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Abstract: In this work, ground deformation of the Shanghai coastal area is inferred by using the
multiple-satellite Differential Synthetic Aperture Radar interferometry (DInSAR) approach, also
known as the minimum acceleration (MinA) combination algorithm. The MinA technique allows
discrimination and time-evolution monitoring of the inherent two-dimensional components (i.e.,
with respect to east-west and up-down directions) of the ongoing deformation processes. It represents
an effective post-processing tool that allows an easy combination of preliminarily-retrieved
multiple-satellite Line-Of-Sight-projected displacement time-series, obtained by using one (or more)
of the currently available multi-pass DInSAR toolboxes. Specifically, in our work, the well-known
small baseline subset (SBAS) algorithm has been exploited to recover LOS deformation time-series
from two sets of Synthetic Aperture Radar (SAR) data relevant to the coast of Shanghai, collected
from 2014 to 2017 by the COSMO-SkyMed (CSK) and the Sentinel-1A (S1-A) sensors. The achieved
results evidence that the Shanghai ocean-reclaimed areas were still subject to residual deformations in
2016, with maximum subsidence rates of about 30 mm/year. Moreover, the investigation has revealed
that the detected deformations are predominantly vertical, whereas the east-west deformations are
less significant.
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1. Introduction

Differential interferometric synthetic aperture radar (DInSAR) [1–3] plays a significant role
for the monitoring of Earth’s surface ground deformation, being able to retrieve accurate and
timely information on the sensor’s line-of-sight-projected components of the terrain displacements.
Over recent years, the availability of large archives of Synthetic Aperture Radar (SAR) images collected
from complementary viewing angles and the exploitation of multi-pass DInSAR techniques [4–7]
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have made possible the discrimination of the three-dimensional (3D) components of the deformation
which has occurred [8–20]. Theoretically, 3D deformation components can be recovered based on the
combination of data produced by (at least) three complementary observation angles. Nevertheless,
commonly-used radar sensors are mounted onboard platforms that fly near-polar orbits (i.e., satellite
azimuth direction is approximately parallel to north-south direction), and this, unfortunately, makes
the detection of the north-south surface displacement components unreliable. Furthermore, SAR
data are not typically acquired in the same dates. Thus, an assumption as to the temporal evolution
model for the observed deformation has to be made in order to effectively combine Line-of-Sight (LOS)
deformation measurements collected from different orbital positions and acquisition times [17,18].
Some technical solutions for combining multiple-satellite LOS measurements, as well as for merging
DInSAR data products with other external information (such as that derived from GPS stations),
have been found [15–20]. Among these solutions, the approach known as Minimum Acceleration
(MinA) combination technique, originally presented in [19], implements a straightforward combination
of independently-produced multiple-satellite LOS displacement time-series, so as to retrieve the
time-series of the 3D components of the terrain displacement.

In this work, a simplified version of the MinA technique is applied to two sets of SAR data
collected respectively by the COSMO-SkyMed (X-band) and the Sentinel-1A (C-band) sensors, over
the coastal area of the Shanghai metropolis. The megacity is characterized by high urban density
and ground subsidence phenomena due to groundwater extraction and consolidation of high-tall
buildings, as revealed by several analyses [21–28]. Most of these investigations, however, have in the
last decade focused on the highly-urbanized downtown area, using both persistent scatters [4,7] and
small baseline (SB)-oriented DInSAR methods [6]. In particular, the mentioned analyses have been
conducted using, at most, ERS-1/2 [21], ENVISAT [22,23], ALOS-1 [22,24], TerraSAR-X [25,26,28], and
COSMO-SkyMed [23,27,28] synthetic aperture radar (SAR) images. In particular, a multiple-sensor
least squares (LS) combination approach, based on the implementation of the Temporarily Coherent
Point SAR interferometry processing, has been proposed in [28]. Conversely, the study of the
displacement signals affecting the alongshore ocean-reclaimed platforms through DInSAR-based
approaches has been revealed to be more challenging. This is because the ocean-reclaimed areas are
subject to broad temporal modifications associated with the consolidation phase of soils used for
land-reclamation procedures [29], thus leading to severe temporal decorrelation noise effects [30,31]
in the generated interferograms. Nonetheless, a few DInSAR investigations focused on the coastal
district of the Shanghai megacity have been recently performed. For instance, an analysis of spatial and
temporal behavior of deformation at Shanghai ocean-reclaimed platforms, with a focus on the Pudong
International Airport area, has been proposed [32] by applying a modified persistent scatterers (PS)
method to a high-resolution TerraSAR-X satellite image stack, collected for the period from 2011 to 2012.
In order to partially circumvent the limitations due to the scarcity of high-stable PSs in ocean-reclaimed
lands, small baseline approaches, which are able to investigate the deformation of distributed scatterers
(DS) on the ground, have also been applied [29,33]. These latter investigations relied on the joint
use of DInSAR-derived deformation measurements, derived by processing long-lasting sequences
of ENVISAT and COSMO-SkyMed differential SAR interferograms, and empirical geotechnical
models [29,33–36]. As a result, some insights on the future evolution of the deformations in the coastal
area of Shanghai have been determined [29,33]. It is worth emphasizing that the analyses provided
in [29,33] rely on the principal assumption that ocean-reclaimed areas of Shanghai are mostly affected
by vertical deformations (i.e., along the up-down direction) that are ascribable to soil compaction
mechanisms [34]. On the one hand, the lack of a wide network of Global Positioning Systems
(GPSs) over the entire zone of reclamation has prevented, until now, the direct validation/refutation
of some deformation models [29,33]. In particular, the hypotheses made in [29,33] are about the
direction of surface deformations, which were assumed to be mostly vertical as testified by the
results of some geological surveys [37]. On the other hand, a unique opportunity for quantifying
the extent, shape, and direction of ground deformation in the ocean-reclaimed areas of Shanghai is
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offered nowadays by the exploitation of new-generation SAR data collected through the Sentinel-1
mission [38]. Sentinel-1 provides SAR data for land and ocean monitoring applications, and it is
composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which were launched on
3 April 2014 and 25 April 2016, respectively. The family of two satellites has been developed within
the European environmental monitoring program Copernicus. It is worth noting that the repeat cycle
of the Sentinel1A-B twin-sensors constellation is reduced to six days, thus permitting suitable and
continuously-updated DInSAR analyses.

In this work, the LOS deformation time-series of the Shanghai coastal area, recovered by applying
the small baseline subset (SBAS) algorithm to the two sets of COSMO-SkyMed (descending passages)
and Sentinel-1A (ascending passages) data, have been combined to retrieve the up-down and the
east-west components of deformation from 26 February 2015 to 4 March 2016. To this aim, the MinA
technique [19] is applied. The main objectives of our investigation are: (i) to confirm, with experimental
data, that the deformation of ocean-reclaimed platforms is mostly vertical; (ii) to corroborate the
validity of some of the forecasting deformation models in [29,33], which are useful for the evaluation
of the risk due to possible inundations of the highly-urbanized coastal area; (iii) to investigate the
displacement signals that affect the public facilities of the Pudong International Airport. The presented
results demonstrate the ocean-reclaimed land is actually subject to prevalent up-down movements
(with a maximum subsidence rate of 30 mm/year), with the exception of some isolated areas, just
in the proximity of the coastline, characterized by maximum lateral east-west deformation rates of
10 mm/year during the 2015–2016 observation period.

2. Study Area

Shanghai is located at the midpoint of the north-south coastline of China on the alluvial plain
of the Yangtze River Delta. The megacity is bound in the north by the Yangtze River estuary, to the
east by the East China Sea, and to the south by Hangzhou Bay, see Figure 1a. The land area covers
about 6000 km2 and is mostly flat, with altitudes ranging between 2 and 6 m above sea level. Under
the combined influences of the Yangtze River runoff and tidal currents, large amounts of sediments
have been deposited in this region, forming a large intertidal area. In order to alleviate the shortage
of land resources caused by urban development, a large area has been reclaimed since 1950. Up to
now, the new land formed by the reclamation project has reached up to 175 km2, mainly including
Lingang New City and Pudong International Airport, see Figure 1a,b. Furthermore, in the near future,
more new land will be reclaimed in the eastern coastal area to make room for new buildings and
public infrastructures.

Of particular interest for our study is the area of the Pudong International Airport, which is one
of the most important airports in China. It is located in the eastern sector of the metropolitan area of
Shanghai. More than 60 million passengers traveled through the airport in 2016 and it is expected the
airport will handle 80 million passengers in 2025. The first phase of the airport construction began
in 1997. It was opened to the public in 1999, replacing Shanghai Hongqiao International Airport as
Shanghai’s international airport. The first runway, located in the western half of the airport, was part of
the first construction phase and has been in use since 1999. In 2005, the second runway was constructed
and opened. The second round of expansion, including a second terminal and the third runway, also
began in 2005 and started operation in 2008 for the Bejing 2008 Summer Olympics. A new round of
expansion—including land reclamation, the fourth runway, and the fifth runway—was approved in
2011, and the fourth and fifth runways were completed in 2015 and 2017, respectively. The location of
the five runways, which are represented with different colors representing their different construction
times, are shown in Figure 1b. In terms of traffic, the new expansion will make the airport become one
of the world’s top three, after its completion in 2019. The airport is built on the tidal flats of the south
bank of the Yangtze River estuary. The western region of the airport is composed of natural sediments,
distributed sandy silt, and silty clay [39,40]. The eastern part of the airport is an artificial foundation,
which is filled with loose sandy soil (see Figure 1c). Affected by land reclamation and the filling soil
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properties, obvious ground deformation phenomenon will inevitably occur. Previous studies [38,39]
have shown that there are paleo-rivers within the airport region, and the foundation of the area around
these paleo-rivers is more unstable than the other regions, which could intensify ground deformations.
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Figure 1. (a) Location of the Shanghai reclaimed area, (b) the distribution of the runways at the
Pudong International Airport, and (c) the engineering geology condition of the Pudong International
Airport area.

3. Data and Methods

3.1. SAR Data

Our investigation relies on the use of two independent SAR datasets collected over the coast of
Shanghai by the COSMO-SkyMed (CSK) and Sentinel-1A (S1-A) sensors constellations, respectively.
The CSK dataset consists of 61 SAR scenes (descending passes, HH polarization, with a side-looking
angle of about 29◦ and a satellite heading angle of about 198◦) collected from 7 December 2013 to
18 March 2016. The second dataset, acquired through the Sentinel-1A mission from 26 February 2015
to 4 April 2017, consists of 33 SAR scenes (ascending passes, VV polarization, with a side-looking
angle of about 39◦ and a satellite heading angle of about 348◦). Sentinel-1A data were available in the
single-look-complex (SLC) format and acquired through the interferometric wide swath (IW) mode by
employing the terrain observation by progressive scans (TOPS) acquisition mode [41], which provides
large swath widths of 250 km at ground resolutions of 5 m × 20 m. The full lists of CSK and S1-A SAR
data used are included in Table S1 and Table S2 of the Supplementary Material.
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3.2. SAR Data Processing

The two SAR datasets were independently processed by employing the multi-pass small
baseline subset algorithm (SBAS) [6]. More precisely, CSK data were elaborated using the in-house
SBAS processing chain developed at the Italian National Council Research laboratory [42], and the
Sentinel-1A data were processed by the SBAS toolbox implemented within the commercial ENVI’s
SARScape modules from EXELIS VIS Information Solutions [43]. It is worth noting that the potential
use of different DInSAR tools for the retrieval of LOS deformation measurements represents a key
issue of the applied MinA technique. SBAS is a well-established technique that allows the detection
of the temporal evolution of Earth’s surface deformation by generating mean LOS velocity maps as
well as LOS displacement time-series. In particular, SBAS is based on the use of multiple-master
multilook interferograms [44] generated after a proper selection of Small Baseline (SB) SAR data pairs.
LOS displacement time-series are computed by solving a least-squares (LS) minimization problem,
based on the application of the singular value decomposition (SVD) method [45], to the sequence of
unwrapped multilook interferograms. The SBAS approach also includes a filtering operation for the
atmospheric phase components [4,6]. Interested readers can find additional details on SBAS and its
inherent implementation within InSAR processing tools in [6,46]. Starting with available CSK and
S1-A SAR data, two groups of small baseline (SB) interferometric SAR data pairs were first selected,
and the relevant sequences of SB interferograms were subsequently generated. The distribution of
available SAR acquisitions in the temporal/perpendicular baseline plane as well as the selected SB
interferometric SAR data pairs are depicted in Figure 2.
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Therefore, for each detected coherent pixel, the sensor line-of-sight (LOS) displacement time-series
were recovered in correspondence to detected coherent pixels (in radar coordinates) for the CSK and
S1-A datasets, separately. Obtained LOS displacement time-series were then combined as described
in Section 3.3 to recover the east-west and up-down time-series of deformation relevant to coherent
distributed scatterers (DS) on the ground.

3.3. Multiple-Satellite Combination Technique for the Retrieval of 2D Displacement Time-Series

In this subsection, we summarize the basic rationale of the MinA multiple-satellite DInSAR
combination technique [19]. As described earlier, after the application of the SBAS technique, the
LOS-projected deformation time-series are recovered. LOS measurement products are originally
provided in the native radar coordinate grids of both datasets. Accordingly, in order to properly
combine the LOS displacement products, so as to discriminate the 2D components of deformation
(with respect to the up-down and east-west directions, respectively), the measurements have to be
preliminarily referred to a common geocoded grid by applying geocoding operations [47]. Since the
sensitivity of LOS measurement to north-south projection is very weak, hereinafter, we present a
modified version of the MinA algorithm, which focuses exclusively on the discrimination of the 2D
(i.e., up-down and east-west) components of deformation, by completely neglecting the presence of a
deformation component along the north-south direction.

To introduce the right mathematical framework, let us refer to the simple case that only two
independent sets of multi-orbits SAR data (i.e., in our case the CSK and the S1-A one) are available
(this is the case in the Shanghai case study). Let us assume that SAR data are collected at the ordered

times t(1) ≡
[
t(1)0 , t(1)1 , . . . , t(1)Q1−1

]T
and t(2) ≡

[
t(2)0 , t(2)1 , . . . , t(2)Q2−1

]T
, respectively. Let T ≡ ⋃⋃⋃j=1,2 t(j) =[

T0, T1, . . . , TQ−1
]T be the whole set of Q = Q1 + Q2 ordered time acquisitions, and assume that a

suitable time overlap between the two SAR datasets is present. Notice that time-overlap between
the two datasets is a fundamental requirement of any multiple-orbit combination algorithm. To
accomplish this issue, a preliminary operation step that identifies the overlapping time-period and
extracts the LOS time-series over the overlapped time is required (see the experimental Section 4). To
describe how the algorithm works, let us suppose for the sake of simplicity, that only two different
SAR sensors are available and t(1) and t(2) are properly time-overlapped. Moreover, for the sake of
simplicity, let us also assume that the first dataset is acquired through ascending passes and the second

through descending passes. Henceforth, let d(1)(P) ≡
[
d(1)0 (P), d(1)1 (P), . . . , d(1)Q1−1(P)

]T
and d(2)(P) ≡[

d(2)0 (P), d(2)1 (P), . . . , d(2)Q2−1(P)
]T

be the geocoded LOS time-series computed in correspondence to the
generic homologous pixel P.

Let us start by relating the LOS measurements collected over ascending and descending orbits,
namely dLOS,asc and dLOS,desc, to the inherent 2D displacement components with respect to up-down
and east-west directions. Taking into account the acquisition geometry [19,28] of the ascending and
descending passes depicted in Figure 3, it is easy to prove the validity of the following equations:

dLOS,asc = d·îasc = dEast·sinθasc + dUp· cos θasc

dLOS,desc = d·îdesc = −dEast·sinθdesc + dUp· cos θdesc
(1)

with θasc and θdesc being the incidence angles of the electromagnetic waves on the ground for the
ascending and descending data tracks, respectively. Note that îasc and îdesc are the versors for the
ascending and descending line-of-sight directions. In order to retrieve the time-series of the east-west
and up-down components, the available LOS time-series through ascending and descending passes
are hence jointly exploited. In particular, the relative LOS displacement at the generic time t(j)

k , j = 1, 2

calculated with respect to the first acquisition time of the relevant SAR dataset t(j)
0 , j = 1, 2 , that is

d(j)
k − d(j)

0 , j = 1, 2 , is first extracted from the available ascending and descending LOS time-series.
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Subsequently, it is related to the unknown east-west and up-down velocity components, namely

VE =
[
VE1 , VE2 , . . . , VEQ−1

]T
and VU =

[
VU1 , VU2 , . . . , VUQ−1

]T
, between the available Q adjacent

acquisition times (related to the whole set T), following the lines described in [19]. As a result, a system
of Q− 2 linear equations with respect to M = 2(Q− 1) unknowns is obtained, which can be expressed
using matrix formalism as:

B·
[

VE

VU

]
=

[
d(1)

d(2)

]
(2)

where B is the incidence-like matrix of the adopted linear transformation, which is defined taking into
account Equation (1) as follows:

B =

[
B(1) sin θasc B(1) cos θasc

−B(2) sin θdesc B(2) cos θdesc

]
(3)

with B(j) j = 1, 2 being the matrixes related to the linear transformation from LOS displacements to
velocity deformation rates (see [6–19] for additional details).
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red) orbits.

The system of Equation (2) is undetermined; thus it does not admit a unique solution. The strategy
adopted by the MinA technique is to introduce additional equations imposing that the (combined)
East-West and Up-Down deformation components are with minimum acceleration. That is to say
that the difference of velocity between consecutive time intervals of the whole set of ordered times T
is minimal.

This can be mathematically expressed as follows:{
α
(
VEi+1 −VEi

)
= 0 i = 1, . . . , Q− 2

α
(
VUi+1 −VUi

)
= 0 i = 1, . . . , Q− 2

(4)

where α is a regularization factor used to balance the relative weight of the minimum acceleration
constraints with respect to the minimization of the residual norm of the system in Equation (3).
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Accordingly, the regularized system of equations becomes:

[
B
C

]
·
[

VE

VU

]
=

 d(1)

d(2)

0

 (5)

where C is the incidence-like matrix related to the linear transformation in Equation (4). The solution
of the regularized problem in Equation (5) is, thus, eventually obtained in the least-squares (LS) sense.
Once obtained, the Up-Down and East-West velocity vectors are integrated with respect to the time
T by assuming deformation signals related to the overall first SAR acquisition at time T0 are zero.
As a quality index of the reconstruction, which takes mostly into account the congruence between
obtained 2D displacement time-series and the original LOS measurements, the root mean square
error (RMSE) of the residuals of the subsystem in Equation (3), namely ∑ = ‖B·V− d‖2, is calculated

(see the experiments shown in Section 4), with d =
[
d(1), d(2)

]T
and V = [VE, VU]

T . Once the
velocity estimates are obtained, the relevant 2D displacement time-series are simply recovered by
time-integration. A comprehensive description of the MinA algorithm, also including its extension for
the retrieval of the north-south displacement components, as well as for the integration of additional
measurements (e.g., pixel-offset-driven measurements recovered from sequences of amplitude SAR
images [48]), can be found in [19].

4. Experimental Results

In this section, we present the experiments performed for detecting and characterizing the
deformation phenomena that occur in the coastal area of Shanghai by combining CSK and S1-A
displacement time-series.

4.1. SBAS Analysis

We applied the SBAS algorithm to the available CSK and S1-A SAR datasets shown in Section 3.1.
For the CSK datasets, a group of 155 InSAR data pairs were selected by imposing constraints on the
maximum spatial and temporal baseline separation between orbits, which have been set, in this case,
to 800 m and 1000 days, respectively. Concerning the S1-A dataset, a group of 368 InSAR data pairs
were selected. As evidenced by the distribution of S1-A SAR images in the temporal/perpendicular
baseline plane, which is shown in Figure 2, the S1-A system is characterized by a very short orbital
tube, with a nominal diameter of about 200 m, i.e., much smaller than the relevant critical baseline
value [44]. Therefore, S1-A InSAR data pairs were selected by simply imposing a temporal baseline less
than one year. Differential interferograms were generated by computing the phase difference between
the co-registered SAR image pairs, and by subtracting the relevant topographic phase contributions, as
synthesized using the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) (with
a spatial sampling of 90 × 90 m) and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) DEM (30× 30 m) of the area, for the CSK and the S1-A SAR datasets, respectively.
To mitigate the effects of decorrelation noise into the generated interferograms, we also conducted a
complex multi-look operation (with 30 looks in the azimuth and 30 looks in the range direction for the
CSK dataset, and five looks in the azimuth and 20 looks in the range direction for the S1-A dataset) [41],
so as to end up with a radar pixel spacing for both SAR datasets of about 100 × 100 m. The differential
interferograms were noise-filtered [45,49], and the relevant spatial coherence maps were generated.

By inspecting the generated maps of spatial coherence, the group of coherent pixels common to
all interferograms was identified, and the subsequent phase unwrapping steps [50] were eventually
performed on this sparse grid of coherent pixels. By applying the SBAS technique, the relevant CSK
and S1-A LOS-projected displacement time-series were recovered.

Since the LOS measurements related to each SAR dataset correspond to different radar pixel
coordinates, the CSK and S1-A data products were resampled to a common geocoded grid, so that the
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subsequent InSAR combination technique could be applied to the CSK and S1-A SBAS displacement
time-series relevant to homologous ground targets. Maps showing the LOS-projected mean
displacement velocities for both datasets, superimposed on a Landsat image of the investigated area,
are shown in Figure 4. LOS displacement values are calibrated with respect to a common reference
point (its location is identified by the red star shown in Figure 4), whose deformation is assumed zero.
To ensure reliable results, we only displayed the deformation values relevant to highly-coherent targets
on the ground, which have been selected for the CSK dataset by identifying the points characterized
by a temporal coherence value [51] greater than 0.65, and for the S1-A dataset by showing only the
pixels with an average spatial coherence greater than 0.55.Remote Sens. 2017, 9, 1194  9 of 19 
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4.2. Two-Dimensional (2D) Deformation Time-Series Extraction

To retrieve the time-series of the two-dimensional (2D) surface displacement components,
we firstly extracted from the achieved SBAS time-series the CSK and S1-A LOS displacement time-series
related to the overlapped time periods (i.e., from 28 February 2015 to 18 March 2016 for the CSK dataset,
and from 26 February 2015 to 4 March 2016 for the S1-A dataset). Then, we re-calculated the LOS mean
deformation velocity and the corresponding time-series over the 2015–2016 overlapped time-periods
(i.e., from 26 February 2015 to 4 March 2016). Maps of the 2015–2016 SBAS LOS mean deformation
velocities as detected by processing the CSK and S1-A datasets are shown in Figure 5a,b, respectively.
Extracted LOS displacement time-series were then combined by employing the MinA algorithm [19].
In particular, a regularization factor α = 0.1 was used.

As a result, the east-west and up-down displacement time-series were recovered. Figure 6 portrays
the maps of the 2D displacement velocity components. As evidenced, most of the Shanghai area was
almost stable, with the only exception of the ocean-reclaimed platforms down the coast. This finding
represents one the main achievements of our study, and, to the best of our knowledge, it represents the
first direct evidence of the actual vertical movements of the ocean-reclaimed platforms documented
through DInSAR-based approaches. Furthermore, in order to quantify the correctness of the achieved
2D InSAR products, we also produced, for each point of the common CSK/S1-A geocoded grid, the
Root Mean Square Error (RMSE) of the residuals between the original LOS-projected displacement
time-series and the ones reconstructed from the retrieved east-west and up-down time-series. The map
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of the RMSE is portrayed in Figure 7. A zoomed view of the east-west and up-down mean displacement
maps over the reclaimed areas is shown in Figure 8.Remote Sens. 2017, 9, 1194  10 of 19 
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5. Discussion

Let us now focus on the analysis of the achieved 2D displacement time-series. Figure 9 shows
the plots of the east-west and up-down time-series of deformation relevant to eight selected pixels
located along the coast. Pixels were selected among those with a low value of RMSE of the residuals
between the original and the reconstructed LOS time-series (see Figure 7). The analysis of Figure 9
reveals that reconstructed east-west deformation signals over the ocean-reclaimed land are (on average)
less prevalent with respect to the up-down deformation signals recorded in homologous locations.
The detected vertical movements are the effects on the ground of the consolidation mechanisms of
the soils used for the reclamation of land from the ocean, and have also been investigated in previous
studies [28,32]. This outcome is in general agreement with the results of studies [27,31], based upon
considerations of the geology of the area and on the mechanisms of soil consolidation in reclaiming
land. A discussion on the deformation signals detected over the Lingang New City and the Pudong
International Airport is provided in the following subsections.
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5.1. Lingang New City

Lingang New City, near the Dishui Lake, is characterized by a quite unique deformation
scenario. Its western sector, as already anticipated by previous studies [28,32], based on the use
of ASAR/ENVISAT SAR data (from 2007 to 2010) and COSMO-SkyMed data (from 2014 to 2016), was
almost stable from 2015 to 2016 with maximum up-down and east-west deformation rates of a few
millimeters per year (see for instance the plots relevant to points (e) and (f) shown in Figure 9).

Conversely, the eastern sector of the city was still affected during the 2015–2016 period by
significant up-down residual deformations, reaching along the coast values up to 25–30 mm/year (see
the plots relevant to pixels (g) and (h) shown in Figure 9). This finding is in general agreement with
the investigations performed in [28,32].

5.2. Pudong International Airport

The achieved results, which are portrayed in Figure 10, reveal that actually most of the deformation
affecting the airport is vertical (i.e., it is a subsiding area, as expected). In Figure 10, six points labeled
(a–f) have also been selected as representative of the deformations of the zones where they are located.
Relevant two-dimensional east-west and up-down deformation time-series are plotted in Figure 11.
Our results complement and update the analyses presented in [31], based on processing—with a
modified persistent scatters interferometry (PSI) technique—a set of high-resolution TerraSAR-X data
satellite acquired from September 2011 to October 2012. With respect to [31] our updated results
reveal that the soil consolidation process in correspondence to runway lines R1–R3 were still active in
2016, but with rates less than 10 mm/year, while the runway line R4, built over an area that was later
reclaimed (starting from 2006), was severely affected by vertical residual subsidence deformations
with rates up to 30 mm/year. In general agreement with [31], the present investigation shows that the
deformation of the first runway foundations was almost completed by March 2016, and only a very
tiny deformation subsidence (with a maximum rate of 5 mm/year) was still visible (with respect to
the maximum rate of 15 mm/year measured in [31]) in 2016. See, for instance, the plots of east-west
and up-down time-series related to point (a) shown in Figure 11. These results are in accordance
with the geological setting of the zone reported in [31], considering that the first runway is built on
a typical soft soil foundation with complete soil layers from top to bottom, and is the most stable of
the five runways. The deformation related to the foundations of the first and third runways is quite
similar. The foundations of the third runway were completed nine years later than the first runway.
However, point (b) is located in the southern area of the third runway, where the foundation is mainly
composed of silty clay and sandy silt, and point (a) is located in the middle of the first runway, where
the foundation mainly consists of silty clay. Previous research shows that the water content, void
ratio, and coefficient of compressibility of the silty clay in this area are 29.3%, 0.84, and 0.18 MPa−1

respectively, while the parameters of the sandy silt are 24.2%, 0.72, and 0.25 MPa−1, implying that
the silty clay is softer and weaker than sandy silt [52]. Hence, the third runway is characterized by
moderate-to-low deformation signals, which, from 2015 to 2016, were mostly vertical with a maximum
subsidence rate of about 10 mm/year. See the plots related to point (b) shown in Figure 11. Conversely,
the second runway, which has been in operation since 2005 and whose foundations reclamation project
started later, only in 2001 [38], was still subject from 2015 to 2016 to residual deformations, but with
maximum subsidence deformation rates less than those observed in [31] on the order of 10 mm/year.
See the time-series of east-west and up-down deformation component related to point (c) shown in
Figure 11. This outcome was rather expected due to the more reduced consolidation time of the second
runway, as well as to its softer geology [31], formed by blown sand and backfill, with the addition
of partial backfilled fine-silty sand [39]. The fourth runway, which was only completed in 2015, was
markedly affected by vertical deformation signals with rates on the order of −25 to −35 mm/year
and no appreciable east-west displacements, as documented by the plots of east-west and up-down
displacement time-series related to point (d) that are shown in Figure 11. Concerning the fifth runway,
which is the most proximal to the coast and the last runway built over reclaimed lands, its deformations
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were unfortunately not fully detectable. This is probably due to the temporal decorrelation noise
artifacts that corrupt the interferograms, as certified by the reduced average spatial coherence of its
nearby area, and it represents indirect proof of the circumstance that on-going deformation phenomena
are very active.

However, in the near proximity of R5 detected pixels evidenced high deformation rates greater
than –25 mm/year (see the up-down deformation time-series related to point (e) of Figure 11).
The availability of additional data in the next years will help in better quantifying the entity of
deformation near the fifth runway. Nonetheless, other structures (see the area marked with red points
in Figure 10) were coherent, and the relevant deformations have been well detected. In this case, the
measured deformation is predominantly vertical (i.e., a subsidence signal) with rates also larger than
40 mm/year, with the exception of the points located just along the coastline, which exhibit a more
complex behavior and are also characterized by a residual movement towards the west in the northern
sector and towards east in the southern sector. This behavior can be explained taking into account
that the land-reclamation procedures for expanding the Pudong Airport facilities were in progress
at the time of our investigation, and the soil was not compacted. For example, see the east-west and
up-down deformation time-series relevant to the point labeled as (f) in Figure 11.Remote Sens. 2017, 9, 1194  14 of 19 
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5.3. Additional Remarks

To better emphasize the relationships between the measured displacement rates and the
construction time of the airport runways, we have performed this additional analysis, the results of
which are shown in Figure 12. In particular, by identifying the well-detected, coherent points around
each runway, we have calculated and displayed the average values of the east-west and up-down mean
displacement velocity over the different runways. Note that although the third runway was put into
use nine years after the first runway, the first and third runways both have smaller values of average
east-west displacement and subsidence rate, of about 2 mm/year and 3.85 mm/year, respectively as
shown in Figure 12a,b. This is because the foundations of the first and third runways are composed of
similar natural sediments. Moreover, the foundation of the two runways (R1 and R3) was completed
for the runway operation in 1999. After more than a decade of sediment consolidation, the residual
deformations from 2015 to 2016 are small, and the foundation is almost consolidated and stable.
Conversely, residual ground deformation is more significant in correspondence to facilities built on
ocean-reclaimed land. This is, in particular, the case of the second (R2) and fourth (R4) runways, which
were built on reclaimed-land platforms and completed at a later time (in 2005 and 2015, respectively).
Indeed, they are characterized by larger measured displacement velocity values. This finding was
somewhat expected as the soil consolidation phase was responsible for large deformation signals
during the first stages after the end of the reclamation procedures [28]. With regard to the fifth runway
(R5), the reclaiming process and the construction time of this runway occurred at the latest point,
and (as expected) the measured deformation velocity values are the largest ones, reaching average
subsidence rates and average east-west displacement rates of about 35 mm/year and 4 mm/year as
shown in Figure 12a,b, respectively.
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6. Conclusions and Future Perspectives

In this work, we have performed an up-to-date investigation of deformations of Shanghai coastal
areas, and in particular of Lingang New City and of the infrastructures of the Pudong International
Airport. The multi-angle/multi-sensor DInSAR approach, known as Minimum Acceleration (MinA)
combination and based on the joint exploitation of LOS-projected deformation time-series obtained by
applying the SBAS technique [6], has been used. The presented results have permitted the retrieval
of the time-evolution of the on-going deformation phenomena by discriminating the east-west and
the up-down displacement time-series, with a particular focus on the area of Pudong International
Airport. The main outcome of our investigation is that ocean-reclaimed land is subject mostly to
subsidence, while lateral (east-west) movements are less significant. In general, over ocean-reclaimed
land east-west deformation rates are one-tenth of the up-down deformation rates. To the best of
our knowledge, this represents the first direct evidence of the negligibility of lateral movements in
reclaimed land documented through DInSAR-based approaches. As a future perspective, we plan
to extend the presented analyses in the next few years to corroborate the validity of the foreseen
deformation models discussed in [28,32]. An important point of criticism, however, needs to be raised:
the European Space Agency acquisition plan of Sentinel-1A SAR data over the Shanghai area through
descending orbits (which combined with the ascending data could allow a continuous mapping of the
2D displacements of the imaged areas) is not regular as in the ascending S1-A dataset. In fact, at the
time this investigation was performed (i.e., in the second half of the year 2017), only a few isolated
Interferometric Wide Swath (IW) descending SAR data (six images) were available in the ESA Hub
catalogue. This circumstance evidently represents a critical issue to be taken seriously into account in
the perspective of future investigations. This problem can be partially overcome by using SAR data
acquired through other multiple-orbits SAR platforms (e.g., COSMO-SkyMed, TerraSAR-X, ALOS-2),
but at the expense of a worse temporal resolution of achievable results and higher costs.
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