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Abstract: On Kranjsko polje in central Slovenia, carbonate conglomerates have been dated to several
Pleistocene glacial phases by relative dating based on the morphostratigrafic mapping and borehole
data, and by paleomagnetic and 10Be analyses. To define how the age of conglomerates determines
the geomorphological characteristics of karst surface features, morphometrical and distributive
spatial analyses of dolines were performed on three test sites including old, middle, and young
Pleistocene conglomerates. As dolines on conglomerates are covered by a thick soil cover and
show a strong human influence, the ground penetrating radar (GPR) method was first applied to
select dolines appropriate for further morphometrical and distributive analyses. A considerable
modification of natural morphology was revealed for cultivated dolines, excluding this type of
depression from spatial analyses. Input parameters for spatial analyses (doline rim and deepest point)
were manually extracted from the 1 × 1 m grid digital elevation model (DEM) originating from the
high-resolution LiDAR (Light Detection and Ranging) data. Basic geomorphological characteristics,
namely circularity index, planar size, depth, and density index of dolines were calculated for each
relative age of conglomerates, and common characteristics were determined from these data to
establish a general surface typology for a particular conglomerate. The obtained surface typologies
were spatially extrapolated to the wider conglomerate area in central Slovenia to test the existent
geological dating. Spatial analyses generally confirmed previous dating, while in four areas the
geomorphological characteristics of dolines did not correspond to the existing dating and require
further revision and modification. Doline populations exhibit specific and common morphometrical
and distributive characteristics on conglomerates of a particular age and can be a reliable and fast
indicator for their dating.

Keywords: doline; karst; land cultivation; morphometrical analysis; distributive analysis;
conglomerate; LiDAR; digital elevation model (DEM); ground penetrating radar (GPR); Kranjsko polje

1. Introduction

Consolidated and unconsolidated clastic deposits in the Ljubljana basin (central Slovenia) have
been related to Quaternary alternation of glacial and interglacial periods by several relative and
absolute dating methods. The specific morphological characteristics of a surface linked to these
different ages of deposits have already been noticed and briefly described by several authors [1–3].
Šifrer [1] had noticed that conglomerates are karstified to different degrees depending on their age.
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He observed that dolines lost their typical forms and are elongated and shallower on the old Günz
conglomerate compared to Mindel conglomerate, where dolines are circular and deep [1]. He also
noticed that the youngest Riss conglomerate is almost unaffected by karstification and that the surface
is only slightly undulating.

The linkage between the morphometrical properties of doline populations and a particular age
of carbonate conglomerate terraces was noticed for late-Miocene conglomerate in Italy [4]. However,
the morphometrical and distributive characteristics of a particular relative age of a conglomerate
have not been quantitatively observed and typified yet. Karst surface morphology, in particular
doline population properties, also has not been applied as a quantified tool to date carbonate
conglomerate terraces.

New methodologies for capturing relief data are more available nowadays and offer new
extensions to modern spatial analyses. The increasingly available high-resolution LiDAR (Light
Detection and Ranging) method for obtaining elevation data and creating digital elevation models
(DEMs) is still in early stages of ability and reliability testing compared to traditional topographic and
aerial surveying methods in modern karst geomorphology [5]. Researches applying high-resolution
DEMs are mainly focused on automation of dolines detection and delineation [5–8], rather than on
interpretations of the acquired geomorphological data [4,9].

In order to extract relevant spatial information from high resolution input data, a careful selection
of reliable test samples is required. Dolines have traditionally been subject to intensive anthropogenic
reshaping, thus the human impact should be taken into consideration when selecting dolines for further
spatial analyses. People have used dolines for agricultural land purposes and have transformed them
in order to gain the surface suitable for cultivation [10]. Nowadays, many dolines are no longer used
for traditional activities, such as farming, gardening, pasturing, and water supply. They are abandoned
or completely filled with various kinds of unknown material [11]. The morphological difference
between uncultivated and cultivated dolines can be indicated already from a visual examination of
high-resolution digital elevation models (DEMs). Cultivated dolines in the study area seem to be
shallower and leveled compared to those that were uncultivated. As the quality of morphometrical
and distributive analyses essentially depends on the relevance of the input data, ground penetrating
radar (GPR) was employed to define the representative doline sample.

Dolines and their morphometrical and distributive properties have been mostly studied on
compact carbonate rocks (limestones, dolomites). Ferrarese and Sauro [4] studied the conglomerate
karst of Montello in Italy, which they denote as “the classical karst of the conglomerate rock” because
of the similarities to the classical karst on limestones in Slovenia (Kras). Due to the particularity
of karstification in carbonate conglomerates [4,12] the results of this study could not be directly
transmitted to karst surfaces on carbonate rocks such as limestones and dolomites.

Spatial relief characteristics were quantified using high-resolution LiDAR data, and the
typification of karst surfaces on conglomerates of different relative ages was generated. Types of karst
surfaces were specified by morphometrical and distributive characteristics of dolines. They served as
a tool for dating wider conglomerate terraces in the area.

2. Geological Settings of Study Area and the Age of Quaternary Deposits

The Ljubljana basin was formed along the Sava fault and filled with glacial, glaciofluvial, and
fluvial sediments deposited in glacial periods in Quaternary [1,2]. Quaternary deposits overlie
impermeable, poorly lithified Oligocene mudstone (“sivica”), which covers underlying Tertiary
limestones (Figure 1). Pebbles that constitute the conglomerates are mostly carbonate, and the cement
mostly consists of calcite [2,13,14]. The non-carbonate parts (around 10%) are quartz pebbles [13]
and pebbles of mainly sedimentary rocks [3]. Uneven surfaces of the cave walls, where the pebbles
protrude out, show that the carbonate cement dissolves faster than pebbles in conglomerate [12].

Karst and contact-karst surface features such as dolines, shafts, blind and pocket valleys have
developed in conglomerates of the wider area. Several small caves have been found in conglomerates
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of all ages. Four general types of eogenetic caves were recognized on the older conglomerate terrace
Udin Boršt: linear stream caves, shelter caves, breakdown caves, and vadose shafts [15,16]. Most of
them are narrow horizontal passages that developed at the contact between the permeable carbonate
conglomerates and the impermeable Oligocene mudstone “sivica” [12].
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Figure 1. (a) The location of the study area; (b) A geological map [17] of the study area with three test
sites (1: Poljšica; 2: Dobrava; 3: Podbrezje).

The first relative dating techniques were based on the comparison of the relative elevation of
the surfaces, the induration of conglomerates (the degree of the hardening and cementation), as well
as the degree of surface degradation in terms of erosion, karstification, and soil thickness [1,2,18,19].
Four major morphostratigraphic units were distinguished in the Ljubljana Basin (Table 1): the Older
conglomerate fill of Günz age, the Middle conglomerate fill of Mindel age, the Younger conglomerate
fill of Riss age, and Gravel fill of Würm age [1,2,19,20]. Würm gravel fill is related to the latest
maximum cold period, based on the palynological analysis of a lacustrine sediments core [21].

Absolute age estimations of conglomerates were done by cosmogenic-nuclide burial dating
using 10Be (cosmogenic radionuclides dating) and paleomagnetic methods [22–24]. Absolute dating
(cosmogenic-nuclide burial dating using 26Al and 10Be) gave a burial age of 1.86 ± 0.19 Ma for
the oldest conglomerate terrace Udin Boršt [25]. The chronological and relative ages of gravel and
conglomerate fills are quite well accepted, starting from Penck and Brückner [26], while absolute
dating is still ambiguous.

All three conglomerates are covered with a thick soil layer. The thickness of soil varies from 1 m
to more than 8 m, depending on the age of the conglomerate. However, soil thickness differs between
areas of each individual conglomerate fill due to multiple periods of gravel deposition, or due to the
initial differences of the deposits [27]. Soil classification range from Mollisols on the youngest Würm
conglomerate, to Alfisols on the Riss, and Ultisols on the Mindel and Günz [22,27]. Soil thickness, the
thickness of Bt horizons, the amount and continuity of clay coatings, and the amount of Fe and Mn
concretions increase with soil age [27]. The variability of soil properties is generally higher within
subareas than between areas of the individual conglomerate fill, except for soil thickness.

Study sites of three different conglomerates, named young, middle, and old in this study,
correspond to the Younger, Middle, and Older conglomerate infills named by Žlebnik. Visual analyses
of the Ljubljana basin conglomerate areas indicated a high uniformity of doline properties on particular
ages of conglomerates. Locations of study sites (Podbrezje, Dobrava, Poljšica) were selected on the
basis of geological maps done by Žlebnik [2] and Pavich and Vidic [22] on locations with accordant
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dating of both studies that are located close together for easier visual representation on the map.
The borders of study sites were defined so as to include only forested dolines.

Table 1. The relative and absolute dating methods and inferred ages for the three study sites. The names
of glaciations are used as morphostratigraphic and not chronostratigraphic terms.

Locations of Test Sites
Relative Dating [2] Absolute Dating [22,24]

Related Glaciations Estimated Age (ka) Uncertainty Intervals (ka)

Gravel / Würm Würm I, II, III (62, 44, 32) (50–70, 40–50, 20–35)
Young conglomerate Podbrezje Riss Riss, 450 435–515
Middle conglomerate Dobrava Mindel Mindel I, II (960, 980) (780–1000, >780)

Old conglomerate Poljšica Günz Günz 1800 >1000

3. Methods

3.1. LiDAR and Morphometrical Analyses

New methods for automated doline detection and delineation as well as numerous tests of
their reliability are lately subject to considerable expansion [5,7,8,28,29]. Additionally, more and
more precise input data (LiDAR) for such researches has recently been made available, but issues
such as understanding the concept of surface karstification and the pitfalls of new methods
should be considered when trying to obtain results of the same quality as those expected from
high-resolution data.

Šušteršič [30] developed The Pure Karst Model with which he recognized the fundamental
processes of karstification having a vertical direction of outflow and resulting in basic elements of karst
surface, which are centrically organized depressions and intermediate elevations. The configuration of
such a surface does not follow the principles of fluvial morphology that are based on surface runoff
and result in a connected drainage system consisting of valleys and intermediate ridges. This should
be considered at data interpolation (some methods favor the hydrologically correct DEMs creating
a connected drainage structure—for example the interpolation tool “Topo to raster” by ArcGIS)
and when detecting and delineating karst depressions (some methods detect hydrologically closed
depressions that are based on surface runoff). Due to high spatial heterogeneity of rock properties
and vertical drainage, the karst surface is vertically irregular and therefore depressions often do not
have a hydrologically closed upper rim. Such characteristics of the karst surface prevent researchers
from employing tools for automated doline detection and delineation that are based on fluvial laws of
surface runoff. Obu and Podobnikar [29] presented the low precision of the automated recognition of
karst depressions obtained from DEMs (Digital Elevation Models). They employed a 12.5 m resolution
DEM, but did not even detect depressions with a 40 m diameter. Following some recommendations,
the point density of LiDAR data required for the detection and delineation of dolines is established to
be at least 5–12 pt/m2 [31].

The importance and the problem of the doline upper rim definition have already been discussed
by several authors [32–34]. Despite this, in most studies the doline upper rim is simply treated as
the uppermost closed contour [5,35]. Even though it is the most reasonable definition of the doline
perimeter, the principle of “an abrupt change in the surface slope” [33] has seldom been used in
practice due to its fieldwork requirements. Newly available high-resolution LiDAR data allows
manual delineation of dolines using the same method with a less time-consuming procedure.

In this research, the criteria for detecting a doline was “a depression of any size and depth
recognizable on the 1 × 1 m grid DEM”. Doline rims were, with some prior field examination,
determined visually and digitized manually from the shaded relief with the principle of “an abrupt
change in the surface slope” [32]. Such a highly subjective method of doline delineation was applied
as it was established to be more reliable than automated methods [36]. In the case of very shallow
depressions, detection of dolines on DEM proved more reliable than field detection. Due to the
inexpressive rims of those dolines, field determination of the perimeter was more problematic than
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remote determination. Field and remote data were more accordant in the case of deep depressions.
On the basis of these findings, all the input data (presence, location, and shape of dolines) and the
attributes of dolines (circularity, planar size, depth) that were employed in the following spatial
analyses, were acquired only from the 1 × 1 m grid DEM generated from the high-resolution LiDAR
data, by the tool “Point to raster” by ArcGIS, which directly assigns the point value to the raster pixel.
The highly circular nature of the depressions comprised within the given dataset prompted the use of
a circularity index that described those features most accurately [36]. The density index was calculated
to include the size of dolines, since dolines treated as points can give misleading results. When big
dolines are close to each other, the points representing their centers are as far apart as their radiuses
(Figure 2d). In this case, the distance between the centers of depressions 1 and 2 is the same as the
distance between the centers of depressions 2 and 3, while the distance between the depressions as
entities is different. Thus the density of a depression as the ratio between the area of the depression
and the area of the belonging Voronoi polygon was calculated (i.e., density index). Morphometrical
and distributive analyses (Table 2) were carried out on a total of 279 depressions.

Spatial analyses were performed using a 1 × 1 m grid DEM generated from LiDAR data [37].
The point density of LiDAR data for the study area was 5 pt/m2 with up to 30 cm horizontal and up
to 15 cm vertical precision [38]. LiDAR data was filtered with a gLiDAR tool [39] by extracting the
most-contrasted connected components in order to remove the non-ground objects [40,41].

Table 2. The investigated characteristics of depressions on conglomerates and methods employed in
morphometrical and distributive analyses.

Doline Characteristic Parameter Method

Morphometrical
analyses

The circularity of the
planar shape

Circularity
index (Ic)

Pcc
Pd

where
Pcc = The circumference of the
circumscribed circle
Pd = The perimeter of the doline
(Figure 2a)

The size of the planar
shape A The area of the doline planar shape (m2)

(Figure 2b)

Depth h

The vertical distance (m) between the
highest elevation of the doline rim and
the lowest elevation of the doline
bottom (Figure 2c)

Distributive
analyses

Density including the
size of dolines

Density index
(Id)

Ad
Av

where
Ad = The area (m2) of the doline planar
shape
Av = The area (m2) of the zone where
any location is closer to its associated
doline than to any other doline (Voronoi
polygon)
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Figure 2. (a) The parameters of a doline circularity index; (b) The area of a doline planar shape, visually
determined from LiDAR data; (c) The acquisition of the depth parameter; (d) The influence of doline
size on density calculation.

3.2. Ground Penetrating Radar

Ground penetrating radar is a non-invasive technique that has engineering, environmental,
glaciological, and archaeological applications. Numerous studies describe the successful application
of different geophysical techniques to characterize the internal geometry of dolines, providing better
understanding of their formation and evolution. Among them, the GPR method provides the highest
resolution images. It has been widely used to image the structure of dolines and to locate the potential
collapse dolines [42–48].

GPR can be an appropriate tool in many new sub-disciplines that have emerged over the last
15 years, such as forensic geophysics, bio-geophysics, and agro-geophysics [49]. Recently, many studies
describe the application of GPR to investigate soil moisture/water content and to determine the extent
and lateral variations of soil horizons and their properties [50–55]. Since the thickness of soil cover
at the study area exceeds 5 m, knowledge of soils and soil properties is essential to understand the
effectiveness of GPR. The chemical, physical, mineralogical, and electromagnetic properties influence
the propagation velocity, attenuation, and penetration depth of electromagnetic energy [49].

The electrical conductivity of soils increases with increasing water, soluble salt, and/or clay
contents and is governed not only by the amount of clay particles, but also by the types of clay
minerals [56]. In the granitic terrain, it was established that the mineralogical composition and
the abundance of the minerals strongly influence the depth of penetration where the increased
biotite content in regolith restricts GPR performance [54]. According to all mentioned factors, depth
penetration in different soils varies from 30 m in clay-free sands to less than 0.5 m in wet clayey
soils [57,58].

The boundaries which separate soil horizons are usually associated with differences in moisture
contents, physical (texture and bulk density) and/or chemical properties. GPR can therefore be used
to detect the boundaries between subsurface horizons [49]. However, if electrical properties are
similar, different horizons and sometimes even boundaries between soil materials and bedrock are
indistinguishable on radar profiles [58]. Some diagnostic surface pedological horizons, such as the
argillic horizon (Bt), have a distinctly higher clay content than the overlying horizon and radar signals
are rapidly attenuated at the boundary. Therefore, GPR can be a successful tool for estimating the
depth to Bt horizons, which have well-defined upper boundaries that display abrupt increases in bulk
density and illuviated silicate clays ([49] and references therein). Due to the increase of clay content
and bulk density, a Bt horizon generally provides smooth, continuous reflectors on the GPR data that
occur at uniform depths [49].

The GPR Survey and Data Processing

The ProEx (MALA Geoscience, Sweden) ground penetrating radar with an RTA (Rough Terrain
Antennas) unshielded 50 MHz bistatic antenna was used with a common offset technique. The length
of the GPR system with a flexible snake-like design is 9.25 m, and the spacing between the receiver
and the transmitter is 4 m [59]. In addition, a 250 MHz bistatic shielded antenna was used.
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GPR profiles were recorded at all three test sites (Figure 1) over cultivated and uncultivated
dolines to quantify the anthropogenic shape modifications. Profiles were acquired at cultivated areas
Poljšica (old conglomerate) and Dobrava (middle conglomerate) to reveal the anthropogenic impact
on the depth of the dolines (Profiles 1 and 2). Profile 3 was recorded on the young conglomerate above
a roadcut to obtain the contact between the soil and conglomerate bedrock where the soil cover is
significantly thinner than the soil cover on the old and middle conglomerate, and mainly does not
exceed 2 m. This profile was recorded as a testing profile where the contact is visible on the terrain to
correlate the results obtained from Profile 4. On the young conglomerate at Podbrezje, dolines are not
clearly expressed on cultivated areas; only the profile over the uncultivated doline in the forest was
measured to obtain the primary shape of the doline (Profile 4).

All profiles were measured in two directions perpendicular to each other with a 50 MHz and
250 MHz antenna. It turned out that the unshielded 50 MHz antenna gave more useful results due
to better depth of penetration, especially on the old and middle conglomerate, where soil cover is
thicker than 5 m. The profiles measured in the forest contain too much noise from the trees due to the
unshielded antenna. Here, the shielded 250 MHz antenna provided more useful information, mostly
on the young conglomerate, where soil cover is relatively thin and the depth of penetration is around
6–7 m. Selected profiles and their basic data are summarized in Table 3.

Table 3. Basic data of the presented GPR profiles acquired with the 50 MHz unshielded and 250 MHz
shielded antennas.

Profile Location Type Length (m) Antenna Frequency

Profile 1 Poljšica (old conglomerate) cultivated doline 46.4 50 MHz
Profile 2 Dobrava (middle conglomerate) cultivated doline 57.4 50 MHz
Profile 3 Podbrezje (young conglomerate) soil/conglomerate 79.5 250 MHz
Profile 4 Podbrezje (young conglomerate) uncultivated doline 64.4 250 MHz

The profiles were processed with the ReflexW program. The following processing steps were
applied: subtract-mean (dewow), time zero correction, background removal, manual gain, bandpass
filtering, and topographic correction. The velocity used to convert the two-way travel time into
depth was different depending on the expected prevailing material and the depth of penetration for
each frequency. In Profiles 1 and 2, the signal did not reach the underlying conglomerate due to several
meters of soil, thus the velocity for average soil was used according to the values in the literature
(εr = 16; υ = 0.075 m/ns; [49,60]). In Profile 4, several hyperbolic diffractions occur below the soil in
the conglomerate basement. By hyperbola fitting, velocities between 0.10–0.08 m/ns were observed.
An average velocity υ = 0.09 m/ns was used to convert two-way travel time in Profiles 3 and 4. In the
literature, there is no standard value for velocity in such material, but the expected velocity for a
carbonate conglomerate should be lower than in carbonates due to the heterogeneous composition
causing diffraction and signal scattering. The velocity obtained in Profile 4 could represent the relevant
velocity for conglomerate.

4. Study Area and Test Sites

4.1. GPR Results and Defining the Appropriate Test Dolines for Morphometrical Analyses

The DEM derived from the LiDAR data already indicates the morphological difference between
cultivated and uncultivated dolines (Figure 3). Cultivated dolines are shallower and their primary
form was reshaped by anthropogenic tilling. On old conglomerate, the depth of uncultivated dolines
is 6–8 m, while the depth of cultivated dolines is 4–5 m. The slopes of the cultivated dolines are less
steep and smoother due to anthropogenic tilling.

Laterally continuous strong reflectors are visible in Profiles 1 and 2 (Figures 4 and 5). They most
likely belong to the argillic horizon (Bt) related to clay accumulation, because its depth corresponds
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to the data observed by a previous study [22]. Following the inventory of the complete soil profiles
obtained on conglomerates of different ages in the area, the Bt horizon occurs at an approximate depth
of 0.3–0.6 m below the surface and underneath the pedological A or B horizon [22]. The thickness
of this horizon amounts to 2.5 m on young conglomerate and more than 3 m on middle and old
conglomerates [22].

The difference in the dielectric constant between the upper horizon (generally A or AB horizon
according to Pavich and Vidic [22]) and the Bt horizon due to the clay and moisture content in the
Bt horizon leads to the strong reflectivity at the boundary between horizons. The Bt horizon causes
strong signal attenuation and presents the limit of depth penetration.Remote Sens. 2017, 9, 1213  8 of 23 
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Figure 3. Topographic profiles across cultivated and uncultivated dolines at Poljšica field site [37].

Subsurface horizons are normally parallel and uniform so their shape can be an indirect indicator
of agricultural changes in dolines. If the horizons within a doline appear at the same depth as in
the surrounding area, the shape of the Bt horizon can provide information about the thickness of
the redeposited material, as well as the shape and depth of the doline before cultivation. A slightly
undulating reflector within a doline indicates that the primary doline was deeper (Figures 4 and 5).
On Profiles 1 and 2, the depth of the redeposited material above the Bt horizon can be roughly evaluated.
The maximum thickness of the redeposited material is 2.5 m, considering the dielectric constant for the
average soil. This corresponds to the difference between the depths of cultivated and uncultivated
dolines derived from DEM. Soil from the slopes was partially terraced and partially moved to the
bottom of the dolines to acquire a larger area and to lower the inclination of the slopes. Based on the
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GPR data, the redeposited soil was mixed with more sandy material because the signal penetrates well
through it.

Another explanation for the irregular upper boundary of the Bt horizon can be attributed to the
underlying dissolution features that are associated with karst processes in conglomerate basement [53].
However, this interpretation is unlikely because the reflector representing the Bt horizon is too smooth
and continuous for its shape to be the consequence of the karstification processes under dolines.
Furthermore, the estimated thickness of the redeposited material corresponds well with the depths
derived from DEM.Remote Sens. 2017, 9, 1213  9 of 23 
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Figure 4. (a) The direction of Profile 1 acquired over a cultivated doline on old conglomerate (Poljšica).
The right side of the doline is slightly terraced; (b) A processed and topographically corrected
radargram; (c) An interpreted radargram.
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Figure 5. (a) The direction of Profile 2 acquired over a cultivated doline on middle conglomerate
(Dobrava); (b) A processed and topographically corrected radargram; (c) An interpreted radargram.

The contact between the soil cover and conglomerate basements is mostly very irregular, forming
pockets and bulges (Figure 6A). Profile 3 was measured to observe the contact between the soil cover
and the conglomerate bedrock on young conglomerate over a roadcut, where the soil cover is relatively
thin (up to 2 m). The boundary between the soil and conglomerate is unclear on the GPR data due to
the uneven contact and insufficient difference in dielectric properties related to the gradual transition
of soil into the conglomerate basement (Figure 6). If the contrast in dielectric properties is too low or
the difference is not sudden enough, no distinct reflections are found on the GPR data.
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In order to confirm the primary shape of cultivated dolines acquired with GPR, an uncultivated
doline on young conglomerate was also measured (Profile 4, Figure 7). The soil cover on young
conglomerate is significantly thinner, so the contact between the soil and conglomerate can provide
some information about the primary shape of the doline.

The radargram of Profile 4 shows that no distinctive reflector is visible that could represent the Bt
horizon as in Profiles 1 and 2. Similarly, the soil/bedrock interface over the uncultivated doline is not
clearly expressed as high-amplitude reflections, but is distinguishable in the form of occurrences of
hyperbolic diffractions (Figure 7). They are the consequence of cavities and fractures within a karstified
carbonate conglomerate. The soil/bedrock interface is unclear due to the presence of coarse fragments
or blocks in the overlying soil, irregular bedrock surfaces, and fracturing that are characteristic of karst
on carbonates and on conglomerates.

The boundary soil/bedrock (highlighted by the dashed line in Figure 7) is defined by
hyperbolic anomalies. The thickness of the soil cover varies between 1 and 3 m, which corresponds
with the known soil thickness on young conglomerate [22].
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A simplified model of anthropogenic reshaping of the doline was constructed using the detected 
Bt horizon on the GPR data from cultivated dolines (Figure 8). The primary shape of dolines is 
difficult to reconstruct. The primary depth of dolines can be approximately obtained from the GPR 
data, but that kind of determination is very time-consuming when a large number of dolines must be 
measured. GPR results show considerable morphological modifications of dolines due to 
anthropogenic intervention, as cultivated dolines are approximately 2 m shallower than uncultivated 
ones. This is why dolines on cultivated areas were excluded from further spatial analyses.  

Figure 7. (a) The direction of Profile 4 acquired with a 250 MHz antenna over an uncultivated
doline on young conglomerate (Podbrezje); (b) The soil/bedrock boundary is estimated by the
appearance of hyperbolic diffractions caused by cavities and fractures within carbonate conglomerate.
Vertical exaggeration 1:3.

A simplified model of anthropogenic reshaping of the doline was constructed using the detected
Bt horizon on the GPR data from cultivated dolines (Figure 8). The primary shape of dolines
is difficult to reconstruct. The primary depth of dolines can be approximately obtained from
the GPR data, but that kind of determination is very time-consuming when a large number of
dolines must be measured. GPR results show considerable morphological modifications of dolines
due to anthropogenic intervention, as cultivated dolines are approximately 2 m shallower than
uncultivated ones. This is why dolines on cultivated areas were excluded from further spatial analyses.
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Figure 8. A simplified model of agriculturally reshaped dolines. The Bt horizon in the current form of
the doline as detected by the GPR survey indicates the redeposited material.

4.2. Test Sites for Spatial Analyses

Study sites on three different conglomerates (young, middle, and old) were selected on the basis
of the maps done by Žlebnik [2], and Pavich and Vidic [22] on locations where the dating of both
authors was accordant (Table 4) and where the surface is forested. They are at most 1.5 km apart
and are separated by the valleys of the Sava and Lipnica rivers (Figure 9) which flow at the elevation
of approximately 380 m. The oldest conglomerate (Poljšica) is at the altitude 470–490 m, similar to
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the middle conglomerate (Dobrava) which is located at 475–485 m, while the youngest conglomerate
(Podbrezje) is at a lower altitude (450–460 m). On the basis of DEM examination and GPR data, only
dolines on uncultivated areas were subject to spatial analyses.
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Table 4. Basic statistics of test sites.

Podbrezje Dobrava Poljšica

Relative age of conglomerate Young Middle Old
Area (m2) 382 108 775 562 309 349

Number of identified dolines 21 185 73

5. Results

5.1. The Circularity of the Doline Planar Shape

Doline planar shapes are highly circular and uniform on conglomerates of all ages. Mean values
of the circularity index (Ic) for doline planar shapes (Figure 10) are 1.104–1.069, being close to the
value 1.000 of the circle. The range of the majority of values is similar for all three sites (1.05–1.13),
while the irregularity slightly increases with the age of conglomerate, as well as the dispersion of
values. Circularity is not linked to the size of a doline planar shape, nor to doline depth (Figure 11).
The independence of size and conglomerate age (and other mechanical and chemical properties
of the rock) from generally high circularity of dolines indicates that circularity as one of the main
characteristics of dolines is linked to external factors of karst surface reshaping, rather than to the
temporal aspect of doline evolution. Spatial distribution of dolines classified by planar size does not
indicate any particular patterns.
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5.2. The Area of the Doline Planar Shape

Based on the calculated values (Figure 12), the planar size of the dolines on all conglomerates
appears as a highly constant characteristic. The majority of values for all ages of conglomerate
range from 800 to 1900 m2, which is a very narrow class, while the dispersion of values increases
considerably with the age of conglomerate. A slight decrease of doline planar size mean value follows
the increasing age of conglomerate due to the appearance of dolines with very small planar size on
the old conglomerate. It is of particular interest that the planar size of shallow dolines on young
conglomerate (see also Section 5.3) does not deviate noticeably from the planar size of deep dolines
on middle or old conglomerate, which means that a doline acquires its planar size in its early stage
of development (Figure 13). The same was established by Ferrarese and Sauro [4] for dolines on
Montello conglomerate and explained by diffuse porosity in conglomerate rock. The conceptual
model applicable to the Dinaric solution dolines was used as a base to calculate that the expansion
rate of a doline perimeter decreases with time as the reciprocal of a quadratic function, meaning
that the increase of the planar shape size is fast in the beginning and slows down later [61]. A high
variability of shapes (see Section 5.1), as well as a high variability of planar sizes were noticeable on
old conglomerate, where big and very small dolines occur together. The size is the most uniform on
young conglomerate, and the uniformity decreases with the increasing age of conglomerate. Spatial
distribution of dolines by planar size does not show any specific patterns.
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Figure 12. The area of a doline planar shape for conglomerates by age.
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Figure 13. Depth to perimeter relationship for dolines on conglomerates by age.

5.3. Doline Depth

The considerable difference in doline depth range is noticeable between young conglomerate on
one side, and middle and old conglomerate on the other (Figure 14). Dolines on young conglomerate
are shallow (mean 2.7 m) and very uniform, deviating only 3.3 m in depth, while dolines on the other
two sites (mean 5.6 m for middle and 5.5 m for old conglomerate) are on average much deeper and
considerably more varied, deviating as much as 10.8 m in depth on old conglomerate. Generally,
the depth of dolines increases with the increasing age of conglomerate, where the average on old
conglomerate is lowered by the presence of very shallow depressions. The increase of doline depth
with age is consistent with the usual time-dependent growth of natural phenomena, but shallow
dolines on young conglomerate may also be the reflection of relatively slower karstification processes
due to less favorable rock properties. Spatial distribution of dolines by depth does not indicate any
particular patterns.
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Figure 14. Doline depth for conglomerates by age.

5.4. Doline Distribution

Dolines cover 9% of young conglomerate, 38% of middle, and 29% of old conglomerate at the
test sites. The density is the lowest (mean 0.152) but quite uniform on young conglomerate. On middle
conglomerate, the high density (mean 0.397) is very uniform over the entire test site. Big dolines are
especially densely distributed, a phenomenon which is particularly obvious on old conglomerate.
Here, density is the least uniform as big dolines are located close to each other, while smaller dolines
occupy empty areas where they are spread more uniformly and far apart (Figure 15). This phenomenon
is especially evident on old and middle conglomerate. The distribution of dolines is not linked to
linear tectonic structures. This was already observed on Montello conglomerate karst [4], where the
same authors explained that it stemmed from the predominance of diffuse over fracture porosity.
They concluded that the pattern of dolines on conglomerate reflects the influence of morphological
elements rather than a fracture network.
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5.5. Typization of Karst Surface Morphology as a Tool for Dating Conglomerates

Morphometrical and distributive analyses of dolines on unconsolidated carbonate gravel
and on old, middle, and young carbonate conglomerates indicate the following general
geomorphological characteristics:

• Unconsolidated gravel: the surface is flat with no surface features (Figure 16a).
• Young conglomerate: the surface is flat and characterized by scarce shallow surface features.

Shallow linear depressions appear as nearly unrecognizable irregularities. Sporadically, large but
shallow dolines develop. In some cases, their location seems to be linked to linear depressions
(Figure 16b).

• Middle conglomerate: the surface is rather flat and entirely covered by mainly uniform, funnel-like
deep dolines (Figure 16c).
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• Old conglomerate: the surface is irregular; the depressions come in all sizes, depths, and shapes
(Figure 16d) and do not entirely cover the surface. The largest and deepest dolines occur here
(Type 1), as well as small and shallow (Type 2), and double ones (Type 3).
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Figure 16. The typical surface morphology of gravel and karstified conglomerates by age with the
profiles across characteristic dolines. (a) Gravel: flat surface with no surface features; (b) Young
conglomerate: flat surface with scarce shallow surface features (dolines and linear depressions);
(c) Middle conglomerate: rather flat surface with uniform dolines of high density; (d) Old conglomerate:
irregular surface with depressions of high morphologic heterogeneity (profiles across the three types
of dolines).

According to the acquired data, dolines on young conglomerate are the most uniform. They are
characterized by large and the most circular planar shapes, while they are the shallowest compared to



Remote Sens. 2017, 9, 1213 19 of 23

dolines on other conglomerates. Dolines on old conglomerate, however, are the most heterogeneous in
each parameter, with the smallest average size and the least regular planar shape. The deepest dolines
can be found on this conglomerate, but many shallow dolines also occur. The latter are different from
those on young conglomerate, as they are small and more irregular (Table 5).

Table 5. Descriptive morphometrical and distributive characteristics of dolines for karstified
conglomerates by age.

Young Conglomerate Middle Conglomerate Old Conglomerate

Surface features shallow linear depressions, dolines dolines dolines

Dolines

volumetric shape bowl-like funnel-like Type 1: funnel-like
Type 2: bowl-like

planar shape highly circular highly circular Type 1: highly circular
Type 2: irregular

planar size uniform uniform Type 1: uniform
Type 2: small

depth shallow Type 1: deep
Type 2: shallow

Type 1: deep
Type 2: shallow

slope gentle steep Type 1: extremely steep
Type 2: gentle

frequency rare numerous moderate

uniformity high moderate low

Distribution sporadic covering the entire surface scattered

6. Discussion

The visual analysis of shaded relief derived from high-resolution LiDAR data itself already
enables the recognition of relief differences on particular ages of carbonate conglomerates. However,
morphometrical and distributive spatial analyses of dolines were performed to quantify the specific
characteristics that are linked to the age of conglomerate. Noticeable differences in calculated
parameters confirmed a satisfactory reliability of visual analysis in distinguishing karstified surfaces
on carbonate conglomerates. Based on this, visual analysis was employed to extrapolate the data
to the wider conglomerate area in the Ljubljana basin, which proved an easy and fast method for
surface classification without time-consuming field examinations. Among all the analyzed parameters,
the scarcity and the shallowness of dolines were the most distinctive characteristics of doline population
developing on young conglomerates. As the distribution of dolines on middle and old conglomerates
may sometimes appear similar, the degree of uniformity of morphometrical properties was the crucial
factor for their distinction.

The reliability of geomorphological dating (Figure 17) was tested by comparing the
geomorphological characteristics of the analyzed sites to all the areas dated by Žlebnik [2], and Pavich
and Vidic [22]. The DEM from the high-resolution LiDAR data shows a high accordance of the
surface karstification degree with relative dating based on the morphostratigrafic mapping and
borehole data [2], as well as cosmogenic-nuclide burial dating and paleomagnetic methods [22].
The geomorphological dating method fails on very small areas as a certain amount of the surface should
be exposed and karstified in order to generalize local morphometrical and distributive characteristics
(marked blue in Figure 17).

Discrepancies with Žlebnik’s [2] dating were found on two locations (A and B), and on another
two with the dating done by Pavich and Vidic [22] (C and D) (Figure 17). A high morphological
diversity of features and some extreme doline depths are more closely related to old conglomerate
than with middle on Location A, which corresponds with the dating by Pavich and Vidic [22].
On Location B, the distribution of dolines is too dense to belong to young conglomerate, while the
shallowness of dolines is due to human impact. After geomorphological dating, this site corresponds to
middle conglomerate. Towards the south, the surface lacks any surface irregularities, so it was classified
as a Würm gravel fill. Indicating shallow surface irregularities, Locations C and D correspond to
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young conglomerate. Both results of geomorphological dating at Locations C and D are in accordance
with Žlebnik’s dating [2].Remote Sens. 2017, 9, 1213  20 of 23 

 

 
Figure 17. A comparison of geomorphological dating by the type of surface karstification with relative 
dating based on morphostratigrafic mapping and borehole data by Žlebnik [2] and absolute dating 
based on paleomagnetic and 10Be analyses by Pavich and Vidic [22] in the wider area of the Ljubljana 
Basin. Discrepancies in geomorphological dating are marked with A–D. 

7. Conclusions 

Pleistocene conglomerates of different ages in the Ljubljana Basin were subject to different 
relative and absolute dating methods in the past. The different degrees of karstification, as well as 
doline shape and depth obtained on the terrain during geological mapping were used as additional 
indicators for determining the relative age of conglomerate terraces.  

Nowadays, LiDAR data with high spatial resolution enables a better detection of dolines and a 
fast determination of different parameters needed for further morphometrical and distributive spatial 
analyses. The main purpose of the study was to classify all conglomerate terraces within the Ljubljana 
Basin on the basis of the geomorphological characteristics of dolines obtained on the three test sites 
including old, middle, and young conglomerates.  

The surface on all three conglomerates is partially forested and also partially cultivated. The 
ground penetrating radar (GPR) method was used to select the appropriate dolines for further 
analyses. GPR results confirmed the observations from LiDAR images: cultivated dolines are 
shallower and have lower slope inclination due to redeposition of soil from the flanks into the doline. 
GPR data measured over cultivated dolines on old and middle conglomerate proves that cultivated 
dolines are approximately 2.5 m shallower in the bottom due to the human tilling, while some dolines 
are also slightly terraced. For that reason, cultivated dolines were not included in further 
morphometrical analyses. 

Circularity index, planar size, depth, and density index of dolines were calculated at the three 
test sites for each relative age of conglomerates. Morphometrical and distributive analyses revealed 
that dolines have typical geomorphological characteristics on each of the conglomerates of a relative 
age. Results derived at all three test sites were further extrapolated to the wider area of the Ljubljana 
Basin and compared with relative dating [2] and absolute dating [22] to test the reliability of 
geomorphological dating. The results of spatial analyses generally confirmed former dating and 
proved that geomorphological dating can be a fast and reliable method for dating karstified 
conglomerates. Furthermore, the morphometrical and distributive data obtained from the dolines 
can be used as a basis for future research analyses aimed at understanding the karstification processes 
in conglomerates. 

Acknowledgments: This study was conducted with the support of the research Program P1-0011 and the Ph.D. 
grant 1000-15-0510 financed by the Slovenian Research Agency. This work also benefited from networking 
activities carried out within the EU-funded COST Action TU1208 “Civil Engineering Applications of Ground 
Penetrating Radar”. We would also like to thank Andrej Pipan for field assistance, France Šušteršič for comments 
and advice during the preparation of this paper, and Tomaž Verbič for sharing his field experience related to the 
geophysical and pedological properties of conglomerates. 

 

Figure 17. A comparison of geomorphological dating by the type of surface karstification with relative
dating based on morphostratigrafic mapping and borehole data by Žlebnik [2] and absolute dating
based on paleomagnetic and 10Be analyses by Pavich and Vidic [22] in the wider area of the Ljubljana
Basin. Discrepancies in geomorphological dating are marked with A–D.

7. Conclusions

Pleistocene conglomerates of different ages in the Ljubljana Basin were subject to different relative
and absolute dating methods in the past. The different degrees of karstification, as well as doline shape
and depth obtained on the terrain during geological mapping were used as additional indicators for
determining the relative age of conglomerate terraces.

Nowadays, LiDAR data with high spatial resolution enables a better detection of dolines and
a fast determination of different parameters needed for further morphometrical and distributive
spatial analyses. The main purpose of the study was to classify all conglomerate terraces within the
Ljubljana Basin on the basis of the geomorphological characteristics of dolines obtained on the three
test sites including old, middle, and young conglomerates.

The surface on all three conglomerates is partially forested and also partially cultivated.
The ground penetrating radar (GPR) method was used to select the appropriate dolines for
further analyses. GPR results confirmed the observations from LiDAR images: cultivated dolines are
shallower and have lower slope inclination due to redeposition of soil from the flanks into the doline.
GPR data measured over cultivated dolines on old and middle conglomerate proves that cultivated
dolines are approximately 2.5 m shallower in the bottom due to the human tilling, while some
dolines are also slightly terraced. For that reason, cultivated dolines were not included in further
morphometrical analyses.

Circularity index, planar size, depth, and density index of dolines were calculated at the
three test sites for each relative age of conglomerates. Morphometrical and distributive analyses
revealed that dolines have typical geomorphological characteristics on each of the conglomerates of a
relative age. Results derived at all three test sites were further extrapolated to the wider area of the
Ljubljana Basin and compared with relative dating [2] and absolute dating [22] to test the reliability of
geomorphological dating. The results of spatial analyses generally confirmed former dating and proved
that geomorphological dating can be a fast and reliable method for dating karstified conglomerates.
Furthermore, the morphometrical and distributive data obtained from the dolines can be used as a
basis for future research analyses aimed at understanding the karstification processes in conglomerates.
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