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Abstract: Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve
land cover classification accuracy. However, sometimes it is difficult to utilize all the features
efficiently. To enhance classification performance based on multi-feature imagery, an improved
rotation forest, combining Principal Component Analysis (PCA) and a boosting naïve Bayesian
tree (NBTree), is proposed. First, feature extraction was carried out with PCA. The feature set was
randomly split into several disjoint subsets; then, PCA was applied to each subset, and new training
data for linear extracted features based on original training data were obtained. These steps were
repeated several times. Second, based on the new training data, a boosting naïve Bayesian tree
was constructed as the base classifier, which aims to achieve lower prediction error than a decision
tree in the original rotation forest. At the classification phase, the improved rotation forest has
two-layer voting. It first obtains several predictions through weighted voting in a boosting naïve
Bayesian tree; then, the first-layer vote predicts by majority to obtain the final result. To examine the
classification performance, the improved rotation forest was applied to multi-feature remote-sensing
images, including MODIS Enhanced Vegetation Index (EVI) imagery time series, MODIS Surface
Reflectance products and ancillary data in Shandong Province for 2013. The EVI imagery time
series was preprocessed using harmonic analysis of time series (HANTS) to reduce the noise effects.
The overall accuracy of the final classification result was 89.17%, and the Kappa coefficient was 0.71,
which outperforms the original rotation forest and other classifier ensemble results, as well as the
NASA land cover product. However, this new algorithm requires more computational time, meaning
the efficiency needs to be further improved. Generally, the improved rotation forest has a potential
advantage in remote-sensing classification.

Keywords: classifier ensembles; feature extraction; boosting naïve Bayesian tree; rotation forest;
multi-feature imagery classification

1. Introduction

Frequently updated land cover data provide useful information for multi-temporal studies and
are also required inputs for land cover change models, climate change models or post-catastrophe
analysis [1,2]. Benefits of high-temporal frequency, remote-sensing imagery include the unique
opportunity for acquiring land cover information through the process of imagery interpretation and
classification [3]. To generate updated land cover data at different scales, researchers have proposed
a series of remote sensing imagery classification techniques. Using the individual pixel as the basic
analytical unit, the techniques can be grouped into one of three categories: unsupervised classification
methods (i.e., ISODATA and K-means), supervised classification methods (i.e., decision trees, naive
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Bayesian, support vector machine, artificial neural network, and maximum likelihood), and hybrid
classification methods (i.e., semi-supervised and fusion of supervised and unsupervised learning) [4,5].
As the spatial resolution increases quickly, object-based classification methods are proposed to address
high-resolution remote-sensing images. In these methods, the pixels with homogeneous properties
are grouped into basic units instead of individual pixels and the spatial contextual information is
considered [6–8].

With the development of remote-sensing data acquisition technology, remote-sensing imagery
can be easily obtained through various sensors [9]. Under these circumstances, remote-sensing
classification technology faces new challenges of processing multi-source data and obtaining
higher accuracy predictions [10]. The current classification techniques have respective merits and
shortcomings, but different classifiers have complementary information for the correct classification
results [1,11–13]. Therefore, one effective solution is to design classifier combinations that are either
based on the same base classifiers trained on different data subsets or based on different classifiers
trained on the same dataset. Schapire [14] proved that classifier combinations with a weak learning
algorithm could achieve arbitrarily high accuracy. These multiple classifier systems are called classifier
ensembles or multiple classifier systems (MCS) [15–17]. Bagging and boosting are two classical
approaches for creating classifier ensembles at present. Bagging takes bootstrap samples of original
objects to generate base classifiers that are used to combine the accurate ensembles. The classification
result is obtained by majority voting [18]. Boosting tries to boost the performance of a “weak” classifier
by using it within an ensemble structure [19]. The classifiers in the ensembles are added one at a time
so that each subsequent classifier is trained on data that have been “hard” for the previous ensemble
members [20]. Within this scheme, a pixel in remotely-sensed imagery could be classified using
classifier ensembles to improve the accuracy. A comparison of classification performance between
random forest classifier ensembles and support vector machines (SVMs) by Pal [21] indicated that
random forest performs equally well to SVMs in terms of classification accuracy and training time
and has even more advantages in certain aspects. Foody et al. [22] used a simple voting procedure
to combine various binary classifier outputs to separate a specific class of interest from all others.
Maulik and Chakraborty [23] proposed multiple classifier ensembles combining k-NN, a SVM and an
incremental learning algorithm (IL) by majority voting to obtain a more accurate classification result
for land cover data compared to any of the single classifiers.

Furthermore, researchers have tried many approaches to improve the performance of the
classifier ensemble method. Instead of using the weights of the objects to train the next classifier,
García-Pedrajas [24] used the distribution given by the weighting scheme of boosting to construct a
non-linear supervised projection of the original variables. This method has been proved to achieve
a better generalization error while being more robust to noise. Zhang and Zhou [25] proposed
a semi-supervised ensemble method, in which the accuracy of basic learners based on labeled
data was maximized, whereas the diversity among them on unlabeled data was also maximized.
This method has been demonstrated to be highly competitive to other semi-supervised ensemble
methods. Kim and Kang [26] utilized a neural network as a base classifier for a bagging ensemble
method to obtain an improved performance over the traditional method. Rodríguez et al. [27] proposed
a new classifier ensemble called rotation forest, in which the original data are projected into a new
feature space using Principal Component Analysis (PCA); then, each base classifier (decision tree)
is trained using the new training data for linear extracted features. The feature extraction by PCA
encourages the diversity of each base classifier. The experimental results, based on hyperspectral
remote-sensing imagery, revealed that rotation forest could produce more accurate results than bagging,
AdaBoost, or random forest [28]. These previous studies indicate that the accuracy and diversity of
base classifiers are two key features that affect the performance of the classifier ensembles [27–29].

Based on this finding, an improved ensemble method, drawing upon the rotation forest
framework, is proposed that aims to further improve the diversity and accuracy of base classifiers.
To increase the diversity of base classifiers in the ensemble, feature extraction to the subsets of features
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was applied by PCA, which outperforms non-parametric discriminant analysis (NDA) or random
projections [29], and a full feature set for each classifier was reconstructed. The feature extraction
was repeated several times, and each processing instance was able to generate different new training
datasets. On each new training dataset, a boosting naïve Bayesian tree was introduced as a base
classifier instead of a decision tree in the original classifier ensembles. In this new method, two-layers
of voting were applied in the classification phase. We first obtained predictions using the weighted
vote boosting naïve Bayesian tree; then, the majority-voting rule was used to integrate the first-layer
results to obtain the final result as the prediction of the classifier ensembles. To evaluate performance,
this method was applied to 2013 multi-feature remote-sensing imagery classification in Shandong
Province, China.

The remainder of this paper is arranged as follows. In Section 2, we introduce the study area, data
source and data filtering processing. Section 3 describes the improved classifier ensembles. Section 4
presents the experimental results and the analysis. Section 5 provides the discussion. Section 6 offers
conclusions and addresses future work.

2. Study Area and Data Source

2.1. Study Area

Shandong Province is located on the eastern coast of China, and in the lower reaches of the Yellow
River (34◦25′–38◦23′N, 114◦36′–122◦43′E) (Figure 1). To the east is the Bohai Sea and Huanghai Sea.
The study area covers 157,100 km2, which is 1.6% of China’s total area. The western and northern
area of the province is flatland plains, the central area is mountainous, and the eastern area is gentle
hills. The main terrain in Shandong Province is plains, which cover 63% of the total area, followed by
mountains and hills, which account for a combined 33%. This province is in a warm temperate humid
and semi-humid monsoon climate. The characteristics of a marine climate are obvious in the eastern
area, and the western area exhibits a continental climate. There are 17 cities in Shandong Province,
and the population was 97.33 million in 2013. Industrialization and urbanization are relatively high in
China. Furthermore, it is one of the major food and cotton producing areas of China.

Figure 1. Study area location map.

2.2. Data Source

The MODIS datasets for Shandong Province from 2013 include the following: MOD13Q1 data
version 005, MOD09Q1 data version 005 and MOD09A1 data version 005 from NASA’s Earth Observing
System Data and Information System (EOSDIS). Because the Normalized Difference Vegetation Index
(NDVI) in MOD13Q1 is easily saturated in the plant growth period [30], the Enhanced Vegetation Index
(EVI), which overcomes this disadvantage, was chosen to track the phenological changes. The EVI has
a time intervals of 16 days, so there are 23 periods of EVI data throughout the year. The land surface
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reflectance data consist of bands 1–2 in MOD09Q1 and bands 3–7 in MOD09A1, which were selected
from September since the spectrum varies greatly during this period. Since the Normalized Differences
Water Index (NDWI) has been proven to be effective in land classification in some studies [31], it was
used as a feature in this study. The data are projected with the Albers Conical Equal Area format using
a WGS84 coordinate system.

The ancillary data included digital elevation model (DEM) data, vegetation phenological
documents and vegetation distribution imagery. The DEM data collected from a Shuttle
Radar Topography Mission (SRTM) in a 90-m pixel size was resampled into a 500-m size.
Vegetation phenological documents were collected from a Chinese phenology observation website.
Vegetation distribution imagery on a scale of 1:1,000,000 describes the distribution of indigenous
vegetation in China [32]. In this paper, the imagery was classified into six kinds of land cover
categories: crop land, forest land, grass land, built-up land, water body and unused land.

2.3. EVI Data Preprocessing

In addition to cloud cover, there are other random factors, such as azimuth and elevation of the
sun, moisture in the atmosphere, and aerosols, that affect the EVI data. Since the 16-day composite
imagery processing cannot fully correct for these errors, the EVI images are frequently discontinuous.
The errors reduce the EVI imagery accuracy and result in a lack of obvious change trends. This makes
it difficult to extract useful information from the EVI.

To reduce the noise effects, harmonic analysis of time series (HANTS) [33–35] was performed to
construct a noise-free imagery time series that is close to the reality. The fundamental principles of this
filter include the notions of Fourier series and Fourier transforms. It consists of two sub-processes.
One is an abnormal value identification process during which abnormal values are excluded. The other
is a reconstruction process during which time series are reconstructed based on the remaining
valid data.

Taking the first period of EVI imagery an example, Figure 2 shows how the imagery can become
much smoother after HANTS processing. The abnormal spatial patches in the original imagery are
effectively filtered, and the imagery contrast is well smoothed. EVI time-varying curves (Figure 3)
indicate that the noise is effectively restrained after HANTS processing while retaining the original
variation trend. Moreover, the characteristics of EVI time-varying curves indicate different phenological
characteristics of land cover and provide useful information to distinguish the land cover.

Figure 2. Sample of imagery smoothing using HANTS processing: (a) original EVI imagery; (b) HANTS-
corrected EVI imagery.

Based on the 32 multi-feature images (including 23 EVI images, 7 land surface reflectance images,
an NDWI image and a DEM data image), the training data were selected. The Jeffries-Matusita
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(J-M) distance is a widely-used metric to measure the separability between classes. A J-M distance
greater than 1.8 indicates good separation and less than 1.5 indicates poor separation. Tables 1 and 2
show the J-M distance of a different couple of land cover types before and after HANTS processing.
The separability between classes was significantly improved after processing, especially between
vegetation classes. The J-M distance of crop-forest increased from 1.56 to 1.96. And the crop-grass
J-M distance increased from 1.49 to 1.83. The forest and grass had a similar growth rhythm, so the
J-M distance was lower than 1.8 but still increased higher than 1.5. The water body, built-up land and
unused land all had a slight increase of separability from other classes. On the whole, the samples can
be used for supervised classification.

Figure 3. EVI curves of different land cover types before and after HANTS processing: (a) original EVI
curves; (b) HANTS-corrected EVI curves.

Table 1. J-M distance between different land cover types before HANTS processing.

Land Cover Type Crop Land Forest Land Grass Land Water Body Built-up Land Unused Land

Crop land 1.56 1.49 1.76 1.75 1.78
Forest land 1.53 1.87 1.76 1.78
Grass land 1.86 1.75 1.65
Water body 1.70 1.55

Built-up land 1.42
Unused land

Table 2. J-M distance between different land cover types after HANTS processing.

Land Cover Type Crop Land Forest Land Grass Land Water Body Built-up Land Unused Land

Crop land 1.96 1.83 1.97 1.95 1.98
Forest land 1.53 1.97 1.96 1.98
Grass land 1.96 1.85 1.85
Water body 1.68 1.65

Built-up land 1.52
Unused land

3. Method

The rotation forest is a successful method for generating classifier ensembles based on feature
extraction [27,36]. In this method, the feature set of all training samples is randomly split into K subsets
(K is a parameter of the algorithm), and PCA is applied to rotate the original feature set. All of the
principal components are retained to preserve the variability of information in the data. Furthermore,
K-axis rotations occur to form new features for a base classifier. The diversity of each base classifier
increases by feature extraction. Furthermore, the accuracy is also promoted by keeping all principal
components and using the whole data set to train the base classifier.
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Drawing upon the rotation forest, the modified ensemble method also uses feature extraction
to increase the diversity of the base classifier (Figure 4). However, different from rotation forest that
employing a decision tree as a base classifier, we used the boosting naïve Bayesian tree classifier as the
base classifier. The classifier ensemble, as a base classifier, could further encourage individual accuracy
and achieve lower prediction error. In the classification task, we first obtained several predictions by
weighted voting within a boosting naïve Bayesian tree. Then, the several prediction results were voted
on to obtain the final classification result. In other words, the modified ensemble method contained
two layers of voting to obtain the final result.

To simplify the notations, consider the training set A = [X, Y] = {(xi, yi)}N
i=1 containing N

training objects, in which each object (xi, yi) is described by a feature vector xi = [xi1, xi2, xi3, . . . , xin]
and a class label yi that takes a value from the set of class labels Y = {1, 2, 3, . . . , J}. Let C1, C2, . . . , CS
denote S (number of classifiers) base classifiers in the ensemble, and let F denote the feature set.

To promote individual diversity within the ensemble, the reconstruction of the training set by
feature extraction for classifier Cs (s = 1, 2, . . . , S) is conducted as follows:

1. F is randomly split into K subsets (K is a number of feature subsets). The disjoint subsets are
selected to maximize the diversity. Suppose K is a factor of n; then, each feature subset consists of
M = n/K features.

2. Xsj denotes one subset of the training dataset, which contains M features. A bootstrap sample
from Xsj of 75 percent of the data count is drawn. Then, PCA is used to calculate the principal
component of the new dataset. The coefficients of the principal components are stored in
Dsj =

[
a(1)sj , a(2)sj , . . . , a(Mk)

sj

]
, an M × 1 matrix.

3. Dsj is placed on the main diagonal of a zero matrix to obtain a sparse “rotation” matrix Rs

as follows:

Rs =



[
a(1)sj , a(2)sj , . . . , a(M1)

sj

]
[0] · · · [0]

[0]
[

a(1)sj , a(2)sj , . . . , a(M2)
sj

]
· · · [0]

...
... · · ·

...

[0] [0] · · ·
[

a(1)sj , a(2)sj , . . . , a(MK)
sj

]

 (1)

4. Rearrange the columns of Rs in order to correspond to the original features order. Let Ra
s denote

the rearranged matrix; then, the training subset for classifier Cs is XRa
s .

The feature extraction steps above are repeated S times to construct a corresponding number
of classifiers.

Based on the new training dataset, for which individual diversity has been promoted, a boosting
naïve Bayesian tree classifier (Figure 5) is used as the base classifier. The motivation was to increase the
individual accuracy of base classifiers with the first layer voting within the ensemble. First, we briefly
review the naïve Bayesian tree.

As indicated by many researchers, the instability of base classifiers is a critical factor limiting
classifier ensemble accuracy [37–39]. To introduce instability into the boosting method, the NBTree
algorithm was selected. NBTree is a hybrid of the naïve Bayesian and the Decision Tree algorithm,
which integrates the advantages of the two algorithms [40–42]. It has the same tree-growing procedure,
but the leaf nodes are a naïve Bayesian classifier. In other words, it first segments the training data by
building a Top-Down Decision Tree and then builds a naïve Bayesian classifier in each subset. In this
study, similar to C4.5, NBTree also uses the information gain ratio criterion to select the best test at
each decision node, and the maximum depth of the tree, d, is predefined. Furthermore, NBTree does
not perform pruning in this study. Because the classification of the dataset at the leaf node is not
completed as the maximum depth of the tree has been predefined, the naive Bayesian method is used
as the classifier. In the naïve Bayesian approach, the features are assumed to be mutually independent
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of each other. With this assumption, the probability of a pixel x belonging to class c can be expressed
as in Equation (2):

P(c|x) = P(c)
m

∏
j=1

P(aj
∣∣c) (2)

where m is the number of features, aj is the jth feature value of x, P(c) is the prior probability and P(aj|c)
is the conditional probability.

P(c) =

n
∑

i=1
δ(ci, c) + 1

n + nc
(3)

P
(
aj
∣∣c) =

n
∑

i=1
δ(ai,j, aj)δ(ci, c) + 1

n
∑

i=1
δ(ci, c) + nj

(4)

where n is the number of training objects, nc is the number of classes, ci is the class label of the ith
training object, nj is the frequency of values of the jth feature, and aij is the jth feature value of the ith
training object.

Taking NBTree as the base classifier, AdaBoost was used as the boosting method. AdaBoost is a
sequential algorithm in which multiple classifiers are induced by adaptively changing the distribution
of the training dataset based on the performance of the previously generated classifiers. Denote by
Aa the new training set (XRa

s , Y). Dt = [wt(1), wt(2), . . . , wt(M)] denotes the weight of M objects at the
tth trial, where all of the mth (m = 1, 2, . . . , M) objects at the tth trail, wt(m), are set to be equal at first.
At each trial t = 1, . . . , T, the boosting procedure is as follows:

1. A classification model is constructed using the NBTree from Aa under the weight distribution Dt.
2. In the results from step 1, if the nth object in Aa is classified correctly, let δ(m) = 0, otherwise

δ(m) = 1, where δ() is part of Equation (5). The error rate of the NBTree at the tth trail is defined
as follows:

εt =
1
M∑

m
wt(m)δ(m) (5)

If εt > 0.5 or εt = 0, then the classification result is unsatisfactory; wt(m) will be reinitialized using
bootstrap sampling from Aa with equal weight for each sampled object, and the boosting process
continues from step 1.

3. The weight vector wt+1 for the next trial is created based on the former wt.

If the mth object is classified correctly by wt(m), then

wt+1(m) =
wt(m)

Zt
× e−

1
2 ln (

1−εt
εt

) (6)

otherwise,

wt+1(m) =
wt(m)

Zt
× e

1
2 ln (

1−εt
εt

) (7)

where Zt is a normalization factor chosen so that Dt+1 has a probability distribution over Aa.
If wt+1(m) < 10−10, wt+1(m) is set to 10−10 in order to address the numerical underflow problem [43].

After T trials, the T NBTree models are combined to form a classifier ensemble. The result of each
boosting NBTree is summed up by weighted voting of the predicted class in every NBTree. This is the
first-layer result. Based on the obtained first-layer results, equal weight voting, which belongs to the
second-layer voting, is carried out, and the final result is obtained. These classification algorithms are
all run with Matlab software version 2013b.
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Figure 4. Illustration of the improved rotation forest.

Figure 5. Flowchart of AdaBoost with naïve Bayesian trees.

4. Results and Analysis

In this section, the values of parameters S and T, which represent the number of iterations for feature
extraction and boosting NBTree, respectively, for the improved rotation forest are first decided. Then,
the effect of EVI preprocessing on classification performance is analyzed. After that, the performances
of feature extraction (in this case PCA) and feature selection (in this case forward and random feature
selection) in the ensemble method are compared. Last, the classification result of the improved rotation
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forest is compared with other classifier ensembles, as well as the corresponding NASA MODIS land
cover product.

The land cover map in vector format from the land resources sectors was collected as the truthing
reference data (a sample area is shown in Figure 6b). To avoid the errors caused by different classification
systems, we combined the land cover types into 6 types, including crop land, forest land, grass land,
built-up land, water body and unused land. Furthermore, to guarantee the accuracy and representation of
reference data and to avoid the errors due to pixel resampling, approximately 25% of each land cover type
of pixels were randomly selected as the sample to evaluate the accuracy of the classification result.

Figure 6. Land cover classification maps: (a) improved rotation forest results for Shandong Province;
(b) sample area of truthing reference map; (c) sample area of improved rotation forest results;
and (d) sample area for the NASA product.

4.1. Optimal Combination of S and T

To investigate the effects of S and T on the performance of the improved rotation forest, we conducted
experiments choosing values 1, 2, 3, . . . , 10 (named ST Si × Tj). For the two parameters, for example,
comparison ST 2× 3 means S = 2 and T = 3. The accuracy of the classifier with different combinations of
the values for S and T were evaluated five times. The means and deviations of each different combination’s
accuracy are shown in Table 3. From these results, we determined that ST 1× 1 achieved the lowest mean
accuracy. It is easy to see that ST 1× 1 is identical to a normal naïve NBTree. With the increase in S and T,
the means improved and the deviations reduced. When controlling one parameter and changing the other
one, we observed that S and T have a similar effect on accuracy improvement. After ST 4× 4, the overall
accuracy tended to gradually stabilize. For the sake of prudence, we chose the combination ST 10 × 4,
which has a higher mean value and less deviation than the parameters in the classification algorithm.
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Table 3. Means and deviations of test accuracy with different combinations of S and T.

T
S

1 2 3 4 5 6 7 8 9 10

1 78.79 ± 3.37 80.45 ± 3.12 71.71 ± 6.34 82.93 ± 0.53 82.67 ± 0.70 81.67 ± 4.06 79.76 ± 5.15 83.13 ± 1.51 80.50 ± 3.08 79.80 ± 2.79
2 77.77 ± 2.39 82.00 ± 1.91 86.39 ± 0.36 88.07 ± 1.17 87.90 ± 0.70 89.18 ± 0.43 87.09 ± 1.32 87.78 ± 0.35 88.11 ± 0.81 88.04 ± 0.93
3 76.12 ± 1.31 86.81 ± 1.97 84.18 ± 0.53 85.87 ± 0.60 84.99 ± 0.88 86.11 ± 0.45 85.21 ± 0.91 87.05 ± 0.42 86.10 ± 0.89 86.33 ± 1.16
4 80.32 ± 3.00 86.12 ± 2.34 85.05 ± 2.45 88.05 ± 0.37 87.73 ± 0.11 87.85 ± 0.86 87.55 ± 0.64 88.01 ± 0.53 88.45 ± 0.58 87.50 ± 0.11
5 76.16 ± 4.22 86.99 ± 0.34 83.98 ± 2.40 87.26 ± 0.15 86.92 ± 0.28 87.53 ± 0.50 86.52 ± 0.56 87.42 ± 0.74 87.54 ± 0.33 86.38 ± 0.29
6 81.51 ± 1.49 86.25 ± 1.60 87.16 ± 0.43 88.50 ± 0.17 88.50 ± 0.44 88.38 ± 0.32 88.04 ± 0.82 88.33 ± 0.74 88.36 ± 0.32 87.45 ± 0.84
7 79.85 ± 0.50 86.13 ± 0.16 86.87 ± 0.39 88.32 ± 0.14 86.88 ± 1.02 87.31 ± 0.71 87.53 ± 0.43 87.90 ± 0.11 87.43 ± 0.66 87.07 ± 0.78
8 81.29 ± 2.96 86.20 ± 2.49 86.51 ± 0.76 89.16 ± 0.33 88.03 ± 0.84 88.36 ± 0.50 88.25 ± 0.23 87.90 ± 0.26 87.95 ± 0.12 88.34 ± 0.32
9 81.66 ± 3.11 87.45 ± 1.05 86.91 ± 0.71 88.70 ± 0.42 87.67 ± 0.69 88.37 ± 0.14 87.97 ± 0.74 88.16 ± 0.38 87.58 ± 0.17 88.17 ± 0.38
10 83.23 ± 1.34 87.52 ± 0.80 88.00 ± 0.42 89.09 ± 0.10 88.67 ± 0.25 88.70 ± 0.38 87.88 ± 0.17 88.11 ± 0.34 88.25 ± 0.11 87.76 ± 0.41
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4.2. Effect of EVI Preprocessing

In this paper, HANTS filtering was used to construct a noise-free imagery time series that is
close to the reality. The J-M distance of a different couple of land cover types before and after EVI
preprocessing shows that HANTS can improve the separability between land classes. In order to verify
the effects of EVI preprocessing to classification performance, two multiple-feature data (with original
EVI data and with preprocessed EVI data, respectively) were classified using an improved rotation
forest with the comparison ST 10 × 4. The confusion matrix between the improved rotation forest
results and the reference data are shown in Tables 4 and 5.

Table 4. Confusion matrix between the improved rotation forest result and the reference data before
EVI preprocessing.

Reference Map

Result map

Land cover type Crop land Forest land Grass land Water body Built-up land Unused land User’s accuracy (%)
Crop land 180,735 5763 9526 1192 2417 154 90.46
Forest land 3128 9929 1482 463 371 267 63.48
Grass land 10,125 2547 11,918 1008 529 723 44.39
Water body 1529 985 1028 9019 145 89 70.49

Built-up land 4365 525 882 179 12,927 105 68.10
Unused land 838 198 1556 271 223 1231 28.52

Producer’s accuracy (%) 90.04 49.78 45.16 74.34 77.82 47.92

Overall accuracy = 81.10%; Kappa coefficient = 0.59.

Table 5. Confusion matrix between the improved rotation forest result and the reference data after
EVI preprocessing.

Reference Map

Result map

Land cover type Crop land Forest land Grass land Water body Built-up land Unused land User’s accuracy (%)
Crop land 210,172 770 1882 921 6902 921 94.86
Forest land 989 9089 776 17 119 106 81.91
Grass land 2123 171 8643 314 220 262 73.66
Water body 1360 557 1423 9602 393 717 68.33

Built-up land 7525 378 330 497 15,157 116 63.15
Unused land 614 125 80 21 99 421 30.96

Producer’s accuracy (%) 94.34 81.96 65.81 84.44 66.24 16.56

Overall accuracy = 89.17%; Kappa coefficient = 0.71.

From both the overall accuracy and Kappa coefficient, the data with preprocessed EVI achieved
better classification result. As can be seen from Tables 4 and 5, the overall accuracy was increased by
8.07% after preprocessing. The Kappa coefficient increased from 0.59 to 0.71. For certain classes, such as
forest land and grass land, the classification accuracies were greatly improved. These classes have
confusing spectral changing information with original EVI, but can be well distinguished after EVI
preprocessed (as shown in Figure 3). According to the results, we can clearly see that EVI preprocessing
played an important role in improving classification accuracy.

4.3. Comparison between PCA and Feature Selection

In the proposed ensemble method, PCA was used as the feature extraction technique and all the
multi-feature information was completely preserved in the new space of extracted features. However,
an alternative approach, feature selection, can be used to select a subset [44]. The feature selection
approach (like forward and random feature selection, for instance) is a special case of feature extraction.
This approach represents the information in the original feature space.

In order to verify the advantage of feature extraction, we compared the performance of the feature
extraction (in this case PCA) and feature selection. In this study, we considered two examples of
feature selection: the forward feature selection (FFS) and the random feature selection (RFS). In the
forward feature selection, we sequentially selected a number of optimal feature subsets which had the
same size. For random feature selection we first randomly permuted features in the original feature set
and then we split the feature set into several subsets which also had the same size. In order to ensure
all features were used, the subset size was set to 4, 8 and 16, respectively. In addition, one feature set
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without EVI data was selected as a contrast and the subset size was set to 4. The performances were
assessed by overall accuracy and Kappa coefficient (Table 6).

In Table 6, the feature sets with EVI data all performed better than those without EVI data, because
the EVI data contained useful information for discrimination between land classes. With EVI data,
the accuracy of random feature selection was slightly higher than forward selection technique. It might
be explained that random feature selection could select more independent feature subsets than the
forward feature selection. However, no large difference was noticed between the two feature selection
approaches. PCA performed much better than forward and random feature selection approaches,
and the best result was obtained at subset size of 8. The increasing subset size seemed not significant
change the accuracy.

Table 6. The accuracy and Kappa coefficient for FFS, RFS and PCA.

Subset Size of 4
(Without EVI) Subset Size of 4 Subset Size of 8 Subset Size of 16

Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa

FFS 70.88 0.434 82.63 0.617 82.67 0.622 82.68 0.623
RFS 71.33 0.472 82.87 0.621 82.90 0.627 82.90 0.625
PCA 74.48 0.527 89.12 0.709 89.17 0.712 89.16 0.711

4.4. Comparison with Other Classification Results

The classification result of an improved rotation forest using the comparison ST 10 × 4 is shown
in Figure 6a. Crop land is the dominant land cover type and is located mainly in the plains area;
because Shandong is one of the major grain-producing areas. Forest land is distributed mainly in the
middle area, at higher elevations, near the Tai Mountains, and a small fraction is found on the eastern
Peninsula. Large patches of built-up land aggregate in the center of every city, and rural built-up land
is scattered around the cities. The proportion of grassland is small and it mainly occurs in the eastern
hilly area.

Using a confusion matrix, our classification result is compared with the truthing reference data.
Table 5 shows the class distribution by pixel number for each class in the reference map. The overall
accuracy of our results was 89.17%, and the Kappa coefficient was 0.71. Crop land had the highest
user’s accuracy, and the unused land had the lowest. This is because crop land is the main land cover
type. Many built-up lands in small patches were not identified and were mistaken for crop land, as they
occupy a smaller proportion in the mixed pixels in the coarse resolution imagery. Furthermore, the
river having a small width was also hard to identify due to the limitation of the resolution, as sample
area shown in Figure 6c.

The performances of other classifier ensembles were compared with the improved rotation
forest. Furthermore, 500-m MODIS land cover product for Shandong Province from NASA (National
Aeronautics and Space Administration) in 2013 was also collected (a sample area is shown in Figure 6d).
The total number of iterations for the classifier ensembles was the same as for the improved rotation
forest. The overall accuracy, Kappa coefficient and computation time were tested, as reported in Table 7.
The computation time was measured by the native Matlab functions and was expressed in seconds.
Since the MODIS land cover product is produced by NASA, the computation time is not available.

As can be seen in Table 7, the improved rotation forest obtains the highest accuracy among
the compared algorithms. Using the accuracy to rank these algorithms from best to worst is the
following: improved rotation forest, rotation forest, AdaBoost, Random forest, NBTree and NASA
product. By comparing the results between random forest and rotation forest, we can see that feature
extraction had an obvious effect on the classification accuracy improvement. However, taking into
account the computation time, it has a negative effect on the efficiency because the rotation forest and
improved rotation forest require the longest computation time. Because there are more procedures in
the classification algorithm, the computation time increased.
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Table 7. Comparison of accuracy and computation time for each algorithm.

Algorithm Overall Accuracy (%) Kappa Coefficient Computation Time (s)

NASA product 65.96 0.33 N/A
NBTree 79.36 0.55 0.86

AdaBoost 83.95 0.61 2.28
Random forest 83.26 0.60 3.93
Rotation forest 86.78 0.67 5.27

Improved rotation forest 89.17 0.71 7.91

The accuracy of the NASA classification result was evaluated using a confusion matrix against the
reference data (Table 8). The overall accuracy was 65.96%, and the Kappa coefficient was 0.33. It is a
fair agreement according to the interpretation of Kappa coefficient [45]. At the same time, the accuracy
of NASA land cover data was the lowest among these classification results. In this data, the crop
land was also the main land cover type. However, the forest lands in the middle of the province were
not identified, and neither were the built-up lands and grass lands. Most of them were misclassified
as crop land. Some water bodies near the shore were mistakenly classified as grass land or crop
land. By analyzing the performance of these classification results, we found that the accuracy of the
improved rotation forest result was the highest, and this improved method can provide more accurate
data for land change research.

Table 8. Confusion matrix between the NASA product and the reference data.

Reference Map

Result map

Land cover type Crop land Forest land Grass land Water body Built-up land Unused land User’s accuracy (%)
Crop land 151,471 9177 8741 1023 938 83 88.36
Forest land 3049 7424 1514 167 219 405 58.01
Grass land 46,210 4146 9109 1641 438 248 14.74
Water body 2560 767 1428 3993 82 35 45.04

Built-up land 6965 536 594 81 9630 9 54.06
Unused land 1651 101 1802 79 78 1978 34.77

Producer’s accuracy (%) 71.48 33.52 39.28 57.17 84.59 71.72

Overall accuracy = 65.96%; Kappa coefficient = 0.33.

5. Discussion

In view of the fact that classifier ensembles, such as rotation forest and AdaBoost, that have been
successfully applied in some remote-sensing imagery classification researches, it is plausible that a
combination of the two methods may achieve lower prediction error than either of them. This paper
proposed an improved rotation forest which was constructed by integrating the ideas of rotation forest
and AdaBoost. The NBTree was used as the base classifier because it was more accurate than decision
tree, yet sufficiently sensitive to rotation of the axes.

The high temporal resolution MODIS EVI time series, as well as ancillary geospatial and other
MODIS data, were selected as the basic data. HANTS filtering was used to preprocess the EVI data.
This strategy significantly increased the separability between land classes, especially the vegetation
classes, and helped to improve the classification accuracy.

In order to find out which of the parameters and the feature extraction/selection methods are
responsible for the good performance of improved rotation forest, multi-group comparison experiments
were carried out. The sensitivity of the parameters S and T in the proposed method was investigated
and the best parameters combination was selected. However, the best combination of parameters S
and T was selected by enumeration. Whether there is a solution to automatically selecting an optimal
combination requires further study. Then we compared the performance of feature extraction (in this
study PCA) and feature selection (in this study forward and random feature selection). According to
the results, no large difference was noticed between random and forward feature selection. It might
be explained that in both cases all original features participated in the combined decision. Moreover,
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the PCA outperformed the two feature selection methods. This was because the PCA succeeded
in extracting good features. When the feature extraction approach was used, all original features
contribute in the new extracted feature set. The extracted features contained more useful information
for discrimination between data classes. Moreover, the feature extraction encouraged individual
diversity within the ensemble. On the contrary, the FFS, for instance, selected features sequentially
one by one. The union of the first best feature selected with the second best one did not necessarily
represent the best discriminative pair of features. By this, the selected feature subset might be not
the most advantageous one. The comparison analysis demonstrated that feature extraction with PCA
was more advantageous than applying feature selection techniques in the improved rotation forest.
It also indicated that the dataset in this study need quite many principal components in order to obtain
a classification rule that performs well due to the data distribution. However, if the first principal
components succeeded in good discrimination between data classes, the classifier ensemble method
on top of PCA may be not the best choice.

In addition, the increasing of the subset size from 4 to 8, and then 16 did not make the classification
accuracy change significantly. Kuncheva and Rodríguez [29] had tested the impact of subset size on
the rotation forest and found that there was no consistent relationship between the ensemble accuracy
and subset size. In their experiment, the patterns for different data sets vary from decrease of the error
with subset size, through almost horizontal lines, to increase of the error with subset size. In our study,
the increasing of the subset size also did not make significant accuracy change. This was consistent
with their finding. Generally, the performance of almost classifiers depends on the relation between
the training sample size and the data dimensionality. The chances are the size of the training set in this
study was much larger than feature space dimensionality. There is spacing between parameters of
subset size in this experiment. For a thorough comparison, evaluation of the response of the improved
rotation forest to the choice of each subset size is needed in the future study.

The classification result of the improved rotation forest was compared with other classifier
ensembles (that is, NBTree, AdaBoost, random forest, and rotation forest). The result showed
that improved rotation forest outperformed all other four methods. In fact, the improved rotation
forest has a potential computational advantage over other methods in that it could parallel execute
feature extraction, which preserves the variability information for the base classifier; furthermore,
it combines the advantages of boosting NBTree, which could obtain an accurate result as a base
classifier. An inadequacy of the method is the higher computational costs. The NASA land cover
product was also collected, which had an overall accuracy of 65.96% and a Kappa coefficient of
0.33. It was unsatisfactory according to the interpretation of Kappa coefficient. The reason for this
lies in two facts: one is the poor ecosystem representation of the 40–60 test sites, and the other is
the implementation of algorithms that overcome previously unconsidered challenges involved in
classifying high data volumes with complex feature attributes at global scales [46–48]. On the whole,
the comparison result indicates that our classification data is more useful for land cover applications.

6. Conclusions

Multi-feature, especially multi-temporal, remote-sensing data increase the potential for
discriminating different land cover types. However, addressing multiple features remains a challenge
in remote-sensing classification. Satisfactory classification results not only depend on basic data with
little noise but also on a classification method that performs well.

In this paper, an improved rotation forest was developed to make full use of multiple feature
information. HANTS processing was applied for EVI preprocessing to increase the separability between
land classes and help to improve classification accuracy. Different feature extraction/selection methods
were investigated for the construction of improved rotation forests. It was shown that PCA is more
advantageous than feature selection techniques to create training data for a base classifier. Based on the
newly generated dataset, AdaBoost with NBTree was adopted as the base classifier to further promote
the accuracy. Finally, the classification result was obtained using two-step voting. The classification
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result of improved rotation forest was compared with other similar classifier ensembles and NASA
land cover product. The results showed that improved rotation forest outperformed the other methods.
The improvement of prediction accuracy was obtained with negligible increase in computational costs.
Generally, the good performance that we identified mainly depended on a high-precision pixel-wise
classifier, as well as a better understanding of local land systems, including the phenological rules and
the terrain data.

Nevertheless, there are still some shortcomings and problems requiring further investigation.
In this study, the pixels were treated as the objects, while neglecting the spatial information effects on
the rotation analysis of the remote-sensing images [49,50]. Future studies could incorporate spatial
information into the improved rotation forest. Furthermore, there are other unstable algorithms, such
as a neural network, that could be adopted as the base classifier in AdaBoost. It would be worthwhile
to evaluate the effect of other base classifiers in the classifier ensemble on the classification accuracy.
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