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Abstract: Continuous land-surface temperature (LST) observations from ground-based stations are
an important reference dataset for validating remote-sensing LST products. However, a lack of
evaluations of the representativeness of station observations limits the reliability of validation results.
In this study, a new practical validation scheme is presented for validating remote-sensing LST
products that includes a key step: assessing the spatial representativeness of ground-based LST
measurements. Three indicators, namely, the dominant land-cover type (DLCT), relative bias (RB),
and average structure scale (ASS), are established to quantify the representative levels of station
observations based on the land-cover type (LCT) and LST reference maps with high spatial resolution.
We validated MODIS LSTs using station observations from the Heihe River Basin (HRB) in China.
The spatial representative evaluation steps show that the representativeness of observations greatly
differs among stations and varies with different vegetation growth and other factors. Large differences
in the validation results occur when using different representative level observations, which indicates
a large potential for large error during the traditional T-based validation scheme. Comparisons show
that the new validation scheme greatly improves the reliability of LST product validation through
high-level representative observations.

Keywords: spatial representativeness; heterogeneity; validation; land-surface temperature products
(LSTs); observations; HiWATER; remote sensing

1. Introduction

Land-surface temperature (LST) is an important parameter related to the surface energy and water
balance at local and global scales and has principal significance for applications such as monitoring the
climate, hydrological cycle, and vegetation [1]. Satellite remote sensing provides a repetitive synoptic
view in short intervals of the global land surface and is a vital tool for monitoring the LST of the
Earth. With the development of remote-sensing technology, many LST products have been provided
by different groups based on retrieval from different satellite data [2–5]. The first long-term global
sensing LST dataset, the NOAA/NASA Pathfinder AVHRR Land dataset (PAL) [2], was released in
1994. The second generation AVHRR Land Pathfinder Π (PALΠ) was a refinement product from the
PAL released in 2000 [3]. Sun and Pinker estimated LST products from a Geostationary Operational
Environmental Satellite (GEOS) in 2003 [4]. The LSTs from Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) was retrieved in 2008 [6]. As a
part of NASA Earth Observing System (EOS) project, MODIS LSTs have played an important role in
recent studies, especially in regional studies, because of the suitable temporal and spatial resolution,
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acceptable accuracy, and accessibility of these LSTs. Therefore, MODIS daily LST/LSE products with
1-km spatial resolution are validated in this study.

Remotely sensed LSTs must be appropriately and precisely evaluated to ensure effective
application [7]. Mainly two types of methods exist for validating LST products retrieved from
thermal-infrared satellite data: temperature-based methods (T-based) and radiance-based methods
(R-based) [8–14]. The main advantage of R-based methods is that they work during both the daytime
and nighttime because in situ LST observations are not required, and finding validation sites with
small spatial variations in land-surface emissivity is relatively easy [14]. However, the atmospheric
and water vapor profiles at validation sites from radiosonde balloons that are synchronously launched
with the satellite are a necessary dataset, which limits the implementation of this method for
long-term and large-region validation. Therefore, T-based methods remain common, and ground-based
measurements are still the primary source of datasets to directly validate remotely sensed LSTs.
However, we cannot perform a direct comparison with a pixel grid, especially for a coarse-resolution
product over heterogeneous areas, because of the spatial heterogeneity and different scales between
ground-based observations and remotely sensed LST pixels.

A generally accepted method is a systematic site-to-network method, which deeply develops
an in situ sampling strategy and upscaling approaches to acquire the truth at the pixel scale over
a heterogeneous surface based on multiscale, multi-platform and multi-source observations [15].
This approach employs both field measurements from nodes of a wireless sensor network (WSN) and
high-resolution remote-sensing data from synchronous high-resolution satellites or airborne sensors
to establish a site-specific relationship and generate high-resolution LST reference maps over the
validation area [15]. These LST reference maps are then treated as benchmarks to obtain multiscale
validation datasets by upscaling methods [16–18]. However, only a few high-resolution LST reference
maps can be synchronously obtained for a given region because of cost limitations and the revisiting
cycles of satellites with high resolution, which is the greatest challenge towards the global validation
of LST products, especially in terms of temporal consistency in product validation.

In contrast to more complicated R-based, site-to-network methods with limited LST reference
maps, simple T-based methods are directly based on existing global, long-term ground LST
measurements and are an important supplement for validation. Simple T-based methods have been
widely used to validate remotely sensed LST products at homogeneous stations [8,13,19]. When directly
validating LST products with spatial resolutions above hundreds or even thousands of meters by
ground-based measurements, the error from the scale mismatch changes with the land-cover type (LCT)
and the proportions of mixtures in pixel grids reduce the reliability of the validation and hinder the
application of ground-based LST measurements during the validation of remotely sensed LST products.
Coll et al. have pointed out that during the day, LST can vary by 10 K or more over a few meters
in a heterogeneous surface [9]. Ground-based LST measurements from two types LST observation
instruments with different field of view (FOV) were selected to discuss the scale mismatch implications
for validation of remote sensing LST products in the study by Yu et al., and the validation results show
that there is an extra 26.9% in the error >3 K range caused by the 41.5 FOV difference [20].Therefore,
we must assess the spatial representativeness of station observations at a given spatial resolution to
reliably validate remotely sensed LSTs. Recently, several methods have been used to assess the spatial
representativeness of different land-surface parameters, such as the leaf area index [21], surface solar
radiation [22], bidirectional reflectance distribution function (BRDF)/albedo [23], air temperature [24]
and air quality [25], which are observed by ground stations. These methods are based on two
factors: the point-to-area consistency and the spatial heterogeneity [21]. The point-to-area consistency
indicator can be calculated through two methods. The first involves directly comparing the footprint
of the ground-station observations to the corresponding product pixels [26] or the average value
of the corresponding area [27]. In the second approach, the observational representativeness is
determined by the average difference between a given station and its neighboring stations based on
multi-temporal observations from multiple stations [9,28]. The semi-variance is usually selected to
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describe the spatial representativeness by analyzing the spatial heterogeneity around the stations [29].
A first-order statistical algorithm is an important spatial heterogeneity indicator, for example, using
window-size analysis to assess the spatial variation of the landscape around a given station [30].
Spatial representativeness assessments have been widely implemented to validate satellite-albedo,
evapotranspiration, and LAI products [21,23,26,31,32]. However, few representativeness assessments
exist for station LST observations, which increases the uncertainty of the validation of LST products,
particularly for simple T-based implementations, and hinders the application of station observations.

This paper presents a new methodology for validating LST products that focuses on quantifying
the spatial representativeness of station observations to improve the accuracy and reliability of
LST product validation. The term “spatial representativeness” refers to measurements of the
degree to which ground-based observations can resolve the surrounding LST by extending to the
satellite footprint. This validation technique assesses the spatial characteristics of the LST, and
the seasonal representativeness changes within a statistical framework. A scheme that is based
on spatial representativeness indicators is presented in this paper, and then the grading criteria
are outlined in detail. All the stations from the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) [33] are selected for applying the validation strategy. The study area and
data-processing procedure are introduced in Section 3. In Section 4, the representativeness of the
given station observations is assessed to validate MODIS V5 daily LST products (MOD/MYD11A1).
The representativeness assessment and LST product validation are also analyzed and discussed in this
Section. Finally, the conclusions are summarized.

2. Methodology

2.1. New Validation Scheme

The LST is a land-surface parameter with great spatial and temporal heterogeneity, which creates
many challenges for “point-to-pixel” comparisons. Local changes in the surface temperature within
and between different ecosystems introduce scale mismatch errors. Moreover, these patterns change
seasonally and are particularly difficult to identify during periods of rapidly changing surface conditions.
Therefore, “point” measurements alone are not sufficient to validate satellite-derived LST retrievals,
especially remote-sensing LST products with moderate and low resolution (illustrated in Figure 1).
This temporal mismatch can be solved by increasing the observation-acquisition frequency of stations.
The scheme that is developed here to validate remote-sensing LST products (see Figure 1) attempts
to solve spatial mismatch effects during validation. The key in this scheme is to assess the spatial
representativeness, which is based on remote-sensing data with high spatial resolution that are closely
related to the LST. Indicators are proposed to quantify the spatial representativeness, and then the
grading criteria are designed before selecting appropriate ground-based measurements for validation.
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Figure 1. New scheme for land surface temperature (LST) validation based on the assessment of local
spatial representativeness (site level). In the scheme, LCT is the abbreviation of land-cover type, and
NDVI is the abbreviation of normalized difference vegetation index.
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2.2. Indicators for Assessing Spatial Representativeness

Three indicators are proposed to describe the spatial characteristics for a specific parameter,
mainly including the consistency from points to pixels and the spatial heterogeneity within pixels.
These indicators are calculated on high-resolution images, which are much easier to access, thus
simplifying the process. The LST is a direct parameter for assessing the representativeness of a given
station’s LST observations. However, obtaining temporal high-spatial-resolution LST matches for LST
products with lower resolution is difficult. Therefore, high-resolution land-cover type (LCT) and the
normalized difference vegetation index (NDVI), which can indicate the surface conditions and their
changes, are chosen as additional supporting parameters to evaluate ground-based LST observations
in addition to LST data with a high spatial resolution.

If the LCTs observed by stations do not match the dominant LCTs in the pixels, these station LST
observations cannot represent the LST of the LCTs in the pixels. Thus, the dominant LCT (DLCT),
which is given by the percentage of the observed LCT throughout the pixel’s area, is defined as

DLCT =
M(s)
N(s)

× 100 (1)

where s is the product pixel, M(s) is the area with the LCT that is observed by the given station,
and N(s) is the total area of the LCTs in the LST product’s pixel grid. When using a high-resolution
LCT map, the DLCT can also be described as the percentage of fine pixel numbers covered by
station-observed LTC to total LCT pixel numbers in the LST product’s pixel range. A high DLCT
indicates that the LCT observed by a station is consistent with that in the LST product’s pixel and low
heterogeneity within the product pixel because the mixing rate of LCTs in the pixel is not large.

We developed a relative bias (RB) indicator to assess how close a ground-based LST measurement
is to the value of the corresponding pixel area. According to the high-spatial-resolution LST reference
images, the relative bias is used to describe the difference between the LST value T(s) at a station
and the average LST value T(s) in the product pixel’s area. If we consider the comparability between
different ranges of LST values, the RB is defined as

RB =
|T(s)− T(s)|

T(s)
× 100 (2)

where s is the product pixel and RB depends on both its resolution and the resolution of the reference
LST image. This indicator can quantify the certainty of the ground-based measurements to the product
pixel area LST values. A smaller RB indicates more spatially representative observations for the
corresponding pixel at the specific spatial resolution of s.

The two above indicators mainly measure the point-to-area value consistency, so the heterogeneity
of the spatial distribution of the LST within a pixel, which is correlated with the vegetation growth, must
be seasonally quantified. In terms of the spatial autocorrelation of LST parameters, semivariogram is
one of the most commonly used and efficient geostatistical analysis tools for quantitatively evaluating
spatial variations. Semi-variance and related geostatistical kriging were developed from mining
research during the late 1950s and have been widely used after a publication by Journel and Huijbregts
in 1978 [34,35]. These geostatistical techniques have been used in many scientific projects, such as in
describing the distribution and density of plants and animals [36,37] and in determining the spatial
scales of variation and sampling strategies in remote sensing [38–40]. In regionalized variable theory,
the semi-variance measures the dissimilarity of a spatial variable observed at different locations. The
semi-variance is calculated by the average squared difference between observations Z(xi) and Z(xj),
which are separated by distance h, as described below:

r(h) =
1

2N(h) ∑
||xi−xj ||=h

(Z(xi)− Z(xj))
2 (3)
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where 2N(h) is the number of observation pairs, which are separated by a distance h, or lag, as intervals
to calculate the semi-variance. In this study, the variogram estimator r(h) is computed on discretized
point values from high-spatial resolution LST pixels, and then a variogram model is established
as a parametric functional approximation based on these semi-variance values. Several theoretical
variogram model types exist, including linear models, spherical models, exponential models, and
Gaussian models. Among these models, spherical models are the most widely used variogram models
for their strong fitting and generalization capabilities and are recommended for assessing the spatial
representativeness of observations [23,32]. The isotropic spherical variogram that is used to estimate
the variogram is as follows:

rsph(h) =

 c0 + c×
(

1.5× h
a − 0.5×

(
h
a

)3
)

f or 0 ≤ h ≤ a

c0 + c f or h > a
(4)

In Equation (4), it is obvious that the rsph(h) generally increases from a nonzero value to a
relatively stable constant value with h. When h = 0, the rsph(h) value is a nonzero value c0, namely,
rsph(0) = c0, and c0 is the nugget of the variogram. The stable constant value is the sill (c0 + c) of
the variogram. When rsph(h) reaches the sill, the value of the variable h is a, namely, the range of the
variogram. The key parameters range (a), nugget (c0), and sill (c0 + c) can be obtained from fitting
Equation (4). a is the maximal distance between the two correlated points and indicates the average
structural scale (ASS) of the given area. The nugget c0 indicates the level of Z(xi)’s randomness,
which may be caused by internal variations in Z(xi) over a smaller distance h than the sampling
distance or may be derived from the sampling error. The sill (c0 + c) represents the largest extent of
the regionalized variation. Li and Reynolds [41] introduced the proportion of structural variation,
which is based on subtracting the variogram nugget (c0) from the sill (c) and then dividing by the sill,
to discuss the definition and quantification of ecological heterogeneity. However, the heterogeneity
of LST parameters considerably varies over time when compared to that of ecological parameters,
and reference high-resolution LST maps may not be completely synchronous with the validated LST
products. Therefore, the ASS is introduced based on the range of the variogram model, which reflects
the average structural scale of the given area and the size of the homogeneous area. A large ASS value
indicates that the station observations represent a large homogeneous area.

3. Data Instruction and Preparation

3.1. Ground-Based LST Measurements

In this study, we selected the Heihe River Basin (HRB), which is the second largest inland valley
in China’s arid regions, to evaluate MODIS LSTs with 1-km resolution. The HRB is located in the
northern arid region within 97.1◦E–102.0◦E and 37.7◦N–42.7◦N. Glaciers, frozen soils, alpine meadows,
forests, irrigated crops, riparian ecosystems, deserts, and gobi are distributed from upstream to
downstream regions (see Figure 2). The HRB was selected as an experimental watershed to reveal the
processes and mechanisms of the ecohydrological system in an inland river basin. Allied telemetry
experiments such as the Heihe Basin Field Experiment (HEIFE) [42] and Watershed Allied Telemetry
Experimental Research (WATER) [43] have been conducted in the HRB, and the HiWATER [33] project
has been ongoing since 2012. The stations that collect watershed hydrological observations cover
a wider range than those in previous studies and provide a large amount of ecohydrological data
for evaluation. Eighteen atmospheric stations from HiWATER are scattered around the HRB region.
Longwave-radiation data for eighteen stations from 2013 to 2014 were selected to obtain ground-based
LSTs to evaluate the MODIS LSTs. The locations of the stations are shown in Figure 2. The information
for the stations is listed in Table 1, and environmental photos of these sites are shown in Figure 3.
The ARC, ARS, ARY, DSL, JYL, HZS, HCG, and EBZ stations are located in the upstream area; the
DMZ, GBZ, HZZ, SDZ, and SSW stations are located in the midstream area; and the downstream area
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contains the SDQ, HJL, HYZ, NTZ, and LTZ stations. The LCTs of these stations are all typical types in
the three significantly different areas.Remote Sens. 2017, 9, 1210  6 of 24 
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Table 1. Information for the stations in this study.

Station Name Longitude/◦E Latitude/◦N Altitude/m Height/m Footprint 1/m Landscapes

A’rou superstation (ARC) 100.46 38.05 3033 5 37.32 Alpine meadow

A’rou sunny slope
station (ARS) 100.52 38.09 3559 6 44.78 Alpine grassland

A’rou shade station (ARY) 100.42 37.99 3538 6 44.78 Alpine grassland

Dashalong station (DSL) 98.95 38.83 3775 6 44.78 Swamp meadow

Jinyangling station (JYL) 101.11 37.85 3700 6 44.78 Alpine meadow

Huangzangsi station (HZS) 100.19 38.23 2660 6 44.78 Cropland (wheat)

Huangcaogou station (HCG) 100.73 38.00 3186 6 44.78 Alpine grassland

E’bo station (EBZ) 100.94 37.96 3407 6 44.78 Alpine grassland

Daman superstation (DMZ) 100.37 38.86 1519 12 89.57 Cropland (maize)

Gobi station (GBZ) 100.30 38.89 1571 6 44.78 Gobi Desert

Huazhaizi desert station (HZZ) 100.32 38.77 1726 2.5 18.66 Desert steppe

Wetland station (SDZ) 100.45 38.97 1460 6 44.78 Wetland

Shenshawo desert
station (SSW) 100.49 38.79 1582 6 44.78 Desert

Populus forest station (HYZ) 101.12 41.99 927 24 179.14 Populus forest

Cropland station (NTZ) 101.13 42.01 919 6 44.78 Cropland

Barren-land station (LTZ) 101.13 41.99 931 6 44.78 Bare soil

Sidaoqiao station (SDQ) 101.12 41.99 935 10 74.64
Euphrates poplar
olive and Tamarix
mixed forest

Mixed forest station (HJL) 101.13 41.99 929 24 179.14
Euphrates poplar
olive and Tamarix
mixed forest

1 “Footprint” refers to the diameter of the footprint; “Height” indicates the installation height.

Eighteen meteorological towers are located in the HRB region, consisting of three superstations
and fifteen ordinary stations. Pyrgeometers are deployed at these 10-m to 35-m high meteorological
station towers to measure longwave radiation (see Figure 3 and Table 1). At least two pyrgeometers
are positioned on a single tower: one facing upward and the other facing downward. The field-of-view
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(FOV) of the upward-facing pyrgeometer is nearly 180◦, while that of the downward-facing
pyrgeometer is 150◦. Therefore, the effective diameter of the FOV of the pyrgeometers on a 10-m to
35-m tower is approximately 2.5–24 m with a 6-m average mounting height, and the diameters of the
ground-observation footprints are shown in Table 1. The pyrgeometers are sensitive to the spectral
range from 4.5 to 42 µm in the longwave band. All the instruments at each station were calibrated
before and after field deployment. Field-routing exams were implemented once per month. Assurance
and quality control provided the best possible data for the level-2 daily data. All these data and related
information can be found at the HiWATER website [44]. All the ground-based measured data from the
eighteen HiWATER sites were 10-min averaged values. The longwave radiation data were selected
according to the field viewing time for the MODIS LST. The LST is related to land-surface longwave
radiation according to the Stefan-Boltzmann law [1,45]:

L↑ = εbδT4 + (1− εb)× L↓ (5)

where L↑ is the surface upwelling longwave radiation, εb is the surface broadband emissivity, δ

is Stefan-Boltzmann’s constant (5.67 × 10−8 W·m−2·K−4), and L↓ is the atmospheric downwelling
longwave radiation at the surface. Therefore, the ground-measured LST can be estimated from station
longwave-radiation observations by the following equation:

Ts =

[
L↑ − (1− εb)× L↓

εbδ

] 1
4

(6)

In Equation (6), L↑ and L↓ are obtained from the ground-based measurements. Seven narrowband
emissivities exist in MOD/MYD11B1 LST/LSE products. εb can be estimated from these MODIS
narrowband emissivities [45]:

εb = 0.2122× ε29 + 0.3859× ε31 + 0.4029× ε32 (7)

where εb is the broadband emissivity, and ε29, ε31, and ε32 are the narrow emissivity products of MODIS
bands 29, 31, and 32 that are retrieved from the MODIS day/night LST algorithm (MOD/MYD11B1
LST/LSE).
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3.2. Remote-Sensing Data

3.2.1. MODIS Data

As a component of NASA’s Earth Observing System (EOS) project, two MODIS instruments were
placed onboard the Terra and Aqua satellite platforms to provide information for global atmosphere-,
land- and oceanic-process studies [46]. MOD/MYD22_L2, MOD/MYD11A1, MOD/MYD11B1
and MOD/MYD07_L2 are all daily LST products based on thermal-infrared data from MODIS.
MOD/MYD11_L2 was retrieved by a generalized split-window algorithm with 1-km spatial
resolution [47]. MOD/MYD11A1 is tile-based and gridded in the sinusoidal projection from
MOD/MYD11_L2. MOD/MYD11B1 was obtained using the day/night LST algorithm at 5-km spatial
resolution [48]. MOD/MYD07_L2 was retrieved by the atmospheric team using statistical regression
methods [49]. In this study, we focus on the collection of 5 MOD/MYD11A1 products, which are
more widespread. Uncertainties from the satellite measurements and improvements in the original
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MODIS LSTs for cloudy days are beyond the scope of this paper. To eliminate effects from the inversion
algorithm and clouds, only pixels with high-quality MODIS LSTs were selected for the evaluation
based on a quality control flag value of 0. The narrow emissivity products from MOD/MYD11B1
LST/LSE were selected to estimate the land-surface broadband emissivity εb and obtain ground-based
LSTs [45]. The narrow emissivities from MOD/MYD11B1 LST/LSE at 5-km resolution were resampled
to 1-km spatial resolution to match the evaluated MODIS LSTs.

3.2.2. High-Spatial-Resolution Images

Land-cover images with a spatial resolution of 30 m (data doi:10.3972/hiwater.155.2014.db,
downloaded from the HiWATER land cover datasets [50], which were produced by Zhong et al. [51,52],
were selected to obtain the DLCT in a 1-km LST product pixel. This dataset was mainly based on
charge-coupled device (CCD) data from the Huan Jing 1 (HJ-1) satellite, which was launched on
6 September 2008, by the China Center for Resources Satellite Data and Application (CRESDA).
HJ-1/CCD has three visible bands and one near-infrared band [53]. This dataset provides monthly
land-cover maps of the HRB from 2011 to 2015 with 30-m spatial resolution. LCTs change with the
seasons, and these changes are similar across consecutive years, so the DLCT products in 2013 were
collected to calculate the DLCT indicator.

Landsat 8, which is called the Landsat Data Continuity Mission, is extending the distinguished
40-year records of Landsat-series satellites and has enhanced capabilities, such as adding new spectral
bands in the visible and thermal-infrared wavelengths and improving the signal-to-noise ratio and
radiometric resolution of the sensor [54]. The Landsat 8 satellite includes two instruments: an
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). High-resolution LST maps
were retrieved from the Landsat 8 TIRS data and OLI data. Before retrieving the LST maps, the Landsat
OLI and TIRS images were preprocessed, including radiometric calibration and atmospheric correction
based on the correction model in the ENVI software. Monthly NDVI maps were obtained to assess the
relationships between the monthly changes in the indicators and vegetation growth. The NDVI maps
were based on the visible red band (R, band 4) and the near-infrared band (NIR, band 5) according to
the following equation:

NDVI =
NIR− R
NIR + R

(8)

In this study, the LST data were estimated from the TIRS aboard Landsat 8 based on a practical
split-window (SW) algorithm developed by Du et al. [55]. The SW algorithm can be expressed
as follows:

T = b0 +

(
b1 + b2

1− ε

ε
+ b3

∆ε

ε2

)Ti + Tj

2
+

(
b4 + b5

1− ε

ε
+ b6

∆ε

ε2

)Ti − Tj

2
+ b7

(
Ti − Tj

)2 (9)

where T is LST, Ti and Tj are the TOA brightness temperatures in the thermal-infrared channels i and
j, respectively; ε is the average emissivity of the two channels (i.e., ε = 0.5(+ε j)); ∆ε is the channel
emissivity difference (i.e., ε = 0.5(εi − ε j)); and bk(k = 0, 1, . . . 7) are the algorithm coefficients from
the simulated dataset. In this algorithm, the coefficients were determined based on atmospheric
water-vapor subranges, which were obtained through a modified split-window covariance-variance
ratio method. The channel emissivities were acquired from newly released global land-cover products
at 30 m and a fraction of the calculated vegetation cover from visible and near-infrared images that
were obtained by Landsat 8.

The effect of heterogeneity changes depending on the season, so we selected Landsat 8 data from
September 2013 to August 2014 with a 16-day temporal resolution to calculate the RB, and ASS. A total
of 92 Landsat 8 images for all the stations in the HRB were downloaded from the following USGS
website [56]. The statistical results were based on per-month averages to eliminate invalid data from
cloud cover.



Remote Sens. 2017, 9, 1210 10 of 24

4. Results and Discussion

4.1. Spatial Representativeness Classification

Since the DLCT and RB can measure point-to-pixel value consistency, and ASS can assess the
spatial patterns for a given station, respectively. Therefore, all three indicators were combined
to describe the representativeness including point-to-pixel consistency and spatial heterogeneity.
The spatial representativeness was also classified based on these three indicators. The DLCT indicator
determines the representativeness of the station’s LCT in the product pixel. When the LCT in the
view footprint of a station is not dominant within the product pixel, the station observations cannot
be representative of the pixel, and the LST value of all other vegetation-cover types may be ignored,
even if the point-to-area LST consistency is high at the station sometime. When a pixel has a large
DLCT value, the RB and ASS subsequently would determine the spatial representativeness together.
Presumably, the station-observed LSTs represent ideal data for LST product validation if the RB value is
small and the ASS value is large. If the RB and are ASS value are both small, the station may have some
spatial representation. In some extreme cases, the station observing area is an average heterogeneity
sub-areas in the products pixel, which means the station observations are representative for pixels,
although the surface is heterogeneous in these products pixels. Finally, if the RB is large but the ASS is
small, the observations probably differ from the values of the pixel.

Reasonable thresholds for the DLCT, RB and ASS are required to determine the representativeness
level of a given station’s observations. The emissivity products of the version 5 collection of MODIS
LST/LSE products are retrieved based on the LCT of a pixel, and the LCT is classified as the land cover
of this pixel based on the classification rule for MODIS land-cover products (MCD12Q1) if the area
percent of one LCT in a pixel is higher than 60% [57]. Thus, 60% was defined as the threshold of the
DLCT in this study. The RB was used to evaluate the difference between the land-based measurements
within the view footprint at each station (in Table 1, the view footprints are shown in the sixth column)
and the mean pixel value at the station locations. The ideal RB value is close to zero. However, the
threshold of the RB is not unique and depends on the spatial resolution of the LST products, the view
footprint of the station measurements, and the retrieval accuracy of the high-spatial-resolution LST
maps that are used to evaluate the representativeness. Thus, a reasonable threshold for the RB was
0.5% in this study for MODIS LST products with 1-km spatial resolution, a station view footprint above
30 m and a 1-K retrieval error from the high-resolution LST map itself [55]. The ASS is calculated from
variogram models based on the semi-variance in a 3-km × 3-km area that is centered at a given station
and can indicate the greatest distance over which the value at a point on the surface is related to the
value at another point. The ASS defines the maximum neighborhood over which control points should
be selected to estimate a grid node to take advantage of the statistical correlation among observations
and can describe the spatial distribution of LSTs and quantify the average LST spatial structures in
the given area. In this study, the measurements from stations were used to evaluate the MODIS LSTs
with a 1-km spatial resolution. Therefore, a reasonable ASS indicator should be larger than the spatial
resolution of the LST products, that is, 1 km in this study.

The spatial representativeness of the station’s LST observations was classified into five different
levels based on the difference-constraining degrees of the three indicators and their thresholds.
The levels and their descriptions are presented in Table 2.
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Table 2. Grading of the spatial representativeness.

Level DLCT > 60% RB < 0.5% ASS > 1 km Description

1
√ √ √ Best representativeness level with strict

point-to-pixel LST and LCT value consistency, and a
homogeneous LST distribution

2
√ √

×
High representativeness level with high
point-to-pixel LST and LCT value consistency but an
incomplete homogeneous LST distribution

3
√

×
√ Moderate representativeness level with high LCT

consistency and a relatively homogeneous LST
distribution but low point-to-area LST consistency

4
√

× ×
Low representativeness level with low point-to-area
LST consistency and a heterogeneous
LST distribution

5 × - - Minimal representativeness level with various LCTs
in pixels and mismatch land-cover observations

4.2. Representativeness Grading of the HiWATER Station Observations

The representativeness of the LST observations for the eighteen HiWATER stations was graded
based on the three indicators and level in Table 2. Figure 4 shows the DLCT indicator results for
the stations, and the red dashed line shows the threshold value of the DLCT in the figure. In the
upstream area, all the stations were covered by grass or meadows, except for HZS, which was covered
by wheat. The DLCT values within a 1-km pixel indicated that five stations were covered by a single
LCT and one station (DSL) was covered by a dominant grass type, with a DLCT value above 80%.
In the upstream area of the HRB, only one station (HZS) had a DLCT value below 60%. Among the
five stations in the midstream area of the HRB, SSW, HZZ, and GBZ were covered by a single LCT and
SDZ was dominated by one type within a 1-km pixel. The LCTs within a 1-km pixel were diverse and
broken at DMZ, and the DLCT value of the station observations was less than 60%. The LCTs of the
five downstream stations were more complex within a 1-km pixel, and their DLCT values were all
less than 60%. According to the DLCT threshold, the observations of seven stations, including HZS,
DMZ, SDQ, HJL, HYL, NTZ, and LTZ, were graded at Level 5 (Table 2). Eleven remaining stations
exhibited vegetation-type cover, matching the types in the corresponding MODIS LST pixels, but their
representative levels varied depending on the RB and ASS values.
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Figure 4. The dominant land cover type (DLCT) for the HiWATER stations. 

The annual vegetation growth at stations can severely affect changes in their spatial 
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changes with the level of the point-to-area LST match, vegetation-density homogeneity and spatial 
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Figure 4. The dominant land cover type (DLCT) for the HiWATER stations.

The annual vegetation growth at stations can severely affect changes in their spatial
representativeness. When stations have homogeneous vegetation types and density, the
representativeness of stations may not vary with vegetation growth. Instead, the representativeness
changes with the level of the point-to-area LST match, vegetation-density homogeneity and spatial
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contexture of the pixel during different seasons. The spatial representativeness of station observations
can vary with vegetation growth in a year. When the vegetation type is uniform and the density
is homogeneous, the representativeness at different growth stages may not significantly change.
Otherwise, the representativeness may change because of changes in the point-to-area consistency and
spatial heterogeneity. Seasonal changes in the spatial representativeness are similar in consecutive
years when not interfered with by outside influences. Therefore, the RB and ASS values of the station
observations were calculated monthly and are shown in Figures 5 and 6.
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Figure 6. Monthly normalized difference vegetation index (NDVI) at the eighteen sites from 2013
to 2014.

The RB values of the stations in the upstream area, midstream area, and downstream area and
their monthly changes are shown in Figure 5a–c, respectively. The eight upstream stations did not
show a consistent trend with vegetation growth. As shown in Table 1, the LCTs of these stations were
mostly grass or meadows. The DLCT values of these stations were all greater than 80%, with the
exception of HZS, and the area of the heat-shadow effect in the thermal-infrared image was wider
than the actual area. The RB depended on the homogeneity of the vegetation density for the stations
that were covered by only one vegetation type and its changes with the seasons. Many factors can
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influence the density’s homogeneity and its changes with vegetation growth, such as non-uniform
rain or snow, random grazing in the grass, and uneven growth. Thus, complex factors are likely the
main reasons for the inconsistency and volatility of the stations’ changing RB trends. The chance of an
RB value below 0.5% was greatest for stations with a DLCT above 60%.

The monthly changes in the RB at the stations in the midstream and downstream areas of the
HRB could be divided into two types (Figure 5b,c). The first type included GBZ, SSW and HZZ, with
DLCT values of 100%. Their RB values showed similar trends to those of the upstream stations, with
inconsistency and volatility. The RB values of these stations were mostly smaller than 0.5%. The RB
values of the other midstream and downstream stations, which had smaller DLCT values, increased
with the NDVI (shown in Figure 6), although the RB’s maximum peak point appeared within, before or
after the month of the maximum NDVI peak. The RB values of these stations were all larger than 0.5%
during the growing season. The land within a 1-km pixel area at these stations was covered by more
than two LCTs, and the LST difference increased with vegetation growth and increasing solar radiation,
especially at the maximum peak during summer. For instance, the midstream SDZ station was mainly
covered by water and seeds. During winter, the station was predominantly covered by water, resulting
in a small RB value below 0.5%. As the seeds began to grow, the seed area became larger, and the LST
difference between seed and water increased as the solar radiance became stronger, creating a larger RB
value. After reaching its maximum, the RB value decreased as vegetation growth and the solar radiance
simultaneously decreased. The above analysis shows that the RB is relatively consistent with the DLCT
and that an RB threshold is reasonable to effectively distinguish each level for a 1-km pixel.

The monthly ASS values of all the stations in the HRB are shown in Figure 7, with the ASS plots of
stations in the upstream area in Figure 7a, the ASS plots of stations in the midstream area in Figure 7b,
and the ASS plots of stations in the downstream area in Figure 7c. The black dashed lines in Figure 7
are the threshold of the ASS. The ASS plots of each station in Figure 7 did not show consistent trends
as the seasons changed. However, when the DLCT values of the stations were less than 60%, the
corresponding ASS values were less than 1000 m. Even for stations with DLCT values of 100%, the
ASS value could be smaller than 1000 m, such as JYL in January and February (see Figures 4a and 6a).
The ASS results for the stations were determined by the heterogeneity in the 1-km LST pixel. The
heterogeneity of stations with a DLCT below 60% was mainly caused by the LST differences among
different LCTs in the pixel. By contrast, the heterogeneity of stations with greater DLCT values,
including values of 100%, was determined by the density heterogeneity of the dominant vegetation in
the pixel, which is influenced by many factors, including uneven vegetation growth, human activity,
such as random grazing, and localized weather, such as non-uniform rainfall. Moreover, the results
were affected by the combination of these factors, leading to fluctuating ASS plot trends for stations
with DLCT values of 100%.
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The monthly representativeness levels of the multi-temporal LST observations of all the stations
in the HRB are shown in Figure 8 based on the DLCT values and the monthly RB and ASS values,
which were calculated using the high-resolution LST images from the Landsat 8 images. Eight stations
were present in the upstream area, so the upstream stations were divided into two figures, namely,
Figure 8a,b, to clearly show the monthly representativeness. The monthly representativeness levels
of the midstream and downstream stations are shown in Figure 8c,d. All the downstream stations
had DLCT values below 60%, so all the stations are listed as Level 5 in Figure 8d. The spatial
representativeness varied by month for the different stations. Among the 216 months of observations
(18 stations in 12 months from September 2013 to September 2014), only 73 months of observations
were graded as Level 1, so the number of station observations that perfectly represented the pixel
were limited.
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4.3. Traditional Validation Results without Spatial Representative Assessment

Traditional initial validation results, which neglect the evaluation of the spatial representativeness
of the station observations, are presented first to demonstrate the effectiveness of our proposed scheme.
The scatter plots in Figures 9 and 10 show the daytime and nighttime comparison results between the
MODIS LST and ground-based LST measurements. As shown in Figure 8, the scatters in half of the
sub-plots were close to the 1:1 line (the black line in the scatter plot). By contrast, the scatters for ARY,
JYL, SDZ, SSW, SDQ, HJL, HYZ, NTZ, and LTZ were more decentralized. In Figure 10, the scatters of
these sites were closer to the 1:1 line than those in Figure 9. Table 3 presents a statistical comparison
of the daytime and nighttime results between the ground-based measurements and MODIS LST
products that were retrieved from the MODIS data onboard Terra and Aqua, respectively. The bias
(ground-based LST measurements—MODIS LST) at eighteen sites during the daytime ranged between
−4.72 K and 6.46 K for the MOD11A1 LST/LSE products and between −3.44 K and 6.24 K for the
MYD11A1 LST/LSE products; the root mean square error (RMSE) during the daytime ranged from
1.74 K to 5.50 K for the Terra MODIS LSTs (MOD11A1 LST/LSE products) and from 1.75 K to 5.94 K
for the Aqua MODIS LSTs (MYD11A1 LST/LSE products). By contrast, the bias and RMSE between
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the Terra MODIS LST and ground-based measurements at nighttime ranged from −0.51 K to 3.86 K
and from 1.19 K to 2.64 K, respectively; for the Aqua MODIS LST, the bias ranged from −0.39 K to
3.48 K and the RMSE ranged from 1.94 K to 3.82 K.
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The initial results revealed that the MODIS LSTs fit better with MODIS at nighttime than during
the daytime, and the comparison results greatly differed between the daytime and nighttime for some
stations, especially HZS, HYZ, NTZ, and LTZ, which are all Level-5 stations. The LST had stronger
heterogeneity during the daytime than at nighttime. During the day, LSTs can vary by 10 K or more
over a few meters depending on the nature of the surface and the local meteorological conditions,
with the variability being lower at night [9]. When comparing the unrepresentative observations of
these stations to the MODIS LSTs, the stronger heterogeneity resulted in greater differences in the bias
and RMSEs of these stations between the daytime and nighttime because of the constant accuracy of
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the MODIS LST products within the same pixel. If these results were considered the final results for
the accuracy of the MODIS LST, an obvious error would be introduced into the validation because of
the unrepresentativeness of the station observations when compared to the corresponding scale of
the remote-sensing observations. The stronger heterogeneity during the daytime affected the Aqua
MODIS LST and Terra MODIS LST validation process in a similar manner, so no significant differences
in accuracy existed between the LST products from Terra MODIS and the LST products from Aqua
MODIS when compared to the ground-measured LSTs at these sites, as shown in Table 3.

Table 3. Summary of the statistical comparison results between the MODIS LSTs and the LST
measurements from the HiWATER sites.

Station

MOD a MYD b

Day Night Day Night

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ARC −0.55 2.16 0.98 2.15 −0.52 1.92 0.67 1.94
ARY −0.79 5.50 −0.51 2.25 −0.96 4.48 −0.28 2.56
ARS 0.31 2.56 0.01 2.64 0.56 2.54 −0.39 2.57
DSL 1.07 1.74 1.25 1.22 0.89 1.87 1.27 2.16
JYL −2.79 3.14 0.96 1.41 −2.94 3.09 0.47 2.26
HZS 0.10 3.49 1.65 1.19 −0.13 3.73 0.96 1.94
HCG −1.31 2.36 0.62 1.96 −1.68 2.92 −0.25 2.33
EBZ −0.78 2.07 0.77 1.61 −0.97 2.39 0.23 2.56
DMZ −0.88 2.81 1.23 1.45 −0.96 2.77 0.21 2.21
GBZ 0.17 2.25 −0.01 1.52 1.08 1.75 0.66 2.99
HZZ 0.74 1.86 0.93 1.28 0.25 2.46 0.69 2.08
SDZ −4.12 2.93 1.90 2.74 −3.44 2.71 1.26 3.78
SSW 1.34 4.18 2.49 1.60 1.57 2.95 1.55 2.51
SDQ −1.84 3.18 1.95 1.21 −1.65 2.35 1.50 3.80
HJL −4.23 2.70 3.56 1.90 −4.55 2.81 3.48 3.82
HYZ −0.72 5.18 3.86 2.03 −0.71 5.94 2.75 3.14
NTZ −4.72 4.08 1.43 1.47 −0.17 5.44 1.15 2.91
LTZ 6.46 4.21 2.45 1.15 6.24 3.68 1.77 3.02
a The MOD columns show the results of a comparison between the LSTs from the MODIS onboard Terra and the
ground-based measurements at the eighteen sites; b The MYD columns show the results of a comparison between
the LSTs from the MODIS onboard Aqua and the ground-based measurements at the eighteen sites.

4.4. MODIS LST Product Validation Considering the Influence of Spatial Representativeness Evaluation

All the station observation validation results and representative station observation validation
results were calculated and compared to discuss the effect of representativeness on the validation of
satellite-retrieved LSTs. In total, 7527 station observations from eighteen stations were evaluated based
on the Landsat 8 LST reference maps according to the satellite-overpass times and quality control
flags of the MODIS LSTs. The RMSE and bias of the MOD/MYD11A1 LST products based on all the
observations and the different levels of observations are listed in Table 4. For all the observations, the
bias of the MODIS LST ranged from −0.27 K to 2.39 K, and the RMSE ranged from 3.32 K to 4.93 K.
The RMSEs were the smallest for Level 1, which contained 2472 station observations. During both
the daytime and nighttime, the bias between the station observations and MODIS LSTs was better
than 1 K and the RMSE was less than 2 K. No significant differences existed between the daytime and
nighttime comparison results for the Level 1 observations. These results using Level 1 observations are
inconsistent with those from the traditional validation scheme in Section 4.3 and are more reasonable
based on the retrieval accuracy of the MODIS LSTs during the daytime and nighttime for the same
pixel. The comparison results between the MODIS LSTs and LST observations for Levels 2 and 3 had
a similar bias and RMSE, which were not larger than those for all the observations. The results for
the Level-4 observations had a larger bias and RMSE than those for Levels 3 and 2. The largest RMSE
values were obtained when using Level 5 observations. The RMSE value increased from Level 1 to
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Level 5. Large differences existed in the bias and RMSE between the daytime and nighttime at all
levels, except for Level 1, because of the greater spatial heterogeneity during the daytime. Table 4
indicates that the highly representative validated observations usually had good results. Thus, highly
representative observations can more accurately describe satellite-retrieved LST values and limit spatial
mismatch errors from point-station observations. Therefore, validating all the stations without grading
their representativeness usually underestimated the accuracy of the satellite-retrieved LSTs; these
underestimated accuracy values were larger for the daytime validation than the nighttime validation.

Table 4. Validation results for MOD/MYD11A1 based on the spatial representativeness levels of the
station observations.

Level

MOD a MYD b

Day Night Day Night

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Level 1 −0.19 1.75 0.8 1.58 0.30 1.79 0.43 1.84
Level 2 −1.13 4.58 1.24 2.53 −1.48 3.24 0.32 2.60
Level 3 1.45 4.93 1.44 2.23 0.47 3.67 0.77 2.67
Level 4 −2.94 5.93 2.51 3.89 −2.25 4.56 1.33 4.15
Level 5 2.03 6.27 3.60 4.52 −0.36 5.88 2.28 4.29

All 0.59 4.93 2.39 3.55 −0.27 4.58 1.28 3.32
a The MOD columns show the results of a comparison between the LSTs from the MODIS onboard Terra and the
ground-based measurements at the eighteen sites; b The MYD columns show the results of a comparison between
the LSTs from the MODIS onboard Aqua and the ground-based measurements at the eighteen sites.

4.5. Other Potential Factors during the LST Validation Process

Other factors may potentially influence the accuracy of the validation results. In this study, we
only focused on the sensor view zenith angle (VZA) and broadband sensitivity issues, which are the
main factors that affect T-based validation for MODIS LSTs in addition to the representativeness of the
station observations. The effects of these two factors are discussed in detail below.

4.5.1. Dependence of the LST Error on the Sensor VZA

The relationship between the error (the absolute difference between MODIS and ground-based
LSTs) and the sensor VZA was first investigated at all HiWATER sites to analyze the potential factors
that create large errors at certain sites. The VZAs differed between ground-based instruments and
the MODIS sensor: the ground-measured LSTs were obtained at a VZA of 0◦, whereas the MODIS
observations were acquired over a large range of VZAs (0–65◦). Sufficient ground-based measurements
were available to statistically analyze multiple VZAs using data from the eighteen sites. Scatterplots of
the errors and sensor VZAs are presented in Figure 11. The average errors did not significantly depend
on the VZAs during the daytime (see Figure 11a). By contrast, the probability of a larger error increased
with the VZA for the nighttime scatterplot (Figure 11b). The average absolute bias for observations that
were acquired with a smaller VZA (≤30◦) was 0.2 K lower than that for those at greater VZAs (>30◦).
Greater errors for LSTs observed under larger sensor VZAs were also observed in a prior validation
study [8,13], and the remote sensor may see different percentages of shadows at different VZAs during
the daytime, when larger heterogeneities occur [58]. The larger LST heterogeneity at certain sites was
the most likely cause of the daytime scatterplot (Figure 11a), rather than the obvious dependence of
the error of the LST on the sensor VZA.
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4.5.2. Broadband Sensitivity Issue

The accuracy of LSTs from ground-based longwave-radiation measurements is another important
factor that influences the evaluation of MODIS LSTs. The accuracy of longwave-radiation
measurements and the accuracy of the broadband emissivity, which is used to calculate LSTs from
ground-based longwave-radiation measurements, are the two major factors for ground-based LST
estimation. The accuracy of longwave-radiation measurements depends on the sensor calibration.
Calibration is typically performed before and after field deployment and during monthly field-routing
exams [59], so the estimation accuracy of the broadband emissivity is a key parameter that influences
the estimation accuracy of ground-based LST observations. Our previous study indicated that
the maximum mean absolute error (MAE) of the LST was less than 0.3 K when the estimation
emissivity MAE was ≤0.01, which was estimated by adding a series bias of ±0.001, ±0.002, ±0.003,
±0.004, ±0.005, and ±0.01 based on the εb values at the stations in the northern arid region of
China, including ARC, HZZ, and DMZ (also called YK) [60]. In this study, the satellite-estimated
broadband-emissivity method was used based on the MODIS narrowband emissivities. A suitable set
of coefficients for all the data was used to calculate the broadband emissivity, as outlined in Equation
(7), according to the diversity of the land cover at the sites. In a study by Wang et al., the broadband
emissivity that was estimated by this method was compared to three years of ground-based emissivity
measurements at Gaize (32.30◦N and 84.06◦E, with an elevation of 4420 m) in the western Tibetan
Plateau. The results showed that the broadband-emissivity calculation from the MODIS narrowband
emissivities reasonably matched the ground measurements, with a standard deviation of 0.0085 and a
bias of 0.0015 [45]. Therefore, the average estimation error of the broadband emissivity based on this
method was less than 0.037 K, which is the maximum average absolute error value of all the stations in
northern arid China for an emissivity bias of 0.02.

5. Conclusions

In traditional validation schemes, as discussed in Section 4.3, station observations are usually
considered as the true LST values of the corresponding pixels. Therefore, a source of uncertainty
for the validation results is introduced when the representativeness of station observations is not
evaluated. The spatial representativeness assessment of station observations is a key step to reliably
validate satellite-retrieved LST products, which has barely been discussed by previous researchers.
In this study, a new validation scheme was proposed that adds a key step to evaluate the spatial
representativeness of station LST observations. Three indicators, namely, the DLCT, RB, and ASS, were
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constructed in this new scheme to assess and grade the representativeness of station observations.
The representativeness of the station observations was divided into five levels for a 1-km spatial
resolution pixel according to the values of these three indicators. Then, the proposed method was used
to evaluate the spatial representativeness of HiWATER LST observations for 1-km-pixel daily MODIS
LST products. The analysis showed that the new validation scheme can effectively limit the error that
is introduced by spatial mismatches between the station observations and remote-sensing products.
This spatial representative assessment synthesized the three indicators, providing quantitative and
accurate descriptions and reliably evaluating the observations’ representativeness, although reasonable
thresholds for the three indicators should consider the LST products’ spatial resolution, the theoretical
accuracy of the retrieval algorithm, and instrument error. Therefore, several conclusions can be drawn.

First, the traditional validation results when using all the station observations showed obvious
errors and RMSE values between the daytime and nighttime validations, especially when using
observations from the downstream stations. The retrieval method for the MODIS LST products could
obtain LST products with similar accuracy during the daytime and nighttime. Therefore, the error was
likely introduced by unrepresentative station observations. According to the HRB traditional validation
sample, this effect caused a maximum bias of 8.03 K and a maximum RMSE of 3.25 K according to the
difference between the daytime and nighttime validation results from the same stations.

Second, the monthly representativeness analysis illustrated that the spatial contexture
heterogeneity and point-to-pixel consistency of the LST changed with variations in plant growth
and other factors, such as human activity, the solar-radiation intensity, and the local climate, which
created irregular changes in the monthly spatial representativeness of the stations. The monthly
changes in all the factors that influenced the representativeness were not always similar between
consecutive years, so the spatial representativeness in the same month of different years may have
greatly changed for a given station. Therefore, the spatial representativeness for consecutive years
could be reassessed through a rigorous LST product-validation process.

Third, the RMSE of the MOD/MYD11A1 products increased from 1.58 K to 6.27 K from Level
1 to Level 5, and the RMSE values from Level 1 to Level 3 were smaller than those across all the
observations. For all levels except Level 1, the RMSE values were larger during the daytime than those
at nighttime because of the stronger LST heterogeneity during the daytime. The obvious differences
in the bias and RMSE values among the levels indicated that the representativeness method could
sufficiently differentiate the spatial representativeness level within 1-km pixels. Moreover, the Level-1
LST observations were acceptable validation data for the MODIS 1-km LST products. While the RMSE
difference between all observations (using in the traditional validations) and Level 1 observations
validations are 3.0 K in daytime and 1.7 K in nighttime, which indicates the error introduced by
the traditional validation without the representativeness assessment. Therefore, the error of the
MOD/MYD11A1 products was better than 1 K and the RMSE was less than 2 K. Moreover, no obvious
differences existed in the accuracy of the MODIS LST products among the four daily times that Terra
and Aqua passed.

Finally, the bias increased from −0.19 K at Level 1 to 3.6 K at Level 5, and the RMSE increased
from 1.58 to 6.27. Thus, a bias difference of 3.79 K and a RMSE difference of 4.69 K existed between
Level 1, which was the most representative level, and Level 5, which was the least representative level.
The dependence of the absolute biases on the sensor VZA during the daytime was strongly influenced
by the land-surface heterogeneity at heterogeneous sites. During the nighttime, the LSTs of these sites
were more homogeneous and any surface-heterogeneity effects were smaller, so the average absolute
bias for observations that were acquired under lower VZA (≤30◦) was 0.2 K lower than those that were
acquired at greater VZAs (>30◦). The estimated broadband emissivities from the narrowband MODIS
LST/LSE products retrieved by the day/night algorithm varied with the land-surface conditions, such
as vegetation growth and land cover, with a bias of 0.0015. Therefore, the estimation error of the
broadband emissivities was less than 0.004 K. Compared to the effects of the representativeness, the
errors from these last two factors were very small. Thus, the evaluation of spatial representativeness
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is a key step to reliably validate LST products with special spatial resolution, which is the greatest
advantage of our proposed validation scheme.

A more reasonable and accurate scheme to validate remotely sensed LST products was proposed
in this study. However, areas with more heterogeneous LSTs are not suitable for validation
with single-point ground-based measurements and require conditional upscaling by multi-point
ground-based measurements. Therefore, this scheme can be further improved for different conditions,
and can be actually used to study potential new sites for LST validation. Furthermore, the thresholds
of the three indicators were suitable for grading the levels of station observations in a 1-km pixel.
This scheme can also be used to evaluate other LST products by renewing the thresholds and evaluating
the spatial representativeness in other pixel grids.
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