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Abstract: The multibeam echo sounders (MBES) can acquire accurate positional but low-resolution
seabed terrain and images, whereas side scan sonars (SSS) can only acquire inaccurate positional but
high-resolution seabed images. In this study, a new method for superimposing corrected-positional
SSS images on multibeam bathymetric terrain is proposed to obtain high-resolution and
accurate-positional seabed topography using traditional MBES and SSS. Three steps, including
the normalization by the z-score, sediment classification by the k-means++ algorithm, and denoising
processing using morphological operations, are processed for both MBES and SSS images to obtain
the corresponding sediment images. Next, a segmented matching method is given based on the
common sediment distributions and features of MBES and SSS sediment images. The two kinds
of sediment images are matched segmentally using the speeded up robust features algorithm and
random sample consensus algorithm. Then, the positions of SSS images are corrected segmentally
using thin plate splines based on matching points. Finally, the corrected SSS image is superimposed
on MBES bathymetric terrain, based on positional relationship. The proposed method was verified
through experiments, and high image resolution and high position accuracy seabed topography were
obtained. Moreover, the performances of the method are discussed, and some conclusions are drawn
according to the experiments and discussions.

Keywords: multibeam echo sounder; side scan sonar; image matching; seabed classification;
image registration

1. Introduction

Multibeam echo sounders (MBES) and side scan sonars (SSS) have wide applications in remote
sensing of seabed topography or morphology [1–5]. The SSS, which usually has higher frequency
than MBES, has certain advantages, such as low cost and easy installation, and its ability to obtain
large-scale, high-resolution, and high-signal-to-noise ratio (SNR) seabed images [1]. Given that the
towing operation mode is often adopted in SSS measurement, the positions of an SSS towfish are
estimated through the headings and positions of the surveying vessel and towing length and depth.
SSS images often suffer low accuracy position because of varying vessel operation and hydrological
conditions, and have a limited preciseness in applications. An MBES is usually installed at the bottom
of a surveying vessel to obtain accurate positional bathymetry and backscatter image, but the resolution
and SNR of MBES surveying results are much lower than those of SSS image, and further decrease with
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the increase in water depth. Many actual applications have verified the difficulty of obtaining highly
accurate high-resolution terrain and image through traditional MBES or SSS in the measurement of a
middle or deep water directly [6].

At present, the above problem can be solved in three main ways. The first is application of light
detection and ranging (LiDAR), which can measure the topography and physical characteristics
of the seafloor by, respectively, pulsing sound or laser light. However, its application depth is
limit less than 50 m [7]. The second is the introduction of new instruments, which combine MBES
and phase-differencing bathymetric technique [8]. These new instruments are called multi-phase
echo sounder (MPES), such as Kongsberg’s GeoSwath and Edgetech 6205 bathymetric SSS. MPESs
can acquire accurate positional bathymetric data and high-resolution seabed image simultaneously,
but they have disadvantages, such as expensiveness, low penetration, and limitations in terms of
water depth (<200 m). The complementarity of SSS and MBES data implies another method to
obtain high-resolution and accurate positional seabed topography through the superimposition
of two-dimensional (2D) SSS images on three-dimensional (3D) MBES terrain. Researchers have
attempted to study the superposition method in various ways. Yang et al. [6] used the similarity of
MBES topographic contours and SSS image contours to carry out the matching and superposition.
Zhao et al. [9] focused on matching the MBES terrain images and SSS images. These methods were
based mainly on the correlation of MBES terrain and SSS images, but often suffer weak correlation and
incorrect matching because of poor relation between terrain and seabed images. Moreover, matching
3D MBES terrain and 2D SSS images directly is difficult because of different data types. The terrain
data present seabed undulating, whereas sonar images reflect seabed features and seabed sediment
variations, and are affected by the beam patterns, scattering models, and image processing algorithms.
Hence, these methods may be ineffective when dealing with undulating seabed with single sediment
or flat seabed with various sediments.

Fortunately, modern MBESs can record time-sequence backscatter strength (BS) data (i.e., snippet)
and resolutions of snippet images are higher than those of the images formed by traditional average
beam BS. Both MBES and SSS images are formed using BSs, and thus can reflect similar seabed textures,
targets on the seabed, and distributions and variations of seabed sediments. Therefore, solving the
correlation problem in the current matching methods becomes possible. Hughes Clarke [10] stated
the equivalence of MBES and SSS images. Le [11] analyzed the influencing factors on the qualities
of MBES and SSS images, and found them to be very similar. Various 2-D sonar image registration
techniques that are based on feature-based [12], template-based [13], region-based [14], as well as
Fourier-based approaches [15] have been explored. The speeded up robust features (SURF) algorithm
based on point feature matching shows good performance when applying to sonar data if we can
control signal-to-noise ratio of the sonar data or transform sonar image to other form [16]. Therefore,
this study proposes a new method for the superimposition of SSS images and MBES terrain based
on the matching of the two types of sonar images. Through superimposition, inaccurate positional
problem, which limits the applications of SSS image, can be solved, and high-resolution and accurate
positional seabed topography is obtained with the results of traditional MBES and SSS.

The structure of this paper is as follows. Section 2 introduces the characteristics of MBES and SSS
images. Section 3 provides the detailed method of superimposition of SSS image and MBES terrain,
including the acquisitions of MBES and SSS sediment images, segmental matching between MBES and
SSS sediment images, determination of transformation relations between MBES and SSS images, and
the superimposition of corrected SSS image and MBES terrain. Section 4 presents the validation and
analysis of the proposed method through experiments. Section 5 provides the corresponding discussion.
Section 6 presents several beneficial conclusions drawn from the experiments and discussions.

2. MBES and SSS Images

Given that the equal-angle-spacing mode (Figure 1a) is often adopted by MBES, the distances
across the ping sounding points would be enlarged with the increase in beam incident angle and water
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depth. The SNR of MBES BS is usually low because of the interferences of the main lobes, side lobes,
and scattering echoes [11]. The frequency of MBES is usually lower than SSS for better penetrability.
A higher-frequency SSS is applied mainly to obtain higher-resolution acoustic images and to find
underwater targets; hence, it does not have sounding ability. SSSs are often towed behind a vessel to
avoid hull noise and interferences from side and wake flows, as shown in Figure 1b. The SSS beam
pattern is simpler than MBES. These features of SSS cause significantly higher resolution and SNR of
the SSS image than those of MBES. The MBES transducer is installed generally at the vessel bottom;
thus, its position can be obtained accurately by combining GPS positioning solution, vessel heading
and attitude, coordinates of GPS, and MBES transducer in vessel frame system. The position of SSS
towfish is often estimated by combining vessel position and heading and horizontal towing distance.
The estimations of horizontal towing distance and towfish heading are often inaccurate because of
vessel operation, wind, and wave, thereby resulting in inaccurate positional images.
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Figure 1. Operating modes and beam patterns of multibeam echo sounders (MBES) (a) and side scan
sonars (SSS) (b).

The above causes lead to accurate positional MBES terrain and low-resolution MBES images,
and high-resolution but inaccurate-positional SSS images, especially in the measurement of middle
and deep water. This complementarity of MBES and SSS measurement results implies that obtaining
high-resolution, high-SNR, and accurate positional seabed topography is possible by combining
high-resolution SSS images with accurate positional MBES terrain. The connection between MBES
and SSS measurement results is that MBES and SSS images can both reflect seabed objects and
sediment variations [10,11,17–19]. The effects of the beam pattern (Figure 1), angular response (AR)
(Figure 2a), and residual error of time varying gain (TVG) causes radiometric distortion in MBES data
and decreases the quality of MBES image [20]. Similarly, the quality of SSS image is also decreased
because of radiometric distortions that are caused by TVG residual, sonar altitude, beam pattern, and
angular response [21]. Therefore, MBES and SSS data preprocessing is necessary to eliminate these
effects and highlight seabed features and sediment variations before the superposition of SSS image
and MBES terrain.
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3. Superposition of SSS Images and MBES Terrain

Usually, the BSs of MBES and SSS are recorded in dB and displayed by sonar image in gray levels,
respectively; hence, the proposed methods use sediment images rather than backscatter intensity
images. As described above, MBES and SSS images have a strong correlation in reflecting seabed
sediment variations and features [11,17–19,22]. Therefore, sonar images will be used as the link of the
two sets of measurement results in the superposition of SSS image and MBES terrain. Based on the link,
the superposition can be performed by obtaining seabed sediment images of MBES and SSS, matching
of the MBES and SSS sediment images, correcting the position of the SSS image, and superimposing the
corrected positional SSS image on MBES terrain. The complete process is depicted in detail, as follows.

3.1. Acquisitions of Sediment Images

The sediment images of MBES and SSS are obtained in three steps, including the normalization of
BS data of MBES and SSS, k-mean++ unsupervised classification of the two types of sonar images, and
denoising of the two sediment images. For example, for the MBES image, the following explains the
acquisition of sediment image.

(1) Angular data normalization using the z-score

MBES images are affected mainly by beam patterns, angular responses, and TVG residuals [22].
The standard score or the z-score is used for the normalization of along-track BSs to remove these
angle-related effects and make BS variations of the same sediment in a consistent range [23]. For a
BS sequence of the same incident angle with mean µ and standard deviation σ, the z-score of a BS is
as follows:

z =
(BS − µ)

σ
. (1)

Figure 3a,b show the BS sequences and the corresponding z-score sequences at the incidence
angle of 2◦ and 30◦, respectively. BS data in different intensity ranges (Figure 3a) are unified into the
same range (Figure 3b) after normalization. The variation trend of BSs of different sediments is still
reflected in the normalized z-score sequences. After normalization, classifying BSs of different incident
angles to different seabed sediments becomes possible.
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(2) Sediment classification by k-means++ algorithm

Distributions of seabed sediments are usually unknown in uncharted waters, and unsupervised
classification is generally used to obtain seabed classifications without a priori sediment knowledge.
The k-means++ algorithm is simple and applicable for data mining [24]; hence, it was selected in this
study. For a segment of raw MBES waterfall image (Figure 4a), the sediment classification image
(Figure 4c) can be obtained using the k-means++ algorithm with the classification number k of 2 from
the corresponding normalized z-score image (Figure 4b).
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(3) Denoising of sediment image by morphology operations

In Figure 4c, noises in sediment images are serious because of MBES data noises. The morphology
opening and closing operations are used in combination for the denoising of the sediment image in
this study. Dilation and erosion are two fundamental operations in morphological image processing.
The dilation operation usually uses a structuring element for probing and expanding the shapes
contained in the input image, while the erosion operation is the opposite operation [25]. For a sediment
image A, the opening is the dilation of the erosion of A by an image element B, and the closing is the
erosion of the dilation of A by B.

A ◦ B = (A � B)⊕ B
A•B = (A ⊕ B)� B

, (2)

where # and are opening and closing operations and ⊕ and � denote the dilation and erosion
operations, respectively.

The opening operation is used mainly to connect objects incorrectly segmented into smaller
slices, whereas the closing operation is used mainly to remove small spots introduced by image
noise [25]. Using closing then opening operations, noises in Figure 5c were removed effectively, and
the distributions of these two sediments become clear.
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The above process for obtaining MBES sediment image is also appropriate for forming SSS
sediment image. The difference in processing is that SSS images are affected by angle-related effects
(similar to those in the MBES image) and angle-unrelated effect (i.e., TVG residuals in the along-track
direction) [26,27]. This angle-unrelated effect can be removed according to the variation of the towfish



Remote Sens. 2017, 9, 1214 6 of 19

altitude [21,26]. After removal, the process similar as the above is adopted to obtain the SSS sediment
image, as shown in Figure 6.Remote Sens. 2017, 9, 1214  6 of 19 
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3.2. Segmental Matching Based on Sediment Distributions and Features

Time-varying factors, such as towing horizontal lengths, towfish headings, and depths, influence
the accurate estimation of towfish positions, as well as the geo-coding SSS images, whereas MBES
images have accurate positions. Therefore, the positions of the SSS sediment image can be corrected by
the transformation relation achieved from segmental matching of the common sediment distributions
and features of SSS and MBES sediment images. Five steps are included in the segmental matching
algorithm and detailed as follows.

(1) Geocode the MBES sediment image of a survey line according to instantaneous locations of
MBES transducer.

(2) Geocode the SSS sediment image in the same water region as the MBES sediment image according
to the instantaneous estimation locations of SSS towfish.

(3) Select a segment of SSS sediment image with m × n along the survey line, and determine the
co-located and slightly larger than m × n MBES image segment from the MBES sediment image
when considering the positional error. The segment principle is discussed in Section 5.4.

(4) Extract the common feature point pairs and match the two image segments by the SURF
algorithm [28]. A detailed process includes the following steps:

(a) Detect the feature points from the MBES image segment and the corresponding SSS one
using SURF.

(b) Describe each feature point with a multidimensional vector.
(c) Match the feature points according to the nearest vector distance of different feature points.
(d) Use random sample consensus (RANSAC) algorithm to check the consistencies of the

angles and distances of the matching vector pairs to eliminate mismatching.

(5) Repeat steps 3–4 until the matchings in all segments are carried out.

The SURF is used for searching feature point pairs in the above matching. SURF is a robust image
recognition and description algorithm, which is generally considered as the improved scale-invariant
feature transform (SIFT) algorithm [29]. The SURF is several times faster and more robust than SIFT in
image transformations [28,30,31]. Zhao et al. achieved SSS image matching of adjacent surveying lines
by SURF and verified feasibility of SURF in sonar image matching [22]. Therefore, the SURF is adopted
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for segmental matching in this study. The SURF consists mainly of interest point detection, local
neighborhood description, and matching. The SURF uses square-shaped filters as an approximation
of Gaussian smoothing and a blob detector based on the Hessian matrix to find interest points to
accelerate the process. The Haar wavelet is also applied to assign the point orientation and describe
the region around the point. These feature point pairs are matched by SURF after the extraction and
description of feature points. During matching, the description vectors of matching feature points
should have the shortest Euclidean distance.

d =

√
n

∑(Pmb − Psss)
2 (3)

where d is the Euclidean distance of different feature points of the two images at the n-dimensional
scale, and Pmb and Psss are the description vectors in MBES and SSS images, respectively.

The RANSAC algorithm is used for removing the abnormal matching point pair in the above
matching. RANSAC is an iterative algorithm to estimate the parameters of a mathematical model
from a set of observed data containing outliers. Applying the RANSAC is necessary to check matched
feature point pairs to avoid mismatching. Because both of the MBES and SSS images are geo-coded, the
feature points in MBES and SSS images have absolute coordinates. We could use the relative positional
deviation as the geo-distance parameter to control the matching results. The geo-distance parameter is
set by referring to the estimated positioning accuracy of the SSS towfish. The positioning accuracy of
the SSS towfish can be estimated by combining the accuracies of the vessel location, the horizontal
length of the towing cable, and the towfish heading. In this paper, the geo-distance parameter is set as
5 m. The checking process using RANSAC is depicted as follows:

(1) Select a random subset of the matching point pairs and named it as the hypothetical inliers.
(2) Calculate the relative geo-distance distribution model, namely the mean and twice the standard

deviation of the relative positional deviation from the set of hypothetical inliers. If the absolute
value of the relative geo-distance distribution model is more than the given geo-distance
parameter as mentioned the above, the hypothetical inliers will be given up and go back to
step 1; otherwise, continue to step 3.

(3) All other matching point pairs are tested against the relative geo-distance distribution model.
The points that fit the estimated model well are considered as part of the consensus set.

(4) The model is reasonable if sufficient matching pairs have been classified as part of the consensus
set. In addition, the model may be improved by re-estimating it using all members of the set.

3.3. Position Correction of SSS Images Using Thin-Plate Splines

After matching, the positional relationship of the matching point pairs in the two corresponding
image segments can be calculated, and the SSS image segment can be corrected to the same position as
the corresponding MBES image segment through the transformation relation. The thin plate spline
(TPS) is the 2D analog of the cubic spline in 1D [32,33]. Given a set of data points f, a weighted
combination of thin plate splines centered on each data point gives the interpolation function I that
passes through the points exactly, while minimizing the so-called bending energy. Bending energy is
defined as the integral over R2 of the squares of the second derivatives:

I[ f (x, y)] =
x

R2

(
f 2
xx + 2 f 2

xy + f 2
yy

)
dxdy. (4)

The TPS as the non-rigid transformation model is used widely in image warping
corrections [31,33,34], as shown in Figure 7. Thus, it is adopted in this study.

The processing steps, including matching, calculation of transformation relation, and positional
correction of SSS image, are used for each MBES and co-located SSS image segment to correct entire
SSS images.
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3.4. Superimposition of SSS Images and MBES Terrain

After the positional correction, the location of SSS image is improved efficiently. The resampling
is done to the corrected SSS images by considering the seabed texture features and sediment variation
to obtain perfect SSS images. The superimposition of MBES terrain on SSS images is performed
depending on the location relationship. Figure 8 presents this superimposition.
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4. Experiment and Analysis

4.1. Data Acquisition

Measurements of MBES and SSS were performed in the water area with 0.6 km × 1.8 km and
300–320 m of water depth, in the South China Sea. Sediments were investigated by seabed sampling
and contain mainly silt and sand. In the MBES measurement, KONGSBERG EM 3002 with 300 kHz
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of the operating frequency, max 130◦ of the angular sector, and 131 beams was adopted. In the SSS
measurement, EdgeTech 4100P SSS with 400 kHz operating frequency, 112 m recorded max slang
range, 20◦ sonar depression angle, and 0.5◦ and 50◦ of the plane and vertical beam were towed 200 m
underwater. Five MBES survey lines and four SSS survey lines were carried out in the water area.
The MBES data with approximately 100 m swath width, 0.5 m ping interval, and 800 echoes in a
ping and the SSS data with approximately 150 m scanning width, 0.27 m ping interval, and 7502
samples in a ping were obtained. After data preprocessing, the MBES sounding terrain, geocoded
MBES snippet, and SSS images are displayed in Figure 9b–d. The detailed terrain cannot be displayed
clearly in the margin of MBES swath because of equal-angle spacing mode, and the SSS image is clearer
than the MBES snippet image because the image resolution of the former is higher than the latter.
The measurement results show the necessity of superimposing the high-resolution SSS image on the
high-accuracy MBES terrain.
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4.2. Superimposition of SSS Image and MBES Terrain

Segmental matching is the core of the proposed method. In the proposed segment method,
MBES and SSS BS data in the same sub-region were extracted for this experiment. Before using them,
two sets of data were pre-processed to remove the radiometric distortion effects on the sonar image
initially. Through three steps, including angular data normalization, seabed sediment classification,
and denoising, sediment images were carried out using z-score, k-mean++ algorithm, and morphology
operations. The MBES and SSS sediment images were obtained and geocoded. The processing to
obtain the sediment images is depicted in Figure 10a–f for the SSS image and in Figure 10A–F for the
MBES image. The MBES (Figure 10F) and SSS images (Figure 10f) were divided into three segments.
MBES and SSS images in the corresponding segments were matched following the segmental matching
method depicted in Section 3.2. The size of each segment depends on the distributions of sediments
and features, as depicted in Section 5.4. The common feature point pairs of MBES and corresponding
SSS segmental images are extracted by SURF. The transformation relationship between three segmental
images is calculated and used for position correction of the SSS segmental image using TPS. The
matchings are depicted in Figure 10R1–R3.

In Figure 10a,b, the BSs of ping inner echoes were much larger than those of outer ones. While
this phenomenon disappeared in Figure 10c after data normalization, the BSs of the same sediment at
different incident angles were nearly consistent, and sediment types and distributions became clear
relative to Figure 10b. Two sediment types were classified from Figure 10c and shown in Figure 10d,
using the k-mean++ algorithm. Some noises appear in Figure 10d because of noises in the raw SSS BS
data. Therefore, the morphology operations were used for improving Figure 10d. Figure 10e shows the
improved image. The distributions of the two sediments and seabed features in Figure 10e were clear.
Figure 10A–E shows similar processes to obtain MBES sediment images. The above results show that
the proposed steps were efficient in the acquisitions of SSS and MBES sediment images. Figure 10f,F
show the geocoded SSS and MBES sediment images, respectively.

In Figure 10f,F, distributions of sediment and seabed features in the two images are similar,
showing that matching of MBES and SSS images based on common sediment distributions and seabed
features is reasonable. The sediment distributions and features in the SSS sediment image are slightly
distorted and malposed relative to those in the MBES sediment image because of inaccurate positions
and attitudes of SSS towfish. The feature point pairs of the two sediment images were extracted
and matched in the corresponding segments (as shown in Figure 10R1–R3), respectively, using the
segmental matching method depicted in this study. The mismatching feature point pairs were removed
using the RANSAC algorithm. The transformation relationship in each segment can be calculated using
the TPS for position correction of SSS images in the corresponding segment based on the segmental
matching results.

Segmental matching can be carried out in the entire water area by adopting the similar processing
as the above, as shown in Figure 11. The positional corrections are performed for the SSS images of all
the SSS lines using transformation relations obtained in different matching segments. Given adopting
the TPS function and segmentally local correction, resampling is done to the corrected SSS images
by considering the seabed texture features and sediment variation. Image fusion operation is also
performed in the overlapping areas of adjacent survey lines using the wavelet transform method [9].
Because of the time-varying positional error of SSS images, the distributions of sediments and feature
shapes in the raw SSS image (Figure 11b) are slightly different from those in the MBES snippet image
(Figure 11a). Whereas, a comparison between the corrected SSS image (Figure 11c) and the MBES
image (Figure 11a) shows that the distributions of sediments and feature shapes are consistent in the
two images and the segmental matching is efficient.
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Figure 10. Segmental matching of MBES and SSS images. (a) SSS waterfall image; (b) transformed
angular image from (a); (c) normalized image of (b); (d) SSS sediment image; (e) denoised image of (d);
and (f) geocoded image of (e). (A) MBES snippet waterfall image, (B) transformed angular image from
(A), (C) normalized image, (D) MBES sediment image, (E) denoised sediment image, and (F) geocoding
image of (E). (R1–R3) three segments divided from the MBES image according to the distributions of
seabed sediments and targets. ϕ is the incident angle.
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(a) MBES radiometric corrected images; (b) raw SSS image; and (c) corrected position SSS images. All
(a–c) are in the same region as Figure 9b.

Given that the position accuracy of the corrected SSS image is the same as that of the MBES
image and terrain, the superimpositions of the corrected SSS image on the MBES terrain and the MBES
snippet image on the MBES terrain can be carried out depending on consistent locations. Figure 12
shows the two superimpositions. The superimpositions of the corrected SSS image and the MBES
terrain are more detailed than that of the MBES snippet image and MBES terrain because of the
difference of image resolution. Three small areas with seabed targets, marked as (a)–(d) are chosen and
enlarged to explain the detailed degree of the superimposition of the corrected positional SSS image
and the MBES terrain, as shown in Figure 13. The following can be found in Figure 13.

(1) The superimposition achieved by the proposed method in Figure 13B is clearer than the
superimposition of the MBES snippet image and terrain in Figure 13A, thereby reflecting the
seabed micro-topography and showing the validation of the proposed method in obtaining
high-resolution seabed topography.

(2) Good consistence between the SSS images and MBES terrains is achieved at the three targets
at different positions of the measurement area, and verifying that the segmental matching in
consideration of time-varying positional accuracy of SSS towfish is appropriate.
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4.3. Matching Accuracy

A segment of SSS sediment image with the significant distributions of sediments and features
is extracted from Figure 13a and shown in Figure 14a to assess the matching accuracy quantitatively,
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as achieved by the proposed method. The feature point pairs are extracted by SURF initially; then,
the TPS and traditional rigid transformation are used to correct the image, as shown in Figure 14b,c,
respectively. The peach-shape distribution in Figure 14b is slightly larger, whereas that in Figure 14c
is slightly less than that in the raw SSS image. This phenomenon means that these transformations
changed the point positions of the raw SSS image. The position errors of the corrected SSS feature
points are calculated by taking the feature points in the MBES image as reference. The statistical results
show that the max, mean, and standard deviations of 18.99, 9.11, and 11.87 m are achieved by the raw
SSS image, as 8.00, 3.33, and 3.80 m by the rigid transformation, and as 3.00, 2.50, and 0.67 m by TPS.
The result also shows the need to adjust the high-resolution SSS image and superiority of TPS relative
to the rigid transformation.
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Figure 14. Comparison of the wrapped images using the TPS and the rigid transform. (a) Raw SSS
image; and (b,c) corrected images using the TPS and rigid transformation, respectively. The blue and
red points denote the feature points in the SSS image and the MBES image.

Adopting the process similar to that used in Figure 14, the errors of all feature points in the SSS
image in Figure 11b are calculated. Figure 15 and Table 1 show the error distributions and statistical
results that are achieved by the two transformations, respectively. Similar conclusion is drawn that the
position accuracy achieved by the TPS is better than that by the traditional rigid transformation and
much better than that in the raw SSS image. This result proved that the proposed segmented matching
and transformation are efficient because of the time-varying position errors are considered.
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Figure 15. Positional errors of entire feature points of the raw SSS image and SSS images corrected
using the rigid transform and TPS, respectively.

Table 1. Statistical parameters of positional errors of entire feature points in the raw SSS image and SSS
images corrected using the rigid transform and TPS, respectively.

Max Deviation (m) Mean Deviation (m) Standard Deviation
(±m)

Raw data 23.00 9.11 11.87
Rigid transformation 15.00 3.33 3.80

TPS 6.00 2.50 0.67
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5. Discussion

5.1. Necessity to Superimpose SSS Image on MBES Terrain

In a randomly selected region, the sample number of MBES and SSS are 92,423 and 4,883,802,
respectively. The data resolution of SSS was far larger than that of MBES. The significant difference
is caused mainly by the measurement mechanisms of the two sonar systems. SSS image can reflect
the more detailed seabed than MBES image. The BSs of the silt sediment in the selected region were
analyzed statistically to study the SNR of BS data in reflecting the same sediment, as shown in Figure 16.
The distribution of SSS BS data is much denser than that of MBES data. The SSS BS variation range
is smaller than that of MBES. The statistical result shows that the SSS image has better SNR than the
MBES image. The above result proved the necessity of superimposing SSS image on the MBES terrain
to reflect accurately and subtly the sediment variations, texture features, and terrain undulations.
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5.2. Possible Features Used in the Matching

The matching of the MBES and SSS sediment images is the basis of this study. The transformation
relationship between the two images can only be established through image matching.
The superimposition of the SSS images on the MBES terrain can be realized after the position correction
of the SSS image. The possible features for matching include seabed undulation, terrain texture, seabed
sediment variation, and targets on the seabed. When considering the measurement patterns and
equipment performances, the availabilities of these features are analyzed as follows.

(1) Seabed terrain: Both MBES and SSS images are 2D images. Topographic variations may not be
reflected in the 2D images. Thus, seabed terrain cannot be used as a feature in the matching.

(2) Seabed sediment variation: Although MBES and SSS images have significant differences in the
initial emission energy level, acoustic frequency, and bean pattern, both MBES and SSS images
can reflect the variations and distributions of common seabed sediments. These studies proved
that seabed sediments can be classified using MBES and SSS BS data [20,35]. Therefore, the
sediment variations in MBES and SSS images can be used as common features in the matching of
the two types of images.

(3) Seabed targets: Based on the imaging mechanisms of SSS and MBES, large seabed targets should
appear in both of the sonar images in theory. However, considering that SSS images have higher
resolution and SNR than MBES images, some small seabed targets can be displayed in SSS images,
but not in MBES images. According to the principle of sediment classification, the same targets
that appear in the two sonar images can also be displayed in their sediment images and used as
common features in the matching.
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(4) Seabed textures: Similar to seabed targets, seabed textures, such as sand ripple, which appear in
MBES and SSS images, and their sediment images can be used as the common features in the
matching [11,20,21].

5.3. Influencing Factors on the Matching

Targets and sediment variations can be used as the common features in the matching and affect
the matching. The matching method also influences the matching.

(1) Distribution density of seabed targets

Ideally, if sufficient targets distribute evenly on the seabed, sufficient matching point pairs can be
found for the accurate calculation of the transformation relationship between MBES and SSS sediment
images. However, the seabed targets often distribute randomly on the seabed, and the amount may be
small, even zero. Matching accuracy can be guaranteed by the matching of both seabed targets and
sediment features on the rich-feature seabed. For the poor-feature seabed, the matching can also be
performed by enlarging the matching scope. Extending the scope may decrease calculation accuracy of
the transformation relation, but it does not have a significant effect on displaying the seabed features
in the corrected SSS image [22].

(2) Complexity of seabed sediment variation

In addition to seabed targets, sediment variations are important common features for matching.
In a water area, the seabed may consist of several kinds of sediments. The complexity of sediment
variation could provide various feature points for the matching, whereas fewer feature points can
be extracted and the matching accuracy will become lower for very simple sediment distribution.
In homogeneous seabed, fewer or even no feature points can be found, leading to an incorrect
transformation relationship. The matching accuracy does not have a significant effect on the SSS image
in reflecting the variations of seabed sediment because of homogeneous seabed [22].

(3) Effects of the matching method

The matching method is also an important factor that affects final matching. This study takes the
following measurements to decrease the effect.

Segmental matching and position calibration: The position accuracy of the towfish varies
with vessel operation and sea conditions because the SSS uses the towing operation mode [22,26].
The segmental matching is proposed in this study to achieve accurate calibration for the SSS image.
In the area without feature points, transformation relationships are obtained by interpolating smoothly
nearby transformation relationships.

Optimal selection of feature point pairs: Given that the transformation parameters are calculated
based on the coordinates of the feature points in segmental images, incorrect feature points affect the
calculation directly. During the extraction of feature points, some incorrect ones may be found by
SURF. To avoid the mistake, RANSAC algorithm is adopted in the proposed method to guarantee the
reliability of the selected feature point pairs.

Distortion of SSS image: Given the low positioning accuracy and residual errors that are caused
by imperfect processing, positional distortion exists in SSS images and affects the finding feature point
and selecting feature point pairs by the tradition matching methods. SURF has the scale-invariant
feature because of adopting Haar-like features and integral image [28]. The good performance of SURF
in the matching has been verified by the above experiments.

5.4. Size of Matching Segment

The positional accuracy of SSS images varies with time-varying horizontal distances and headings
of the towfish [22,26]. The segmental matching and positional correction of SSS images becomes



Remote Sens. 2017, 9, 1214 17 of 19

necessary to improve the position accuracy of SSS images. The segment division follows the following
principles:

(1) At least five feature point pairs should be included in the segmental images to guarantee
calculation accuracy of transformation.

(2) Setting small size matching segment is necessary to weaken the effect of time-varying errors.

Based on the two principles, the size of the matching segment should change with the distribution
and number of extracted feature points. For the rich-feature seabed, the matching segment should be
divided into smaller sizes that contain at least five feature points. Whereas for the poor-feature seabed,
the matching segment should be expanded to a larger size until the segmental image contains five
feature points.

5.5. Applications

In shallow waters, the new-generation MPES can obtain both seabed bathymetric terrain and
backscatter images. However, its measurement depth is limited at 200 m. Meanwhile, sampling rates
of MBES snippet data are high enough in shallow waters; hence, the advantages of high-resolution
SSS images are not very obvious [21]. In middle and deep waters, a SSS towfish can still approach
the seabed to obtain high-resolution seabed image, whereas the image resolution of MBES installed
on a survey vessel is decreased considerably as the water depth increase because of the equiangular
operation model, especially for outer beams [2]. Moreover, MBES images cannot reflect the details of
seabed topography and meet the requirements of precise engineering applications. MBES or MPES can
also be installed on the autonomous underwater vehicle (AUV) or remotely operated vehicle (ROV) to
approach the seabed and acquire both seabed terrain and corresponding backscatter images, such as
the measurement in the shallow water [36]. However, the speed of AUV or ROV limits its applications.
The proposed method can realize fast acquisition of high-resolution and accurate positional seabed
topography, without changing the current operation mode or decreasing the accuracy of the final
results. Therefore, the method provides a new way to obtain high-resolution and accurate-positional
seabed topography rapidly in middle and deep waters using traditional MBES and SSS. Moreover, the
proposed method is also suitable for MBES and SSS data in shallow water, and has advantages like no
need for new equipment and relative low cost.

6. Conclusions

The proposed method, the superimposition of SSS images and MBES terrain based on matching
of seabed features, considers the angular-related effect, time-varying positioning error in SSS image,
and the common underwater targets and seabed sediment distributions in both SSS and MBES images.
Therefore, in the proposed method, SSS and MBES images are improved through radiometric and
angular response corrections, and the positional accuracy of SSS image is improved using segmental
matching common targets and sediment distributions. Thus, the high image resolution and high
position accuracy seabed topography can be obtained. The proposed method provides a better way to
show fine seabed topography using the survey results of traditional MBES and SSS. These conclusions
were verified by the experiments, and the accurate and high-resolution seabed topography is achieved
in the experiment.
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