviation

of a sample Uch
RS,i measured on the resistive noise source.

• The codomain of Ûp,ch
Gauss is restricted to Ûp,ch

Gauss ≥ 20

In the third step, the coefficient of determination R2 between PDFm(Up,ch
RMA,i) and

PDFGauss(U
p,ch
RMA,i) is computed to quantify the Gaussianity of the statistics of a measured sample

Up,ch
RMA,i. Fourth, the threshold R2 < 0.95 is applied to flag the sample Up,ch

RMA,i for exclusion from further

analysis due to RFI. Upon successful Gaussian fitting (R2 ≥ 0.95), the optimized mean value Up,ch
Gauss

of PDFGauss(U
p,ch
RMA,i) is used to compute Tp,ch

B (using Equation (7)) instead of the mean Up,ch
RMA of the

measured sample Up,ch
RMA,i.

The fifth step is the quantification of the distortion imposed by non-thermal RFI on the
measurement of Tp,ch

B . The resulting measurement error ∆Tp,ch
B is estimated as:

∆Tp,ch
B =

∣∣∣Up,ch
Gauss −Up,ch

RMA

∣∣∣ · SRMA (9)

Thereby, radiometer sensitivity Sp,ch
RMA ≈ 0.322 K·mV−1 (defined in Equation (7)) is used

to “translate” the difference between the mean voltages Up,ch
RMA and Up,ch

Gauss of the measured

sample Up,ch
RMA, i and the fitted PDFGauss to the difference ∆Tp,ch

B between brightness temperatures.

The usefulness of the measurement uncertainty factor ∆Tp,ch
B lies in its application in retrievals based

on L-band radiometry (such as in [14–16]) where Tp,ch
B can be weighted according to their non-thermal

distortion levels. This essentially indicates that less influence on the retrieval results occurs from more
disturbed measurements.

Figure 6 shows representative examples of PDFs associated with measured voltage samples
Up,ch

RMA,i (p = V, and ch = 1) including different levels of non-thermal RFI. Blue lines are PDFm(UV,1
RMA,i)

derived from measured samples UV,1
RMA,i, red lines represent the Gaussian model PDFGauss(U

V,1
RMA, i)

fitted to the measurement based PDFm(UV,1
RMA,i). Figure 6a shows the case of an almost RFI-free

sample, for which PDFm(UV,1
RMA,i) and PDFGauss(U

V,1
RMA,i) match well. Accordingly, the coefficient

of determination R2 = 0.99 is high, and the non-thermal contribution ∆TV,1
B = 0.66 K is minor.

Likewise, Kurtosis K = 2.77 and Skewness S = 0.35 indicate an almost RFI-free sample. Figure 6b
shows an example of a distorted sample, which would not necessarily be recognized by simply looking
at Kurtosis K = 3.06 and Skewness S = 0.46 values. However, the non-Gaussianity of PDFm(UV,1

RMA,i)

is obvious and becomes apparent in the reduced R2 = 0.64 (RFI-flag is raised), and the significant
RFI-distortion ∆TV,1

B = 1.21 K. The PDFs shown in Figure 6c,d are examples of heavily RFI distorted
measurements. As a consequence of the imposed conditions (indicated in the bullet points above)
the Gaussian fits PDFGauss(U

V,1
RMA,i) clearly fail, yielding R2 = 0.0 in both cases. The RFI distortion

shown in Figure 6c would also have been detected by means of the statistical moments K = 5.16 and
S = 1.19. However, the example in Figure 6d would not necessarily be rejected as RFI-distorted based
on K = 2.29 and S = 0.03 given their assumed thresholds of around 3.0 and 0.0, respectively.
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4.3. Effective Transmission Losses and ACS Temperatures

As explained earlier, Tp
B corresponds with the noise Tp

B,RMA at the RMA-inputs p = H, V reduced
by the transmission lines’ inherent noise (Equation (6)). Because transmission line (TL) noise depends
on its physical temperature TTL and on its loss Lp

TL, the use of an “effective” value of Lp
TL is necessary

to optimally minimize distortions of Tp
B imposed by temporal variations of TTL. The approach

developed to achieve effective Lp
TL
∗

and optimal ACS noise-temperatures Tp,ch
ACS

∗
is outlined in the

flowchart shown in Figure 7. This approach is based on the assumption that TL losses are optimally
chosen if, for a range of TL-temperatures TTL = Tair, deviations between theoretical sky-brightness
and measurement-based Tp

sky are minimal.
Sky measurements were performed regularly throughout the campaign between 28 November

and 3 March by pointing the radiometer skyward at nadir angle θ = 140◦ (= 40◦ relative
to zenith). This resulted in Nsky = 88 measurement cycles, each of which consists of 8 undisturbed

voltage samples Uch
ACS,i, Uch

RS, i, and Up,ch
RMA,i (i = 1,..., nps = 2400) and covers the temperature range

of −20 ◦C ≤ Tair = TTL ≤ 14 ◦C. To begin with, the first N0 = 50 sample-means Uch
ACS, Uch

RS, and Up,ch
RMA

(28 November–11 January) with associated measurements TTL = Tair were used together with initial
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guesses Lp
TL

ini
of transmission lines to compute the associated ACS temperatures Tp,ch

ACS (Section 4.1.1).

From these N0 foursomes of Tp,ch
ACS, the corresponding four temporal mean values 〈Tp,ch

ACS〉 were
computed as illustrated in Boxs 1–3 in the flowchart (Figure 7). Next, the four mean values 〈TH,1

ACS〉,
〈TH,2

ACS〉, 〈T
V,1
ACS〉, and 〈TV,2

ACS〉 were used to compute the four time-series TH,1,j
sky , TH,2,j

sky , TV,1,j
sky , and TV,2,j

sky
(using Equation (6) with Equation (7)) based on the voltage sample-means recorded for the first
j = 1, . . . , N0 + k sky measurements. Furthermore, synchronous theoretical time series T j

sky were

simulated using [32] (Box 4 in the flow-chart). Naturally, the measurement-based time-series Tp,ch,j
sky

do not perfectly agree with the simulated T j
sky, and result in a Root-Mean-Square Error RMSE(Tp

sky),
defined in Box 5 of the flow chart.
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The magnitude of RMSE(Tp
sky) depends on the assumption made regarding Lp

TL because
it determines the degree to which fluctuations in TTL = Tair translate into fluctuations
of Tp,ch,j

sky . An excessively high value of Lp
TL causes Tp,ch,j

sky that are distorted by overcompensation

of temperature-dependent TL-noise. An excessively low value of Lp
TL leads to an underestimation

of this effect. Accordingly, the computation of effective TL-losses Lp
TL
∗

and ACS temperatures 〈Tp,ch
ACS〉

for a given time period (including j sky measurements) consists of iterating Steps 2–5 (Loop 6 in the
flow chart) until RMSE(Tp

sky) becomes minimal (Box 7). As indicated above, the initial period,

consisting of the first N0 = 50 sky measurements, is used to compute Lp
TL
∗

and 〈Tp,ch
ACS〉 representative

of this training period, and ultimately applied to derive Tp
B of footprint areas for this period. For later

time periods, Tp
B are derived from effective values Lp

TL
∗

and 〈Tp,ch
ACS〉 estimated from the growing

number j = 1, . . . , N0 + k of sky measurements as indicted by the outermost Loop 8 in the flowchart
shown in Figure 7.

Figure 8a shows the increasing trend of Lp
TL
∗

over time for both polarizations (p = H, V). This can
be explained, for instance, by ageing and the accumulation of moisture in the TL-connectors as well
as the λ/4 dipoles within the Picket-horn antenna [17]. Throughout the entire campaign a total
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increase of about 0.08 dB and 0.21 dB is observed for LH
TL
∗ and LV

TL
∗, respectively. After 23 January,

the LH
TL
∗ values almost saturate to 0.43 dB whilst LV

TL
∗ continues increasing until the end of the

campaign. The systematically larger LV
TL
∗, in comparison to LH

TL
∗, is consistent with the smaller

bending radius of the V-polarization TL, compared to the H-polarization TL. This is because the
λ/4 dipole receiving vertical polarized radiance is mounted at the very back of the antenna-feed
(see Figure 4 in [17]). Beyond this, the V-polarization λ/4 dipole is more susceptible to contaminations
because of its mounting position.
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TL
∗ and (b) 〈Tp,ch

ACS〉 (ch = 1, 2 and p = H, V) computed with increasing numbers
of sky measurements.

Figure 8b shows similar increasing trends for the four ACS noise temperatures 〈Tp,ch
ACS〉 (p = H, V;

ch = 1,2) computed as the temporal mean of the first j = 1, . . . , N0 + k individual ACS temperatures
Tp,ch

ACS. This increase, however, is a direct consequence of increasing Lp
TL
∗

as can be seen when calculating
Equations (1)–(3) for increasing Lp

TL
∗
. It was verified that the sample-means Uch

ACS do not increase

throughout the campaign. This confirms that increasing 〈Tp,ch
ACS〉 are not due to increasing noise power

of the RMA internal ACS, but indeed results from ACS calibration based on sky measurements
Up,ch

RMA = Up,ch
sky which increase with increasing TL losses.

4.4. Brightness Temperatures of “Reflector Areas”

Brightness temperatures Tp
B,R originating exclusively from the areas with the metal-mesh reflector

beneath the snow (“reflector areas” shown in Figure 1) are useful to investigate snow emission
segregated from ground emission. This is important, for instance, when investigating impacts of snow
liquid water on the snowpack’s L-band emission. However, even when pointing the radiometer along
the central line of the “reflector areas”, the antenna field of view still captures radiation emanating
from areas surrounding the metal-mash reflector. Accordingly, it is necessary to separate Tp

B,R(θ) from
Tp

B,R,m(θ) measured (m) along the azimuth direction of the reflector. The corresponding procedures,
used similarly in [27,30,44], are outlined below.

Measurements (m) Tp
B,R,m(θ) taken along the azimuth direction of the “reflector area” are

represented as the linear combination of radiances Tp
B,R(θ) and Tp

B,N(θ) originating from areas covered
by the reflector (R) and natural (N) areas surrounding the reflector, respectively:

Tp
B,R,m(θ) = µ

p
R(θ) · T

p
B,R(θ) +

(
1− µ

p
R(θ)

)
· Tp

B,N(θ) (10)
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Here we further assume that emission from areas surrounding the reflector can be represented
by measurements Tp

B,N(θ) performed on the “natural areas” shown in Figure 1. The factors µ
p
R(θ) and(

1− µ
p
R(θ)

)
in Equation (10) express, respectively, the weightings of Tp

B,R(θ) and Tp
B,N(θ) for nadir

angles θ = 30◦, 35◦, . . . ,65◦ and polarization p = H and V. Once µ
p
R(θ) is known, Tp

B,R(θ) are computed
from measurements Tp

B,R,m(θ) and Tp
B,N(θ) using Equation (10) solved for Tp

B,R(θ):

Tp
B,R(θ) =

Tp
B,R,m(θ)−

(
1− µ

p
R(θ)

)
· Tp

B,N(θ)

µ
p
R(θ)

(11)

The weighting factors µ
p
R(θ) in Equation (11) are derived on a daily basis using exclusively

Tp
B,R,m(θ) and Tp

B,N(θ) measured quasi-simultaneously at night (00:00–07:00). It is essential to use
exclusively night measurements for the computation of µ

p
R(θ), which is representative of the

corresponding day, because spatial heterogeneities across the field site are expected to be generally
diminished during the night when temperature drops below freezing. This instance is in support
of the assumption made that measurements Tp

B,N(θ) performed over “natural areas” (Figure 1) are
also representative of areas surrounding the reflector. However, this assumption is still considered
critical, especially during relatively warm and transient conditions where spatial variability of,
for example, ground permittivity εG is increased (as proven by corresponding in-situ measurements
shown in Figure 4). However, throughout the main period of interest (i.e., cold winter and early
spring periods), the ground is homogeneously frozen. Thus, using measurements Tp

B,N(θ) to represent
emission of areas surrounding the “reflector areas” is reasonable in most cases.

Another important reason to estimate µ
p
R(θ) from night measurements of Tp

B,R,m(θ) and Tp
B,N(θ)

is that a surface-thawed snowpack refreezes overnight, and thus snow emission during cold nights
is almost always zero [13,22,23]. As a consequence, during the cold nights throughout our main
periods of interest (cold winter and early spring), Tp

B,R(θ) correspond with downwelling sky brightness
temperatures Tsky(θ) reflected by the metal-mash reflector towards the antenna aperture. Accordingly,
Tp

B,R(θ) = Tsky (θ) is used in Equation (10), yielding the following expression to compute µ
p
R(θ) with

Tsky (θ) simulated by the model [32]:

µ
p
R(θ) =

Tp
B,N(θ)− Tp

B,R,m(θ)

Tp
B,N(θ)− Tsky(θ)

(12)

In summary, the weighting factors µ
p
R(θ) are computed with Equation (12) for each day using

the corresponding night measurements of Tp
B,R,m(θ), Tp

B,N(θ) and with Tsky (θ) simulated using [32].
µ

p
R(θ) is then kept constant throughout that day and used in Equation (11) to derive Tp

B,R(θ) for that
day from the corresponding quasi-synchronous measurements Tp

B,R,m(θ) and Tp
B,N(θ).

5. Analysis of Brightness Temperatures

5.1. Methodology for the Analysis of L-Band Brightness Temperatures’ Response to Snow Liquid Water

The model used to simulate L-band brightness temperatures Tp
B of a rough ground surface

beneath a snowpack is a composite of components adopted from the L-band Microwave Emission
of the Biosphere “L—MEB” model [45] and the Microwave Emission Model of Layered Snowpacks
“MEMLS” [10,46] while considering simplifications applicable to L-band. The resultant L-band Specific
emission model, henceforth denoted as “LS—MEMLS”, is now outlined following the model structure
illustrated in Figure 9.

Block 1 of the diagram (Figure 9a) shows the “LS—MEMLS” inputs, which are the radiometer
nadir angle θ, polarization p = H (for horizontal) and p = V (for vertical), and the L-band vacuum
wavelength λ = 21 cm. Air temperature Tair 2 m above ground, specific air humidity qair, rain rate
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rair, and the altitude hsite of the test site above sea-level are additional inputs necessary to simulate
downwelling L-band sky radiance Tsky using the model described in both [32,33].
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Figure 9. (a) Block diagram of the L-band Specific Microwave Emission Model of Layered Snowpacks
(“LS—MEMLS”) used to simulate L-band brightness temperatures Tp

B over snow covered grounds;
and (b) sketch of the two-stream emission model (2S-EM) employed in “LS—MEMLS”. Symbols and
model components are explained in the text.

The “LS—MEMLS” inputs given to each of the layers j of the snowpack (S) are the layer-thickness
dS,j, the physical temperature TS,j, the mass density ρS,j, and the volumetric liquid water content WS,j.
Inputs used to characterize the ground (G) beneath the snowpack are effective ground temperature
TG, ground permittivity εG, and the HQN ground roughness model [45,47] parameters hG, qG and
np

G (p = H, V) used and described in [48]. Intermediate quantities computed along with the evaluation
of “LS—MEMLS” are listed in Block 2 of Figure 9a, and outlined here.

As mentioned above, L-band sky radiance Tsky is simulated from the “LS—MEMLS” inputs θ,
Tair, qair, rair, hsite based on [32]. The same approach is also used in our earlier work [14] to represent
TN+1 = Tsky incident on the uppermost interface j = N + 1 of the snowpack. For hsite = 1450 m (specific
to the Davos Laret site), Tair = 273.15 K, qair = 10 g kg−1, rair = 0 mm h−1, and the considered nadir
angles 30◦ ≤ θ ≤ 65◦, sky radiance is in the range 4.2 K ≤ Tsky ≤ 5.8 K, revealing that the atmosphere
is largely transparent at L-band.

Complex snow permittivities εS,j = ε′S,j + i·ε′′S,j are computed with the Maxwell–Garnett dielectric
model considering a two-phase mixture of liquid water with permittivity εW and dry snow with
permittivity εS,dry,j:

εS,j =
(1−WS)·εS,dry,j+WS·εW·K

1−WS·(1−K) with K = Ka+Kb+Kc
3 and

Ka =
εS,dry,j

εS,dry,j+Aa(εW−εS,dry,j)
Kb = Kc =

εS,dry,j

εS,dry,j+Ab(εW−εS,dry,j)

(13)

The same approach is implemented in the latest version of “MEMLS” (pages 15–16 in the
“MEMLS-III” manual [49]). Liquid snow water with volumetric content WS is taken as prolate
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ellipsoidal inclusions in dry snow considered as the dielectric background, and the depolarization
factors are assumed as Aa = 0.005, Ab = Ac = 0.4975 [23,50].

Permittivity εW = 85.82 + i·12.64 at the frequency 1.4 GHz and at freezing temperature (273.15 K)
is computed with the model [51]. Permittivity εS,dry,j of the dry snow phase is computed from snow
mass-density ρS,j using the same model as in “MEMLS” [10,46] (ρ∗S = 0.001·ρS,j in units of [g cm−3]):

εS,dry,j(ρ
∗
S) =

{
1 + 1.5995 · ρ∗S + 1.861 · ρ∗S3 for 0 g cm−3 ≤ ρ∗S ≤ 0.4 g cm−3

((1− ν) · εh + ν · εb)
3 for ρ∗S ≥ 0.4 g cm−3 (14)

with υ = ρ∗S/0.917, εh = 0.99913 and εb = 1.4759. For dry snow (WS = 0.0 m3m−3) with mass density
0 kg m−3 ≤ ρS ≤ 400 kg m−3, imaginary parts 0 ≤ ε

′′
S ≤ 1.2·10−4 are very small and significantly

smaller than real parts 1 ≤ ε′S ≤ 1.759. This explains the very large L-band penetration depth (>300 m)
in dry snow [22,23], which allows a dry snow layer to be treated as transparent (transmissivity
tS,j = 1). However, for a moist snow layer, tS,j rapidly decreases with increasing WS,j. Accordingly,
for WS,j > 0.0 m3m−3, transmissivity tS,j is computed from the layers nadir optical-depth dS,j·αS,j and
the propagation angle θS,j across the layer j with thickness dj and the power absorption coefficient αS,j.
Following Beer’s and Snell’s law, this yields:

tS,j = exp
(
−dS,j · αS,j/ cos θS,j

)
(15)

and

θS,j = arcsin
(

sin(θ)/
√∣∣εS,j

∣∣) (16)

The power absorption coefficient αS,j within the snow-layer j is computed from the respective
snow permittivity εS,j = ε′S,j + i·ε′′S,j as:

αS,j =
4π

λ
· Im

(√
εS,j

)
(17)

In accordance with earlier work [13,14], the volume reflectivities of snow layers are assumed
to be rS,j = 0, indicating the fact that volume scattering caused by snow microstructures is negligible
at L-band. Clearly, neglecting snow volume scattering is applicable only in absence of prominent
macrostructures (such as ice lenses) with dimensions of the order of λ.

Specular reflectivities sp
S,j (p = H, V) of the upper interface of each layer j result from the dielectric

contrast between the respective layer permittivities εS,j and εS,j+1. Accordingly, sp
S,j are computed with

Fresnel’s equations considering εout = εS,j and εin = εS,j+1 as the permittivities of the layers containing
the propagated (out) and the incident (in) waves, respectively. Furthermore, the incident-angle
θin = θS,j+1 at the interface j = 1, . . . ,N−1 is computed using Equation (16) to correspond with the
propagation angle within the above layer j+1:

sH
S,j =

∣∣∣√εin·A−
√

εout·B√
εin·A+

√
εout·B

∣∣∣ sV
S,j =

∣∣∣√εout·A−
√

εin·B√
εout·A+

√
εin·B

∣∣∣ with

A = cos θin B =
√

1− (1− A2)εin/εout εout = εS,j εin = εS,j+1
(18)

Likewise, the reflectivities sH
S,N , sV

S,N of the snow-air interface (j = N) are computed via Equation (18)
considering εin = εair = 1, εout = εS,j and the radiometer nadir angle θin = θ.

In contrast to the j = 1, . . . ,N specular snow-layer interface reflectivities sp
S,j, the effects of ground

roughness are indeed considered in the computation of the reflectivities sp
G = sp

S,0 of the ground-snow
interface (j = 0). Thereto, first the specular (*) ground-snow interface reflectivities s∗G

H and s∗G
V are

computed using Equation (18) with εin = εS,1, εout = εG and θin = θS,1. Accordingly, the dominant
effect of snow refraction is incorporated into “LS—MEMELS” at this point. Next, the effect of ground
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surface roughness is taken into account by correcting the specular reflectivities s∗G
H and s∗G

V using the
semi-empirical HQN roughness model [45–47]

sH
G = exp

(
−hG · (cos θS,1)

nH
G
)
·
(
s∗G

H · (1− qG) + qG · s∗GV)
sV

G = exp
(
−hG · (cos θS,1)

nV
G
)
·
(
s∗G

V · (1− qG) + qG · s∗GH) (19)

Detailed information on the HQN roughness model and its typical parameter values for different
types of landscapes can be found in Section 3.1.2 and Table II in [52]. However, in all of our
investigations, roughness effects are assumed to be independent of the incidence angle θS,1 on the
ground. For this reason, we set nV

G = nH
G = 0. The polarization mixing parameter is assumed

to be qG = 0.05. The most influential HQN roughness model parameter is the dimensionless
effective surface roughness parameter hG, which is mostly correlated with “geometric roughness”.
The values ultimately selected for the four HQN model ground surface roughness parameters(

hG, qG, nV
G, nH

G
)
= (0.1, 0.05, 0.0, 0.0) are in agreement with the values used in the current SMOS

soil moisture retrieval algorithm [53].
As indicated in Block 3 in Figure 9a, final outputs Tp

B of “LS—MEMLS” are computed with the
two-stream emission model (2S-EM) employed in “MEMLS” [10,46] using the intermediate quantities
(for snow-layers j : tS,j, rS,j, TS,j; for the ground: sp

G = sp
S,0; for the sky: Tsky) made available as outlined

above. The 2S-EM “balances” in each layer the up- and down-welling energy streams (fluxes)
propagated by the electromagnetic waves by taking into account the boundary conditions at layer
interfaces and considering Kirchhoff’s law. These (incoherent) linkages between up- and down-welling
layer-fluxes take into consideration multiple reflections between the layers’ interfaces. Formulating the
resulting four flux-equations for each layer (up- and down-welling at the respective two layer interfaces)
yields a matrix equation for the vector Tp

B =
(

Tp
B,1, Tp

B,2, · · · , Tp
B,j, · · · , Tp

B,N−1, Tp
B,N , Tp

B

)
containing

the upwelling radiances Tp
B,j across the j = 1, . . . ,N snow-layers, and, as the last element N + 1,

the upwelling radiance above the uppermost snow layer corresponding to the sought Tp
B = Tp

B,N+1
above the snow covered ground. The detailed derivation of the matrix formulation of the 2S-EM can
be found in Section 3 of [49].

In the alternative formulation sketched in Figure 9a, Tp
B is written as Tp

B = ΣN+1
j=0 ap

j ·Tj whereas

the Kirchhoff coefficients ap
0 = ap

G, ap
j = ap

S,j (j = 1, . . . ,N), and ap
j+1 = ap

sky fulfill ΣN+1
j=0 ap

j = 1 and
weight the respective temperatures T0 = TG, Tj = TS,j (j = 1, . . . ,N), and Tj+1 = Tsky. This so-called
Kirchhoff formulation is appropriate for small numbers N of snow layers. In the case of N = 1 snow
layer (sp

S,1 = sp
S , tS,1 = tS) and assuming rS,1 = rS = 0, the associated 2S-EM Kirchhoff coefficients read

(Appendix of [14]):

ap
G =

(1−sp
G)(1−sp

S )tS

1+r2
Ssp

Gsp
S−rS(s

p
G+sp

S )−sp
Gsp

S t2
S

ap
S =

(1−sp
G)(1−rS−tS)(1−rSsp

G+sp
GtS)

(1−rSsp
G)(1−rSsp

S )−sp
Gsp

S t2
S

ap
sky = 1− ap

G − ap
S

(20)

Brightness temperatures Tp
B above a homogeneous moist (tS < 1) snowpack above a given ground

is therefore simulated as:
Tp

B = ap
G · TG + ap

S · TS + ap
sky · Tsky (21)

This one-layer version of “LS—MEMLS” is employed in Figure 10a to simulate impacts
of uniformly distributed snow liquid water on brightness temperatures. Furthermore, the simplicity
of the one-layer version is the method of choice when “LS—MEMLS” is used in an iterative retrieval
scheme. For more complex assumptions made, for instance, on the vertical distribution of snow liquid
water (Figure 10b–d), the matrix formation of the 2S-EM is used.
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5.2. Sensitivities of Brightness Temperatures to Liquid Snow Water

Following the model Equations (13) and (14), effective snow permittivities εS = ε′S + i·ε′′S depend
on both the snow mass-density ρS and its volumetric liquid water content WS. For WS = 0 m3m−3,
power absorption coefficients (Equation (17)) of dry snow (WS = 0 m3m−3) with density
ρS ≤ 500 kg m−3 are αS < 10−6 m−1, implying that any seasonal snowpack can be considered
transparent (tS ≈ 1) as long as it is dry. However, this changes drastically when WS > 0 m3m−3,
mainly as a consequence of the strong increase in the imaginary part ε

′′
S of snow permittivity with

increasing WS. For example, for wet snow with WS = 0.05 m3m−3, or even moist snow with
WS = 0.01 m3m−3 the respective absorption coefficients αS ≈ 7.4545 m−1 and αS ≈ 1.44034 m−1

are more than six orders of magnitude higher than for dry snow. From a practical point of view,
this rapidly increasing absorption of snow with increasing WS led, in the first attempt, to the omission
of L-band-based retrievals (ρS, εG) of snow density and ground permittivity for not entirely dry snow
conditions [15]. This, however, makes it even more important to explore the sensitivities of L-band
Tp

B ’s with respect to snow liquid water in support of (i) an in-depth understanding of the measured
brightness temperatures discussed in Section 5.3; and (ii) the potential to estimate snow wetness based
on L-band brightness temperatures.

Accordingly, “LS—MEMLS” is used to explore sensitivities of L-band Tp
B,R expected for moist

snow atop a perfectly reflecting (R) ground and Tp
B,N expected for moist snow atop frozen natural

(N) ground with respect to snow liquid water. Figure 10 shows simulated Tp
B,R(WCS) (thin lines)

and Tp
B,N(WCS) (bold lines) for the nadir angles θ = 0◦ (black), θ = 30◦ (red), and θ = 60◦ (green).

Snow mass-density is considered as ρS = 300 kg m−3; ground- and snow temperatures are assumed
as TG = TS = 273.15 K. The parameter varied is the snow liquid water column WCS =

∫ hs
0 WS(z) · dz,

defined as the volumetric liquid water content WS, integrated over the entire snow depth hS. Figure 10a
is for “uniform” WS = WCS/hS across snowpacks with 0 mm ≤ WCS ≤ 70 mm and snow-depth
hS = 0.5 m. Further simulations are shown for the same range of WCS contained in snowpacks
with a moist snow-layer of thickness dWS = 0.1 m either at the “top” (Figure 10b), “sandwiched”
in between the dry snow (Figure 10c), or at the “bottom” of the dry snowpack (Figure 10d). These
types of WS-profiles are hereafter referred to as “uniform”, “top”, “sandwiched”, and “bottom”.
Corresponding simulations are also conducted for ρS = 500 kg m−3 yielding results fully consistent
with those presented below.

For totally dry snowpacks, brightness temperatures Tp
B,R(WCS = 0 mm) necessarily agree with the

downwelling sky brightness temperature assumed as Tsky = 5 K and specularly reflected at the ground
(black open squares in Figure 10). A further characteristic common to all the Tp

B,R(WCS) is the sharp
increase with increasing WCS for small values of WCS, followed by gradually decreasing Tp

B,R(WCS)

for larger WCS. The steeply increasing tail of Tp
B,R(WCS) is explained by the strong increase in snow

emission with increasing snow liquid water (see Equations (13)–(17)). The gradients dTp
B,R/dWCS

become even larger for increasing nadir angles θ as a result of longer propagation path-lengths
across the wet snow. Furthermore, the steeply increasing tail of Tp

B,R(WCS) at small WCS is largely
independent of polarization because volume emission of wet snow is assumed to be isotropic.
The cause of the gradually decreasing tail of Tp

B,R(WCS) seen with larger WCS, is caused by increased
interface reflectivity in the upper boundary of the wet snow-layer. The latter increases with increasing
WS as a result of likewise increasing permittivity (Equation (13)). Moreover, the gradually decreasing
part of Tp

B,R(WCS) depends significantly on θ and polarization p, which is a consequence of the
respective sensitivities of the Fresnel-like interface reflectivities (Equation (18)).
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Figure 10. Sensitivities of brightness temperatures with respect to snow liquid water column WCS for
snow mass density ρS = 300 kg m−3: (a) “uniform” snow; (b) snow on “top” of the snowpack; (c) moist
snow “sandwiched” in-between dry snow; and (d) a moist “bottom” snow-layer. Tp

B,R (thin lines)
and Tp

B,N (bold lines) are for snow atop the reflector (R) and atop the natural (N) frozen ground with
εG = 5, respectively. Polarization p = H (solid), p = V (dashed), and the nadir angles θ = 0◦ (black),
θ = 30◦ (red), and θ = 60◦ (green).

The plateau of Tp
B,R(WCS) occurs at intermediate values of WCS when increasing snow volume

emission compensates for decreasing interface emission. The impact of different assumptions
made on the depth-profile of snow liquid water content WS becomes apparent when comparing
Figure 10a–d. For the “uniform” scenario (Figure 10a), the steeply ascending part of Tp

B,R(WCS) shows
larger gradients dTp

B,R/dWCS � 0 K mm−1, whereas the respective descending part reveals smaller
sensitivities dTp

B,R/dWCS < 0 K mm−1 compared to the scenarios “top” (Figure 10b), “sandwiched”
(Figure 10c), and “bottom” (Figure 10d). This finding suggests that the assumption of uniformly
distributed snow liquid water may lead to biased WCS-retrievals estimated from Tp

B,R when liquid
snow water is actually, for example, mostly present below the snow surface. Regarding the relevance
of each of the considered WS-scenarios, it should be mentioned that the corresponding scenario
“sandwiched” is seen as the most realistic during the mid-winter period with pronounced diurnal
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temperature variations around 0 ◦C. This is because strong solar short-wave radiation penetrates the
first few centimeters of dry snow and can cause partial subsurface melting—a phenomenon that can
be best called the “snow greenhouse effect”.

Different snow mass-densities ρS = 300 kg m−3 (Figure 10) and ρS = 500 kg m−3 manifest
primarily in moderate offsets of Tp

B,R(WCS), while gradients dTp
B,R/dWCS are not affected greatly.

The predominant and very high sensitivities of Tp
B,R with respect to WCS imply the potential to retrieve

snow liquid water column WCS from measurements Tp
B,R performed over the “reflector areas” with

high sensitivity, especially for the lower range 0 mm ≤WCS ≤ 20 mm.
Regarding the simulations Tp

B,N(WCS) (bold lines in Figure 10), representing the emission of snow
atop a ground with εG = 5, the same four WS-scenarios “uniform” (Figure 10a), “top” (Figure 10b),
“sandwiched” (Figure 10c), and “bottom” (Figure 10d) are considered. Polarization is indicated
as p = H (solid), V (dashed); nadir angles θ = 0◦ (black), θ = 30◦ (red), and θ = 60◦ (green), all with
the considered snow density ρS = 300 kg m−3 (Figure 10).

For the completely dry snowpack (WCS = 0 mm) and θ = 0◦ (black lines), the respective
Tp

B,N(WCS = 0 mm) are slightly larger than the brightness temperatures above the snow-free ground
(black solid circles) because of the impedance matching of the snow as explained in [13]. For θ > 0◦

and WCS = 0 mm, the Tp
B,N(WCS = 0 mm) deviate from corresponding bare-ground brightness

temperatures (red circles for θ = 30◦, green circles for θ = 60◦ and solid for p = H, open for
p = V). This deviation results from not only impedance matching, but also refraction effects caused
by snow interfaces [13,14]. Most of the Tp

B,N(WCS) show an increasing and a decreasing tail separated
by a plateau. Again, the increasing tails of Tp

B,N(WCS) result from the increasing emission of the
snow-volume with increasing snow liquid water. However, they are distinctly less pronounced than
the corresponding increasing tails simulated for the Tp

B,R(WCS).
This is the compelling consequence of the much larger emission of the frozen natural ground (with

εG = 5) compared to the zero-emission of the ground covered with the reflector. The decreasing tails
of Tp

B,N(WCS), caused by increased interface reflectivities, are more pronounced than the decreasing
tails of Tp

B,R(WCS). This is because snow-ground interface reflectivities are much more comparable with
snow-sir interface reflectivities in the case of “natural” (εG = 5) than in the case of the ground covered
with the reflector. Accordingly, Tp

B,N is diminished by both increased reflectivities at the snow-sir and
ground-snow interfaces, while Tp

B,R is exclusively diminished by increased reflectivities at the snow-sir
interface. Of course, snow-ground interface reflectivities are only affecting brightness temperatures
as long as the snowpack is not totally opaque. Accordingly, when brightness temperatures become
dominated by snow volume emission for large WCS, the Tp

B,N(WCS) and Tp
B,R(WCS) necessarily

approach each other. In summary, the discussed sensitivities of Tp
B,N with respect to WCS seem

to be sufficiently high to achieve at least reliable qualitative information on snow wetness states based
on L-band brightness temperatures measured over natural frozen grounds.

5.3. Analysis of Measured Brightness Temperatures

We now present the time series of measured calibrated brightness temperatures Tp
B,R(θ) and

Tp
B,N(θ), and discuss examples of their prominent signatures in response to selected snow and ground

conditions. Figure 11a shows the time series of TH
B,N and TH

B,R averaged over nadir angles 40◦ ≤ θ ≤ 50◦

with blue and magenta lines, respectively. Averaging over θ is performed to achieve more measured
brightness temperatures after RFI filtering. The onset of snow cover on 3 January and the beginning
of “early spring” on 31 January are indicated by vertical dashed lines. Thus, as labeled above Figure 11,
the entire time series is broken into three periods: the “snow-free period”, the “cold winter period”
with frozen ground and mostly Tair < 0◦ C, and the “early spring period” with air temperatures rising
above the freezing point. Figure 11b shows TV

B,R(θ) and TV
B,N(θ). Figure 11c shows air temperature

Tair and precipitation rate, respectively.
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Figure 11. Tp
B,N (blue) and Tp

B,R (magenta) of brightness temperatures at: (a) horizontal (p = H);
and (b) vertical (p = V) polarization measured over “natural” and “reflector” areas, respectively.
Panels (c,d) show air temperature Tair and precipitation rate, respectively. The vertical dashed lines
delimit the “snow-free period” (before 3 January), the “cold winter period” (3–31 January), and the
“early spring period” (after 31 January).

As explained in Section 5.2 and shown with black open squares in Figure 10, Tp
B,R(θ) (p = H, V)

simulated for the “reflector areas” equals downwelling sky radiance Tsky = Tp
B,R if the reflector

is snow-free and also if the reflector is covered with entirely dry snow. These model findings
are corroborated by the measurements shown in Figure 11. Throughout the snowless period,
TH

B,R (Figure 11a) is close to 4.5 K, which is virtually equal to Tsky ≈ 4.7 K for 40◦ ≤ θ ≤ 50◦ [32].
This holds true also after the onset of the snow cover throughout the “cold winter period” in January
when the snowpack is dry. However, with the beginning of the “early spring period”, TH

B,R occasionally
rises distinctly above Tsky, which is interpreted as intermittent occurrences of snow liquid water.
This is, again, consistent with the corresponding response of simulated TH

B,R shown in Figure 10. On the
other hand, the perception of intermittent increases in measured TH

B,R caused by snow liquid water
is also meaningful from the environmental conditions viewpoint because time-integrated heat-input
to the snowpack starts temporarily rising above the ice latent-heat during the “early spring period”.
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The distinct sensitivity of TH
B,R with respect to snow liquid water becomes even more evident during the

period 9–23 February, when TH
B,R reaches its maximum every day in the afternoon and falls to Tsky over

night when the snowpack refreezes. Accordingly, the measured temporal characteristics of TH
B,R clearly

indicate the onset of “early-spring snow”.
Additionally, during the aforementioned two weeks in February, where the TH

B,R shows exclusively
sharp increases during the afternoon hours, the concurrent TH

B,N measured over the “natural areas”
show both sharply increasing (11–13 February) and decreasing (16–19 February) deflections. Although
at first glance these opposite measurement responses of TH

B,R and TH
B,N to snow wetness may seem

counter-intuitive, it is in qualitative agreement with the corresponding simulations shown in Figure 10.
On the one hand, the simulated TH

B,R(WCS) and TH
B,N(WCS) in Figure 10, reveal sharply increasing

TH
B,R(WCS) for 0 mm ≤ WCS ≤ 20 mm explained by increased snow emission. On the other

hand, TH
B,R(WCS) is expected to decrease for WCS & 20 mm, while simulated TH

B,N(WCS) already
decrease for lower WCS & 5 mm. In other words, for 0 mm ≤ WCS ≤ 20 mm, the TH

B,R(WCS)

are expected to increase steadily, while TH
B,N(WCS) increase with very little snow liquid-water

(0 mm ≤WCS ≤ 5 mm) and decrease with larger values WCS & 5 mm. These simulation-based
findings explain why measurements TH

B,R and TH
B,N can indeed respond in contrast to each other

with respect to low WCS values, as is expected from 9 to 23 February. The fact that “LS—MEMLS”
is an incoherent emission model also implies that it is not necessary to adduct coherent effects
to explain the observed oppositional responses of TH

B,R and TH
B,N to snow liquid water.

As mentioned earlier, Figure 11b shows similar information to Figure 11a only with “reflector
areas” and “natural areas” brightness temperatures TV

B,R (magenta) and TV
B,N (blue) at vertical

polarization. The signature in TV
B,R (Figure 11b) associated with the first appearance of snow liquid

water (“early-spring snow”) coincides with the corresponding response of TH
B,R (Figure 11a). However,

three additional distinct peaks in TV
B,R are observed during measurements on 3, 13, and 18 of January.

For certain, these peaks are not caused by snow liquid water because Tair (Figure 11c) was well
below the freezing point during the “cold winter period”. The still very shallow and homogeneous
snow-depth present during this period suggests that these peaks are caused by coherent effects.
This supposition is further borne out by the fact that the amplitudes of the three peaks decrease with
time and, consequently, with growing snow depth (see Figure 2a). Likewise, the excessively high
TV

B,R measured for 9 h during 7 and 8 of February are likely the result of coherent effects. In the
case of the respective measurements during the beginning of the “early spring period” the suspected
coherent effect is most likely induced by coherent layers of moist snow rather than by shallow snow
height hS. This is because hS > 0.5 m (see Figure 2a) during the “early spring period” is significantly
larger than the maximum thickness 3λ/8

√
εS ∼= 0.07 m of a snow layer expected to induce coherent

effects (see [10,49]) at L-band (λ ∼= 0.21 m), while a coherent moist snow layer can develop and vanish
as a result of refreezing during a day of this period.

Figure 11d shows frequent precipitation at the end of February and early March. Most of these
precipitation events are rain or wet snowfall, which naturally increase snow liquid-water distinctly.
Thus, the higher TH

B,R and TV
B,R observed over the “reflector areas” for this period are consistent with

simulated responses shown in Figure 10. One should note that increased Tp
B,R (p = H, V) is almost

exclusively a result of increased snow wetness. Thus, neither precipitation events alone nor Tair ≥ 0 ◦C
imply increased Tp

B,R because dry snowfall does not cause more liquid snow water and snow melt-down
does not occur for Tair ≥ 0 ◦C unless the snowpack has reached ice latent heat.

As outlined in Section 5.1, snow liquid-water distinctly increases snow absorption. This impact
is so large that the L-band penetration depth of >300 m in dry snow drops to less than 3 m for
moist snow with liquid water content of ~1% and to even less than 0.3 m for wet snow with liquid
water content of ~3% [22,23]. Accordingly, a natural snowpack can eventually become largely
opaque especially during late winter periods, implying that Tp

B,R are no longer dominated by the
very low emissivity of the metal reflector. Accordingly, we define the snowpack as “opaque”
if more than 63% of the total emission originates from the snowpack, whereas up to this limit the
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snowpack is considered “semi-transparent”. Considering that the effective snow temperature for moist
snow is necessarily close to the freezing-point of water, 273.15 K, the upper limit of Tp

B,R indicating
an “opaque” snowpack is 273.15× e−1 ≈ 172 K. The horizontal dashed lines in Figure 11a,b indicate
this threshold. It can be seen that the great majority of Tp

B,R (p = H, V) measurements are below
this threshold, and as a result snow is still classified as “semi-transparent” rather than “opaque”.
This experimental result validates the theoretically predicted advantage of L-band radiometry over
higher frequency bands because of moist snow semi-transparency which is an absolute precondition
to estimating snowpack column properties (such as snow liquid water-column) from remote
sensing data.

Finally, we briefly interpret the Tp
B,N (p = H, V) measurements during the “snow-free period”

before 3 January. It can be seen in Figure 11a,b that Tp
B,N in both polarizations p = H and V demonstrate

an evanescing fluctuation pattern synchronous and anti-correlated with the diurnal variations of Tair.
This anti-correlation implies that the Tp

B,N fluctuations are not a direct result of Tair diurnal variations
but are rather a dielectric effect. To understand these fluctuations, one should note that in the absence
of a snow cover acting as a heat-insulator, daily partial thaw-up takes place at a thin surface layer
of bare ground which results in slightly higher εG and lower emissivity. This change in emissivity
results in lower and higher Tp

B,N during days and nights, respectively. The amplitude of these
fluctuations decreases with deeper freezing of soil resulting from decreasing average air temperature,
shorter days, and so on. The exception to this trend takes place on 26 and 27 December when
a rain precipitation event moisturizes the soil surface resulting in significantly lower Tp

B,N for both
p = H and V, but after 27 December, the soil refreezes and Tp

B,N returns to the approximately same
values as before the rain event.

6. Summary and Conclusions

The present work is to be seen as the scientific basis for upcoming research on L-band remote
sensing applied to the retrieval of ground freeze/thaw state and snow volume properties, such as mass
density and liquid water content. Accordingly, details regarding the Davos Laret field laboratory and
its instrumentation during its first winter of operation (2016/2017) are here explained. The in-situ
measurements of ground and snow state parameters, climatological data, as well as L-band brightness
temperatures recorded during the first winter 2016/2017 campaign, were presented and discussed.
These data provide insight into how ground-snow system evolution is influenced by the climatological
drivers. The temporal evolution of the measured data suggests a three-phase partitioning of the entire
campaign into “snow-free period”, “cold winter period”, and “early spring period”.

As part of ELBARA-II’s raw data processing to achieve calibrated brightness temperatures,
a refined RFI mitigation approach is suggested based on fitting a Gaussian model to the
distribution of measured raw-data voltage samples. Its better performance compared to conventional
“normality” tests (kurtosis, skewness) is demonstrated, and its ability to quantify non-thermal
disturbances ∆Tp,ch

B in individual measurements is highlighted. It is considered prudent to employ

∆Tp,ch
B in future retrieval schemes using data measured with radiometers that output raw data

in time-domain, such as ELBARA-II and the SMAP radiometer [54]. A further improvement in the
calibration of ELBARA-II brightness temperatures concerns the use of values Lp

TL of “effective”
transmission losses, which optimally represent the extent of associated thermal noise. Accordingly,
the introduced refinement minimizes under- and over-estimation of thermal noise caused by the
lossy transmission line at different physical temperatures and ultimately imposed on the calibrated
brightness temperatures.

The response of the brightness temperatures Tp
B,R and Tp

B,N, over “reflector areas” and “natural
areas”, with respect to snow liquid water column WCS is analyzed and presented. These analysis
results reveal the high sensitivity of Tp

B,R and moderate, but measureable, sensitivity of Tp
B,N with

respect to the liquid water column WCS. These model findings were corroborated by corresponding
measured time series of Tp

B,R and Tp
B,N. For example, the measured Tp

B,R equals the sky brightness
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temperature Tsky ≈ 4.7 K for the “snow-free period” and the “cold winter cold” when the snowpack
is dry. This is predicted by the corresponding simulations of Tp

B,R for dry snow. It was also shown
that distinct daily increases in measured Tp

B,R indicate the onset of the snow melting season, otherwise
called “early-spring snow”. The consistency between modeled and measured responses of Tp

B,R and
Tp

B,N suggests the need to explore interfering effects of snow liquid water on estimates (ρS, εG) of snow
density and ground permittivity retrieved with the approach [14], which inherently assumes snow
to be dry. Even more noticeably, our analysis hints at the possibility of estimating snow liquid water
column WCS using L-band radiometry.
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