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Abstract: Near-infrared spectroscopy (NIRS) was implemented to monitor the moisture content of
broadleaf litters. Partial least-squares regression (PLSR) models, incorporating optimal wavelength
selection techniques, have been proposed to better predict the litter moisture of forest floor.
Three broadleaf litters were used to sample the reflection spectra corresponding the different degrees
of litter moisture. The maximum normalization preprocessing technique was successfully applied to
remove unwanted noise from the reflectance spectra of litters. Four variable selection methods were
also employed to extract the optimal subset of measured spectra for establishing the best prediction
model. The results showed that the PLSR model with the peak of beta coefficients method was the
best predictor among all of the candidate models. The proposed NIRS procedure is thought to be
a suitable technique for on-the-spot evaluation of litter moisture.

Keywords: near-infrared spectroscopy; multivariate analysis; partial least-squares regression;
floor litter; optimal wavelength selection

1. Introduction

Floor litter refers to the relatively fresh organic residue on the uppermost layer of soil; it plays
an important role in the water dynamics of the forest floor [1]. It can retain water within the layer
during storm periods and deplete stored moisture through evaporation [2]. The moisture variation
of litter can influence the hydrologic, carbon, and nutrient cycles of forests by altering the wetting
and drying phases [3,4]. Moreover, litter moisture content is one of the critical determinants for fire
ignition and spread in forests [5].

Several attempts have been made to quantitatively measure the moisture variation of floor litter
over the past couple of decades [6]. Among them, the gravimetric method is the most common
technique that determines the moisture amount from the difference in the litter weight of wet and dry
conditions [7]. Yet, it is a highly cumbersome and labor-intensive measurement. Some researchers have
attested the continuous non-destructive techniques for litter moisture measurement. Gillespie and
Kidd proposed the electrical impedance grids with mock leaf sensors to monitor the leaf wetness of
crops [8]. This technique was further improved by Hanson et al. [9]. On the other hand, time-domain
reflectometry (TDR) probes have been employed in litter moisture measurement [10,11]. Ataka et al.
developed a rather simple technique to continuously detect moisture content in litters using the
modified capacitance sensors [1]. Robichaud and Bilskie developed a commercial device for measuring
dead fuel moisture with a frequency domain (FD) sensor [12]. However, these methods exhibit
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inherently electrical bias and limitations for the in situ measurement of litter moisture, because floor
litter is highly heterogeneous and porous material with lower density and compactness.

Recently, spectroscopy techniques have been widely used to nondestructively analyze the quality of
crops, chemicals, and biomaterials [13–18]. Among them, a near-infrared spectroscopy (NIRS) technique
is being considered as a promising spectroscopic method that treats the near-infrared (NIR) region
of an electromagnetic spectrum, which corresponds to the wavelength range of 780 to 2500 nm [19].
NIRS can obtain a signal of relatively high energy when compared to far-infrared and microwave
radiation, and also detect the special spectrum from the intrinsic component of object because each
functional group in a molecule has characteristic absorption frequencies in the NIR spectrum by their
vibrational characteristics of several chemical bonds (O-H, C-H, and N-H). The exact frequency at
which a given vibration occurs is determined by the strengths of the bonds involved and the mass of
the component atoms. Moreover, a NIR device structurally consists of a light splitter, a fiber optic cable,
a monochromator, and a detector. Since this simple assembly is relatively easy to implement, the NIRS
technique is being widely used in nondestructive quality analysis for food, feed, pharmaceutical,
and agricultural industries [20–22]. In ecological studies, NIRS has been successfully used for the
determination of organic compounds in soils [23–25], or to characterize the composition of forest foliage
and forest litters [26–29]. Gillon et al. predicted litter decomposability more accurately by NIRS than
by the initial litter composition measured by standard chemical methods [30]. Petra et al. investigated
the ability of near infrared reflectance spectroscopy for the rapid determination of several chemical
properties of plant litters, and found good relationships between the chemical properties and NIR
spectra using partial least squares regression method by showing that the r2 that varied from 0.80 to
0.99 [31].

It is known that NIR spectra possess complex and overlapping absorption bands, so that
mathematical procedures are needed for turning the spectra into meaningful information. Therefore,
a multivariate analysis method is commonly used for the analysis of data sets with more than one
variable because it is capable of describing how the measured spectral features are related to the
property of interest [32,33]. Until now, some multivariate techniques, such as partial least-squares
regression (PLSR), principal component regression (PCR), and multiple linear regression (MLR),
are commonly used to extract quantitative and qualitative information from NIR spectra [34,35].
However, NIRS technique is occasionally facing an undesired situations in use, i.e. noise can
be induced into reflectance spectra by environment and instruments. This undesired influences
can reduce the detection accuracy of a prediction model because NIR spectrum comprises various
combinations and overtones of fundamental vibrational transitions that are overlapped. Therefore,
suitable preprocessing techniques were developed and applied to eliminate the inappropriate noise
components [36]. Rinnan et al. provided an overview of preprocessing techniques that are widely
used in NIRS applications [37].

In addition to the application of suitable preprocessing techniques, an optimal variable selection
method is being significantly considered as a critical step to establish a reliable and robust model
because it can extract a key subset of optimal spectral frequencies to produce better prediction
results [38,39]. Moreover, the optimally squeezed variable can be usefully applied to on-the-spot
evaluation of dead leaf litter moisture. For this purpose, many mathematical approaches for optimal
wavelength selection have been studied from the scientific knowledge on the spectroscopic properties
of materials [40]. It was revealed that the selection of informative variables can produce better and
simpler prediction models if the wavelengths carrying the most valuable information are carefully
selected. Indeed, the removal of redundant, irrelevant, and noisy wavelengths can typically enhance
the models in terms of accuracy and robustness, and also reduce their complexity [41,42]. Therefore,
we employed four different variable selection methods that refer to the optimal separation of classes
and the selection of spectral bands to demonstrate the accuracy enhancement of prediction models.

The main objective of this study is to develop a nondestructive and non-contact moisture
measuring method of broadleaf litters using the NIRS technique through the selection of optimal



Remote Sens. 2017, 9, 1212 3 of 14

wavelength. Floor litter samples were taken from deciduous forests, and the gravimetric method was
used to obtain the reference moisture content of each sample. PLSR multivariate analysis with several
preprocessing techniques has been employed to quantitatively predict the moisture content of floor
litter. In addition, four different optimal variable selection methods were used to extract the optimal
wavelength range through model development, and the model performance was also evaluated in
conformity with variable selection methods.

2. Materials and Methods

2.1. Litter Moisture Measurement

The NIR spectra were acquired from the current year’s (2017 years) litters, collected in the Seoul
National University Arboretum in Seoul, Korea. The broadleaf litters were manually gathered under
deciduous trees, such as Chinese cork oak (Quercus variabilis), Sawtooth oak (Quercus acutissima),
and Mongolian oak (Quercus mongolica). Sampled litters were then sorted to three groups according to
tree species. All of the samples were immersed in water for 12 h in order to fully saturate, and were
then placed in a screened plate for a certain times to naturally drain water from samples. During the
spectra measurements of 10 h, all of the samples were naturally dried in the laboratory environments
that were controlled at a temperature of 24 ◦C and relative humidity of 30%, and three leaves were
extracted from each species group and the reflectance spectrum of single leaf litter was measured at
every one hour. The weight of each litter was immediately measured to obtain the initial wet weight of
litter when NIR measurement was done. After the experiment was completed, all of the litter samples
were placed in an oven at a temperature of 70 ◦C for 48 h, and then measured the weight of oven-dried
litter to obtain the dry weight. The moisture content of litter was calculated based on the gravimetric
method as follow:

Moisture content (%) =
mw −md

md
× 100, (1)

where mw and md are the litter weight of wet and oven-dried conditions, respectively. The moisture
content histogram of broadleaf litters used in this study is shown in Figure 1, and the data are
summarized in Table S1.
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2.2. NIR Spectra Measurement

NIR reflectance spectra of litter samples were sampled in spectral range from 904 to 1707 nm
with the NIR spectrometer (CDI-NIR128, Control Development Inc., South Bend, IN, USA).
The tungsten-halogen lamp (LS-1, Ocean Optics, Largo, FL, USA) was installed as a light source,
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as shown in Figure 2. The reflectance spectrum was taken at three different positions on the litter
surface, and then the averaged values were recorded according to the moisture content of litter
samples. The integration time was set to 0.25 s, and the distance between the sample and a probe was
maintained at 1 cm. The reflectance of measured spectra was calibrated by using both white-referenced
and dark-referenced spectra, as shown in Equation (2). The white-referenced spectra was measured
from the reflectance from a spectralon panel, and the dark-referenced spectra was measured with
a completely blocked fiber optic cable in a dark room.

Reflectance (%) =
Oi − D
R− D

× 100, (2)

where Oi is the raw reflectance of the ith sample, and D and R represent the raw reflectance of dark-
and white-referenced spectra, respectively.
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2.3. Multivariate Model Development

The pretreatment of raw NIR spectra is the first step for model development and optimization to
achieve the better NIR veracity. The instrument and environment causes may lead to sample-to-sample
variations, such as noise, light scattering, and optical path changes. Generally, spectral preprocessing
is strongly demanded to exclude noise components in reflectance spectra. In this study, two scatter
correction techniques (multiplicative scatter correction (MSC), standard normal variate (SNV)),
three normalization techniques (maximum normalization, mean normalization, range normalization),
and three Savitzky-Golay (SG) filters (smoothing, the first- and second-derivative with a cubic
polynomial and a window size of five points) were used for spectra pretreatment.

The PLSR model was also employed to establish the relationship between litter moisture content
and reflectance responses. PLSR is a classical and widely used statistical method that bears a relation
between independent and dependent variables in large data sets. The general structure of PLSR model
is written as follow:

X = TPT + E
Y = TQT + F,

(3)

where X is the n by m matrix of predictors, Y is the n by p matrix of responses, T is the n by 1 matrix of the
score matrix, E and F are Gaussian error terms, and P and Q are the m by 1 and p by 1 loading matrices.

The performance of PLSR model is quantitatively assessed with the root mean square error
(RMSE) and the coefficient of determination (R2). For calibration purposes, the regression model
with a small RMSE value and a large value of R2 could be selected as an appropriate model. In this
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study, latent variables (LVs) set with the smallest RMSE value was determined through the validation
procedure, and then the prediction model performance was evaluated through the further test process.

A calibration model has to be evaluated with a validation set of samples to get an impression
of its predictive ability. Model test has sometimes conducted in the NIRS research to further ensure
model performance when the calibration and validation have completed. Among 99 spectra dataset,
model calibration, validation, and test have conducted from 60, 15, and 24 dataset, respectively.
Both preprocessing and regression analysis were done by using MATLAB commercial software
(ver. R2016, MathWorks, Natick, MA, USA).

2.4. Estimation of Prediction Uncertainty

Uncertainty estimation is an important criterion in the prediction model, and in the case of
ordinary regression, there is a standard expression that quantifies uncertainty. However, it is known
that there is no generally accepted uncertainty estimation method in chemometrics, such as PLSR
model. For uncertainty estimation of PLSR model, various methods such as linearization-based
methods, re-sampling method, and U-deviation have been proposed [43]. In this study, the uncertainty
of the PLSR model was estimated by the re-sampling method using bootstrap residual [44]. As a first
step, residues of the constructed PLSR model were calculated, and in this study, pseudo-degrees
of freedom was used to obtain degree of freedom in multivariate regression [45]. We constructed
bootstrap residues F* through random substitutions with replacement for the calculated residues,
and then added the constructed bootstrap residues to the YPLS matrix to compute the Y* matrix
as follow:

Y∗ = YPLS + F∗, (4)

Then, we constructed a new PLSR model by using the obtained Y* and calculated the predicted
value of the model for each sample i using the new model Beta coefficient β* to calculate the residues
of the predicted value of the existing model and the predicted value of the new model. This bootstrap
residue was calculated by repeating N times. The 95% bootstrap confidence intervals were computed
during the calculation and the confidence interval was calculated using the percentile method in the
distribution of yi values of each sample as follows:

f ∗i N( α
2 )
≤ yi ≤ f ∗i N(1− α

2 )
, (5)

where α is the degree of confidence, and N is the repeating number of the bootstrap calculation.

2.5. Optimal Wavelength Selection

The reflectance spectra, ranging 904 to 1707 nm, were used in this study for establishing
a regression model to predict the moisture content of litter. PLSR technique generally uses the entire
range of wavelength’s spectra, but recent studies have employed the most appropriate wavelength.
It proved that data analysis involving only a representative part of the spectra can lead to a better
prediction performance. Selection of optimal wavelength is to carefully pick the subset of spectral data,
which closely relate to the property of the interest. If the number of wavelength bands are greater than
that of spectral samples, then the predictive model is likely to enhance its capability with the optimal
wavelength. In this study, various techniques such as the peak of beta coefficients, variable importance
in projection (VIP), bootstrap of beta coefficients, and interval PLS (iPLS) were applied to determine
the optimal wavelength from preprocessed spectra information.

2.5.1. Peak of Beta Coefficient

The peak of beta coefficients (beta-peak method) extracts the optimal wavelength corresponding
to the peak of beta coefficients. The beta coefficient, the regression coefficient of PLSR model, is a linear
vector between the measured spectra and the predicted values. It measures the contribution of each
wavelength set on the model’s predictive ability so as to select the optimum wavelength.
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2.5.2. Variable Importance in Projection

VIP is a method that evaluates the contribution of a variable on the weight matrix of a multivariate
analysis, such as a PLSR model. The idea of this method is to accumulate the importance of each
variable j being reflected by w from each component. It has been widely applied to determine major
wavelength bands when the variable matrix X defined in Equation (3) was considered [46]. The VIP
measure vj is defined as follows [47]:

vj =

√√√√√√√√
p

A
∑

a=1
[SSa(wak/‖wa‖2)]

A
∑

a=1
(SSa)

, (6)

where vj represents the VIP value, p is the number of variables, SSa is the sum of squares explained by
the ath component, wa is the weight of ath component, and wak is the weight of the ath component at
the kth variable.

Hence, the vj is a measure of the contribution of each variable according to the variance explained
by each PLS component where (wak/‖wa‖2) represents the importance of the kth variable. The variable
selection process by a VIP technique is terminated when the calculated VIP value approaches to the
threshold. In general, a threshold value of 1 is set in many studies. In this study, we compared the
accuracies of developed models for selected wavelength sets by adjusting a threshold value.

2.5.3. Bootstrap of Beta Coefficients

The bootstrap of beta coefficients (bootstrap method) is a useful technique to set the confidence
interval, and to estimate the significance level. It is mainly used when it is difficult to estimate
the distribution of samples. In the bootstrap method, a new dataset is first obtained by randomly
re-sampling the sample population. Thereafter, statistical values are obtained from the selected data
sets, and then the confidence interval is set [48]. The PLSR-bootstrap method can re-sample the sample
data n times and perform a PLSR for each re-sampled data set to obtain the beta coefficient. From the
distribution of beta coefficients, the confidence interval is obtained according to the significance level
of the beta coefficient of the specific variable. Finally, optimal wavelength is determined by removing
the variables with zero value in its confidence interval. The confidence interval is computed by

Ik = bk ± csk, (7)

where Ik represents the confidence interval, bk is the mean of beta coefficients at the kth variable, c is
a constant that determines the confidence interval, and Sk is the standard deviation of beta coefficients
at the kth variable.

In Equation (7), the constant c is explicitly determined regarding the level of significance. A higher
significance level could select fewer wavelength bands. In this study, the number of re-sampling
is set to 1000, and the model accuracy with the selected wavelength is evaluated by changing the
c values [49].

2.5.4. Interval PLS

iPLS executes a PLSR model with the wavelength of a specific interval rather than the entire
wavelength band. It removes unnecessary wavelength bands and uses only the certain bands of a given
interval. The interval is repeatedly sampled to achieve the lowest RMSE value. In this study, the entire
wavelength band divided into 20 intervals and PLSR analysis was conducted to acquire the optimal
wavelength by shifting the wavelength range to the right or the left until the smallest RMSE value was
pursued [50].
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3. Results

3.1. Reflectance Spectra of Litters

Figure 3 depicts the raw and average NIR reflectance spectra of litter samples in the wavelength
range of 900–1700 nm prior to the pretreatment. There seems to be a slight variation in all of the
reflectance spectra through the litter moisture (Figure 3a). Figure 3b illustrates the averaged spectra
with different degrees of litter moisture (0–50%, 50–100%, 100–150%, and 150–200%). The spectral
difference appeared more clearly in Figure 3b. The absorption rate of NIR spectrum increased in the
wavelength range of 1400–1500 nm regardless of litter moisture. It is commonly known that NIR
spectrum is mostly absorbed at 980, 1222, and 1450 nm wavelength by the overtone and combination
of the vibrational transitions of water molecules [51]. On the NIR reflectance of litters, the absorption
coefficients at 980 and 1222 nm wavelength were estimated to be less than 1.3 cm−1, while the value
was estimated to be 29.8 cm−1 at a wavelength of 1450 nm [51]. Figure 3b exhibits that the reflectivity
of NIR spectrum decreased sharply beyond the wavelength of 1400 nm and had the lowest value at
the wavelength of 1450 nm for all of the litter samples.
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3.2. PLSR Model for Different Preprocessing Methods

A number of pretreatment techniques for NIR spectra have been tested to achieve better
performance in litter moisture spectral model. Table 1 compares the results of PLSR model with
different spectral preprocessing techniques. The entire range of NIR dataset was treated and used to
develop PLSR models with the different preprocessing techniques. The performance of the model was
evaluated with two statistical criteria, coefficient of determination (R2) and root mean square error
(RMSE), between the reference and prediction of litter moisture content. The PLSR models treated by
the preprocessing methods of MSC, SNV, maximum normalization, and range normalization have
a good prediction performance for validation. The test results of the models showed that maximum
normalization achieved the highest performance (Rt

2: 0.922, RMSEt: 15.711), and followed by the
model with range normalization preprocessing (Rt

2: 0.920, RMSEt: 15.970). Figure 4 shows the
prediction result of two most highly correlated PLSR models for litter moisture estimation with the
uncertainty estimation for samples shown by the error bar. The PLSR model preprocessed by the
maximum normalization show better confidence in the calibration set, and the lower and upper
confidence limits that are calculated for this set ranged from 11.3 to 10.9, and all of the samples were
fairly predicted.
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Table 1. Partial least-squares regression (PLSR) results with different preprocessing techniques.

Preprocessing Method LVs
Calibration Validation Test

Rc
2 RMSEc Rv

2 RMSEv Rt
2 RMSEt

Raw data 9 0.930 12.757 0.920 19.041 0.884 19.170
SG smoothing 8 0.918 13.848 0.915 19.571 0.897 18.103

SG-1st derivative 6 0.918 13.882 0.925 18.376 0.883 19.259
SG-2nd derivative 6 0.937 12.114 0.913 19.792 0.840 22.506

MSC 8 0.926 13.132 0.933 17.432 0.914 16.482
SNV 8 0.927 13.069 0.943 16.106 0.915 16.426

Max. normalization 7 0.920 13.699 0.938 16.797 0.922 15.711
Mean normalization 9 0.926 13.149 0.926 18.308 0.892 18.479
Range normalization 7 0.922 13.535 0.931 17.722 0.920 15.970

3.3. PLSR Models for Optimal Wavelength Selection Methods

Four variable selection methods were used to set the optimal wavelength bands from around
800 data set of wavelength (900–1700 nm). NIR dataset that was treated by maximum normalization
was used in the works of optimal wavelength selection because the PLSR model, which developed
by the preprocessing method of maximum normalization, showed the highest performance in the
moisture estimation of broadleaf litter in previous result. The selected wavelength set was then
input the PLSR model for predicting the moisture content of floor litter. Figure 5 illustrates the beta
coefficients and VIP values of PLSR model that were derived from the entire wavelength’s spectra.
As shown in Figure 5a, the peak points of beta coefficients were evenly distributed over the entire
wavelength band, and the largest peak point was discovered around 1450 nm. But, large VIP values
are observed around only in the range of 1400–1500 nm (exactly in the range of 1370–1580 nm) because
a threshold value of 1 is set in this study.

Figure 6 shows the first four weight vectors with respect to equivalent latent variables of
the PLSR model that were obtained from the entire wavelength’s spectra. The weight vector can
imply the correlation between the measured spectrum and calculated latent variables through PLSR
analysis. It revealed how much the measured spectrum contributed to the formation of corresponding
latent variables. As shown in Figure 6a–d, the highest peak is observed around the wavelength of
1400–1500 nm, which is highly correlated with the largest absorption coefficient of a water molecule.
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Figure 7 shows the optimal wavelength bands that were determined by four variable selection
methods. By applying the beta-peak method, 63 optimal wavelength bands corresponding to all of the
peak points of the beta coefficient were selected, and they were uniformly distributed over the entire
wavelength, as shown in Figure 7a. VIP method was implemented with different threshold values
(v = 0.7, 1.0, 1.5, 2.0), and the wavelength ranged from 1375 to 1577 nm was finally selected for v = 1.0
(Figure 7b). In the case of the bootstrap method, the significant level constant c was set to four cases
(c = 1.0, 1.3, 1.6, 1.9). For c = 1.3, the extracted wavelength bands were relatively evenly distributed
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over the entire range, as shown in Figure 7c. After applying the iPLS technique with several intervals,
150 variables were selected in the wavelength range of 1394–1543 nm (Figure 7d).Remote Sens. 2017, 9, 1212  10 of 14 
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Table 2 presents the calibration, validation, and test performance of the PLSR models developed
from the optimally selected wavelength’s spectra. Predictive abilities of different models have been
compared against the PLSR model with the entire wavelength’s spectra (hereafter, the full PLSR
model). As 63 wavelength bands, selected by the beta-peak method, were input in the PLSR model,
the model could better predict the litter moisture than the full PLSR model. The VIP method also
confirmed that the performance of the PLSR model taken from the 316 spectra showed better prediction
performance (Rt

2: 0.923, RMSEt: 15.597) than that of the full PLSR_model. VIP value of 1.5 marked
150 wavelength set among the entire wavelength range, and had a similar ability for litter moisture
estimation (Rt

2: 0.920, RMSEt: 15.916) with the entire wavelength PLSR_model.
The bootstrap method was applied to select the optimal wavelength. The PLSR model with

305 spectra data (c = 1.0) showed better capability in data analysis (Rt
2: 0.927, RMSEt: 15.164), while the

PLSR model with 106 spectra (c = 1.6) also showed a similar prediction performance (Rt
2: 0.918,

RMSEt: 16.128) when compared to the full PLSR model. A total of 150 wavelength bands was optimally
selected in the iPLS technique application, and the prediction performance of PLSR model achieved
the Rt

2 value of 0.918, RMSEt value of 16.115.
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Table 2. PLSR performance comparison with variable selection methods.

Method LVs No. of Variables
Calibration Validation Test

Rc
2 RMSEc Rv

2 RMSEv Rt
2 RMSEt

Full PLSR 7 804 0.920 13.699 0.938 16.797 0.922 15.711
iPLS 7 150 0.900 17.825 0.930 17.825 0.918 16.115

VIP v = 0.7 7 316 0.924 13.391 0.934 17.276 0.923 15.597
v = 1.0 7 203 0.905 20.131 0.910 20.131 0.918 16.130
v = 1.5 7 150 0.909 14.620 0.926 18.314 0.920 15.916
v = 2.0 7 40 0.884 16.522 0.853 25.818 0.859 21.167

Boots-trap c = 1.0 7 305 0.919 13.795 0.941 16.392 0.927 15.164
c = 1.3 7 192 0.916 14.012 0.940 16.472 0.924 15.526
c = 1.6 7 106 0.909 14.586 0.929 17.954 0.918 16.128
c = 1.9 7 35 0.875 17.1670 0.884 22.913 0.878 19.655

Beta-peak 6 63 0.918 13.834 0.932 17.494 0.930 14.905

As presented in Table 2, the predictive abilities of the PLSR models with reduced wavelength
bands by employing the variable selection methods showed similar or better performance with the full
PLSR_model, excepting only two cases of VIP (v = 2.0) and bootstrap method (c = 1.9). But, optimal
wavelength selection can improve the prediction accuracy by effectively identifying the best subset
of candidate spectra. It also eliminates unnecessary information so as to enhance the efficiency and
effectiveness of model run. Figure 8 shows the prediction results of the best PLSR models, which were
derived from the optimally selected wavelength’s spectra with the uncertainty estimation for samples
as shown by the error bar. In common with the results of Table 2, the PLSR model developed by the
variable selection of beta-peak method showed the best confidence in the test set, and the lower and
upper confidence limits that were calculated for this test set ranged from 11.3 to 10.8, while worst
confidence of the model developed by the VIP ranged from 13.7 to 13.2. However, whole samples
of Figure 8 were fairly predicted when compared to the result of Table 2, and the results show the
reliability of the model to predict the moisture content of floor litter.
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4. Conclusions

Litter refers to the organic residue on the forest floor, and plays an important role in forest water
cycle. Litter moisture is one of the critical determinants for evaporation, infiltration, and fire ignition
in a forest environment. In this study, the commonly used technique, NIRS, has been implemented to
fast, non-destructively monitor the moisture content of broadleaf litters. Several techniques for data
pretreatment and optimal wavelength selection have been tested to establish a reliable and robust
multivariate model.

Prior to establishing a PLSR model, the pretreatment was conducted to eliminate the unwanted
noise in raw NIR spectra. Maximum normalization preprocessing, one of well-known normalization
techniques, achieved the best prediction ability in litter moisture estimation among eight pretreatment
methods. The entire wavelength may uphold the whole information of target samples, but the
redundant data causes the decline in model accuracy. The peak of beta coefficients seems to be the best
variable selector to extract the optimal wavelength bands as to yield the better predictive ability in
litter moisture estimation.

The NIRS has been commonly used in both qualitative and quantitative analysis of target samples
with respect to the vibrational energy of molecules. The low optical absorbance characteristics of NIR
rays facilitates deeper penetration than mid-infrared rays. This optical method has some merits in
reducing time-consuming work and supporting reliable results by minimizing the errors that may
originate from the quick changes of litter moisture on the spot.

The NIRS also has limited ability to resolve noise that is caused by the instrument and environment
causes. NIR spectra tends to be highly complex and over-parameterized, which sometime yields a poor
prediction. In the face of its drawback, multivariate analysis through variable reduction and proper
pretreatment have been successfully introduced in practical uses. It is believed that this research
provides us with some great opportunities for multicomponent analysis of agricultural products and
foods, as well as many other scientific sectors, such as life sciences and biomaterial research.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1212/s1.
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