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Abstract: The common statistical methods for supervised classification usually require a large amount
of training data to achieve reasonable results, which is time consuming and inefficient. In many
methods, only the features of each point are used, regardless of their spatial distribution within a
certain neighborhood. This paper proposes a tensor-based sparse representation classification (TSRC)
method for airborne LiDAR (Light Detection and Ranging) points. To keep features arranged in their
spatial arrangement, each LiDAR point is represented as a 4th-order tensor. Then, TSRC is performed
for point classification based on the 4th-order tensors. Firstly, a structured and discriminative
dictionary set is learned by using only a few training samples. Subsequently, for classifying a
new point, the sparse tensor is calculated based on the tensor OMP (Orthogonal Matching Pursuit)
algorithm. The test tensor data is approximated by sub-dictionary set and its corresponding subset of
sparse tensor for each class. The point label is determined by the minimal reconstruction residuals.
Experiments are carried out on eight real LiDAR point clouds whose result shows that objects can be
distinguished by TSRC successfully. The overall accuracy of all the datasets is beyond 80% by TSRC.
TSRC also shows a good improvement on LiDAR points classification when compared with other
common classifiers.

Keywords: tenor sparse coding; structured and discriminative dictionary learning; feature extraction

1. Introduction

LiDAR (Light Detection and Ranging) point cloud classification in urban areas has always been
an essential and challenging task. Before classification, various features are extracted from the raw
three-dimensional (3D) point cloud, which should be able to distinguish different objects. Due to
the complexity in urban scenes, it is difficult to label objects correctly using only single or multi
feature thresholds. Thus, research mainly focused on the use of statistical method for supervised
classification of LiDAR points in recent years. Common machine learning methods include the support
vector machine (SVM) algorithm, AdaBoost, decision trees, random forest, and other classifiers.
Those machine learning methods aim to build a classification rule or probability function to determine
the label based on the features. SVM seeks out the optimal hyperplane that efficiently separates the
classes, and the Gaussion kernel function can be used to map non-linear decision boundaries to higher
dimensions, where they are linear [1]. AdaBoost is a binary algorithm, but several extensions are
explored for multiclass categorization. The weak hypothesis generation routines are combined into
AdaBoost algorithm to classify terrain and non-terrain areas in [2]. Decision trees can be used to carry
out the classification by training data and make a hierarchical binary tree model, new objects can be
classified based on previous knowledge [3]. Random Forest is an ensemble learning method that uses a
group of decision trees, provides measures of feature importance for each class [4], and runs efficiently
on large datasets.
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However, those approaches barely consider the spatial distribution of points, which is
an important cue for the classification in complex urban scenes. Some studies have applied
graphical models to incorporate spatial context information in the classification. Graphical models
take neighboring points into account, which allow for us to encode the spatial and semantic
relationships between objects via a set of edges between nodes in a graph [5]. Markov network and
conditional random field (CRF) are two mainstream methods to define the graphical model. However,
a large amount of training data is necessary to obtain the classifier in those statistical studies.
Anguelov et al. [6] use the Associated Markov Network (AMN) to classify objects on the ground.
The study takes 1/6 points as training data and achieve an overall classification accuracy as 93%.
Niemeyer et al. [7] use 3000 points per class to train the CRF model. Seven classes (grass land, road,
tree, low vegetation, buildings with gable roof, buildings with flat roof, and facade) are distinguished
based on the CRF and the overall accuracy is 83%, which is a fine result in a complex urban scene.
As for statistical methods, Im [8] uses 316 training samples (1%) to generate decision trees with an
overall accuracy of 92.5%. Moreover, Lodha uses half of dataset as training data through AdaBoost
algorithm and the average accuracy is 92%. As a consequence, classifier training would be very
time-consuming, especially when Markov network or CRF are used as classifiers.

In order to combine spatial distribution and feature information, we suggest using the
high-dimensional tensor data structure for representing each point (to avoid misunderstandings
we stress that tensor refers here to a high dimensional data structure, and is not related to the concepts
of tensor voting or the structure tensor). Normally, the dimensional data has to be embedded into
vectors in traditional methods. However, the vectorization breaks the original multidimensional
structure of the signal and reduces the reliability of post processing. Therefore, high-dimensional
tensors are utilized in several approaches. The high-dimensional tensor means that the elements
in the data are to be addressed by more than two indices. Tensors have been widely applied to
hyperspectral images, face images, and video data representation. Renard and Boourennane introduce
a hyperspectral image representation based on tensors to jointly take advantage of the spatial and
spectral information [9]. It shows that the spatial projection into a lower orthogonal subspace joint
with spectral dimension reduction can efficiently improve the classification. In face recognition, the
Tensorfaces are proposed by Vasilescu et al. to overcome the influence of different factors that are
related to facial geometries, expressions, head poses, and lighting conditions [10]. The Tensorfaces
improve the facial recognition rates when compared with the standard eigenfaces. Kuang et al. use a
unified tensor model to represent the large-scale and heterogeneous data [11]. It shows a great ability
of dimensionality reduction by using incremental high order singular value decomposition.

This paper aims to use as few training data as possible to achieve effective classification.
Therefore, sparse representation-based classification is used in this paper. Sparse representation-based
classification (SRC) is a well-known technique to represent data by sparse linear combination of bases,
which are extracted from a fixed dictionary or learned dictionary. It classifies unknown data based
on the reconstruction criteria. SRC has been successfully applied to the processing of signals [12] and
images [13]. SRC includes two important parts: sparse coding and dictionary learning. Sparse coding
is to find a certain small number of base atoms from the dictionary for reconstruction raw data.
Sparse coding can be solved by Orthogonal Matching Pursuit (OMP) [14] , LASSO (least absolute
shrinkage and selection operator) [13], or the gradient descent algorithm [15]. The dictionary can
generally come from two sources: mathematical model-based methods and the dictionary learning
from training data. The mathematical model-based methods for building a dictionary include:
Fourier series, wavelets and discrete cosine transform bases [16,17]. But, this predefined dictionary is
fixed and cannot be adapted according to the dataset. Therefore, dictionary learning from the dataset
is an optimal choice due to its flexibility for a specific dataset. The dictionary learning problem can
be solved by the method of optimal directions (MOD) [18], K-SVD [19], and the gradient descent
algorithm [20]. Furthermore, previous research formulates the high dimensional data SRC problem
in terms of tensors. Tensor extensions of the dictionary learning and sparse coding algorithms have
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been developed, such as Tensor MOD and KSVD for dictionary learning [21], and tensor OMP [22].
Moreover, tensor based sparse representation has yielded good performance in high-dimensional data
classification [9], face recognition [23], and image de-noising [24].

In this paper, we propose a tensor-based sparse representation classification method for urban
airborne LiDAR points identification. The main innovations of this paper are summarized below:

1. A new data structure is introduced to represent each point. To keep the feature description
in their original geometrical 3D space, the LiDAR points are represented as 4th-order tensors.
A point and its neighboring points are rearranged by their spatial distribution in the tensor space,
meanwhile the features of each point in the neighborhood are also attached as the fouth mode
of the tensor. In this tensor data structure, both spatial and feature information can be used
for classification.

2. A structured and discriminative dictionary set is learned for tensors based on a few samples of
training data. Firstly, we present a structured and discriminative dictionary learning adapted
to the high dimensional tensor data. Additionally, the dictionary learning only uses a few
samples of training data. The dictionary classifier shows better classification ability than other
popular classifiers (KNN, decision tree, random forest, SVM) when using the same amount of
training data.

Finally, the decision which class a point belong to is based on the minimum reconstruction residual
from the sub-dictionary and its subset of sparse tensor. The sparse tensor approximation of each test
tensor can be obtained by projecting the test tensor onto dictionaries, and the sparse tensor only has
a few nonzero entries that are corresponding to the selected atoms in the dictionary set. We expect
that the sparse tensors of points belong to the same class have similar structure. At last, the label of
unknown points can be predicted by the minimum reconstruction residual from each class specific
sub-dictionaries and the subset of the sparse tensor.

In the following, we first introduce the tensor generation processing in Section 2. Subsequently,
the conventional sparse representation classification (SRC) is briefly introduced in Section 3.1. Then,
the procedure of tensor-based sparse representation classification is written in detail in Section 3.2,
which includes the sparse coding algorithm for tensor data (in Section 3.2.1), structured and
discriminative dictionary learning (in Section 3.2.2), and the classification procedure (in Section 3.2.3).
After that, the tensor-based sparse representation classification (TSRC) classification results and the
comparison with other classifiers are presented in Section 4, followed by a discussion on the influence
of parameters selection in Section 5. Finally, the major findings of this work are summarized in
Section 6.

2. Tensor Representation of LiDAR Points

2.1. Tensor Notations and Preliminaries

A tensor is denoting a multidimensional object, whose elements are to be addressed by more than
two indices. The order of a tensor, also known as modes [25], is the number of dimensions. Tensors are
denoted as boldface italic capital letters, e.g., T ∈ RI1×I2×···×IN ; matrices are denoted as upright capital
letters, e.g., T ∈ RI1×I2 ; vectors are denoted as upright lowercase letters, e.g., t ∈ RI . The element
(i1, i2, · · · , iN) of a tensor T is expressed as ti1,i2,··· ,iN , where 1 ≤ in ≤ IN . The Frobenius norm of a
tensor T is defined as:

‖ T ‖F =

√√√√ I1

∑
i1=1

I2

∑
i2=1
· · ·

IN

∑
iN=1

ti1,i2,··· ,iN
2

The tensor can be transformed into a vector or matrix, and this processing is known as unfolding
or flattening. Given an Nth-order tensor T ∈ RI1×I2×···×IN , the n-mode unfolding vector of tensor T
is obtained by fixing every index except the one in the mode n [26]. The n-mode unfolding matrix is
defined by arranging all of the n-mode vectors as columns of a matrix, i.e., the n-mode unfolding matrix
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T(n) ∈ RIn×I1· I2·...·In−1·In+1 ...·IN . The product between two matrices can be extended to the product of
a tensor and a matrix. The n-mode product of a tensor T ∈ RI1×I2×···×IN with a matrix U ∈ RJn×In is
denoted by Y = T×n U ∈ RI1×I2×···In−1×Jn×In+1···×IN . For the processing, this can be converted to the
matrix product of U and the unfolded tensor T(n), which is expressed as Equation (1):

Y = T×n U⇐⇒ Y(n) = U × T(n) (1)

The Tucker decomposition is a form of higher-order principal component analysis, which can
be described as Equation (2). It decomposes a tensor T ∈ RI1×I2×···×IN into a core tensor
X ∈ RJ1×J2×···×JN multiplied by the matrix U1 ∈ RJ1×I1 , U2 ∈ RJ2×I2 , · · ·UN ∈ RJN×IN along each
mode. X is the core tensor, and its entries show the level of interaction between the different
components [25]. The matrix U1, U2, · · ·UN can be considered as the principal components in each
mode. If J1, J2, · · · ,JN ≤ I1, I2, · · · , IN the core tensor X can be considered as a compressed version of
the original tensor. In the following equations, the ∼= sign means “approximately equal”.

T ∼= X×1 U1 ×2 U2 × · · · ×n UN (2)

Tucker mode can be written as the Kronecker representation, these two representations are
equivalent. Let ⊗ denote the Kronecker product, and define the vectorization operation on tensors as
t = vec(T), t ∈ RI1 I2···IN . The vectorization operation stacks all of the columns of the mode-1 tensor
T(1) in a single vector. Then, given t = vec(T), x = vec(X), the equivalent Kronecker representation is
shown as following:

t ∼= (U1 ⊗U2 ⊗ · · · ⊗UN)·x (3)

2.2. Tensor Representation of LiDAR Point

The process of presenting a point p as the tenor T is described, as seen in Figure 1. Firstly, the k
closest neighbors of the point p are found and denoted as point set P. Then global Cartesian coordinates
of point set P are transformed to the local PCA (Principal Component Analysis) coordinate system.
The local axes (e1, e2, e3) are defined by the principal direction of variance of the point set P based on
PCA. The PCA transformation ensures that the first axis e1 has the most variation, the second axis e2

has the second-most, and the third axis e3 the least. Therefore, the spatial distribution is reflected by the
coordinate values in the third axis. Points of volumetric structure will have various coordinates in the
third axis in the local coordinate system, whereas points of local planar surfaces will have consistent
coordinates in the third axis. Let pi (xi, yi, zi) be the point in global Cartesian coordinate system,
pei (ui, vi, wi) be the point in local PCA coordinate system. The transformation is calculated by:

ui = e1(xi − x0)

vi = e2(yi − y0) (4)

wi = e3(zi − z0)

where (x0, y0, z0) are the mean coordinates of points within the neighborhood in the global
coordinate system.

After that, all points in the local PCA coordinate system are converted into voxel coordinates by
the following equations:

vx
i = Int

(
ui −min(u)

∆vx

)
+ 1

vy
i = Int

(
vi −min(v)

∆vy

)
+ 1 (5)

vz
i = Int

(
wi −min(w)

∆vz

)
+ 1
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where (vx
i , vy

i , vz
i ) represents the voxel index within the voxel array, Int() is the function that rounds

off the result to the nearest integer, (min(ui), min(vi), min(wi)) is the minimum values of (u, v, w) and
(∆vx, ∆vy, ∆vz) indicates the voxel element size. In this paper, ∆vx = ∆vy = ∆vz = 0.2 covering a
cubic space of 1 m3, which means vx

i ∈ [1, 5]; vy
i ∈ [1, 5]; vz

i ∈ [1, 5], a unique natural number ranging
from 1 to 5 can be associated to each voxel in X, Y, Z dimensions. Subsequently, the mean feature
vector of all the points that is assigned to each voxel is set as the voxel value, which is shown as in
Figure 1. As a result, the center point p with its k nearest neighborhood is represented as a 4th-order
tensor, the entries are accessed by the voxel index and the feature number. Based on this data structure,
the attribute of each point are regarded as entries in the tensor, which are arranged as ri1i2i3i4 where
i1 = 1, . . . , I1; i2 = 1, . . . , I2; i3 = 1, . . . , I3; i4 = 1, . . . , I4, i1 = i2 = i3 = 5 and I4 equals to the number
of attribute on each points in our approach. Finally, the point p is described as the 4th-order tensor
T ∈ RI1×I2×I3×I4 , where I1, I2, I3, I4 indicate the X, Y, Z and attribute mode, respectively. In this regard,
the spatial distribution and attributions can be simultaneously preserved. Each point in the LiDAR
dataset is processed as the 4th-order tensor, which is used for tensor-based dictionary learning and
sparse coding.
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3. Tensor-Based Sparse Representation Classification Methodology

3.1. Sparse Representation Classification Model

The sparsity algorithm is to find the best representative of a test sample by sparse linear
combination of training samples from a dictionary [13]. Given a certain number of training samples
from each class, the sub-dictionary Di from ith class is learned. Assume that there are c classes of
subjects, and let D =

[
D1, D2, . . . , Dc

]
, which is the overall structured dictionary over the entire dataset.

Denote by y a test sample vector and x the sparse coefficient vector of y, the linear representation of y
can be written as:

y = Dx (6)
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The sparse coefficient vector x is calculated by projecting y on the dictionary D, which is called
sparse coding procedure. The sparse coefficient vector x can be obtained by solving the following
optimization problem:

x = argmin
x
‖ x ‖0 s.t. ‖ y−Dx ‖2 ≤ ε (7)

where ‖ · ‖0 is the l0-norm of vector x which defines the number of nonzero elements in x and ε is a
pre-specified residual level parameter. The problem in (7) is a nondeterministic polynomial-time
hard (NP-hard problem) due to the non-differentiability and non-convex nature of the l0-norm.
Typical approaches for solving (7) are either approximation of the original problem with l1-norm
based convex relaxation [27], or resorting to greedy schemes, such as match pursuit and basis pursuit
algorithms [28]. The optimization of (7) can also be reformulated as:

x = argmin
x
‖ y−Dx ‖2 s.t. ‖ x ‖0 ≤ s (8)

where s is the sparsity level of vector x. By the additional constraint ‖ x ‖0 ≤ s, the sparse vector x for
the test sample y on the dictionary D can be obtained. Based on the class information of structured
dictionary D, the sparse coefficient vector x can be written as x =

[
x1, x2, . . . , xc], where xi is the subset

of the sparse coefficient vector x associated with class i. Thus, x should be a sparse coefficient vector
whose entries is zero except those corresponding to the ith class. According to this assumption, the test
sample yi from class i can be well represented by a linear combination of the sub-dictionary Di and its
corresponding subset of sparse vector xi.

Sparse representation classification (SRC) uses the reconstruction error ei that is associated with
each class to perform the data classification. First of all, the sparse representation x of test sample y
is recovered with respect to the whole dictionary. Then, xi is extracted from x as the subset vector
corresponding to the class i. The test sample is reconstructed by each class specific sub-dictionary
Di and its corresponding sparse vector xi. The class label of y is then determined as the one with
minimal residual.

ei =‖ y−Dixi ‖2 class i = [1, 2, . . . , c] (9)

identify(y) = argmin
i
{ei}

3.2. Tensor-Based Sparse Reperesntation Classification

When considering the 4th-order tensors that are used in this work, the dictionary set
(D1, D2, D3, D4) is required to be learned on X, Y, Z, and attribute modes. The sparse coefficient
vector x is also extended to a 4th-order sparse tensor X. After the tensor generation for each point,
the 4th-order tensors are used as the input data. At the beginning, the training tensor samples
are randomly selected for the dictionary set learning. The dictionary is also composed of several
sub-dictionaries that are associated with class i. Subsequently, for the sparse coding, the test tensor is
projected into dictionaries on each mode to achieve the sparse tensor. This sparse coding is solved by
TOMP (Tensor-based Orthogonal Matching Pursuit). Then, the test tensor data is recovered by the
class specific sub-dictionaries and their corresponding subset of the sparse tensor. Finally, the label of
the test tensor is predicted by the minimal reconstruction errors. The whole procedure is shown in
Figure 2.

We use an alternating strategy to solve the dictionary learning problem. It can be divided
into two sub-problems: updating the sparse tensor X by fixing the dictionary set (D1, D2, D3, D4),
and updating the dictionary set (D1, D2, D3, D4) by fixing the sparse tensor X, until convergence. As a
result, the desired dictionary set (D1, D2, D3, D4) and the sparse tensor X can be obtained.
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3.2.1. Tensor-Based Sparse Coding

To calculate the sparse core tensor X, we use a greedy algorithm TOMP (Tensor-based Orthogonal
Matching Pursuit) proposed by [22]. Classical OMP locates the support of the sparse vector that have
the best approximation of sample data from the dictionary. It selects the support set by one index at
each iteration until s atoms are selected or the approximation error is within a preset threshold [14],
where s is the sparsity.

Given a fouth-order LiDAR point tensor T ∈ RI1×I2×I3×I4 , suppose that the dictionary set
(D1, D2, D3, D4) is fixed, D1 ∈ RI1×J1 , D2 ∈ RI2×J2 , D3 ∈ RI3×J3 , D4 ∈ RI4×J4 , X ∈ RJ1×J2×J3×J4 is the
sparse tensor of T to be calculated. The objective function is converted to a sparse coding problem
with l0-norm regularization which can be written as:

min
Xk
‖ T−X×1 D1 ×2 D2 ×3 D3 ×4 D4 ‖F

s.t. xj1,j2,j3,j4 = 0 ∀ (j1, j2, j3, j4) /∈ Γ1 × Γ2 × Γ3 × Γ4

(10)

where ‖ · ‖F is the Frobenius norm, Γn =
[
j1n, j2n, . . . , jsn

n
]

is the subset of sn indices of non-zero values
in the sparse core tensor on mode X, Y, Z and attribute, and thus, denotes all possible combination
of sn non-zero indices on the four modes. Therefore, the cross product Γ1 × Γ2 × Γ3 × Γ4 is the
set of all the possible non-zero indices that can appear. Moreover, s1, s2, s3, s4 represents the X, Y,
Z and attribute mode sparsity, indicating the number of selected column of each dictionary for
the sparse representation. The total sparsity of the fourth-order core sparse tensor is denoted by
s = s1 × s2 × s3 × s4. Due to the overcomplete dictionary set, the size of the sparse tensor X is larger
than the LiDAR tensors T.

Tensor-based Orthogonal Matching Pursuit (TOMP) relies on the equivalence of Tucker model
and its Kronecker representation. Given t = vec(T), x = vec(X), the following two representations are
equivalent:

T ∼= X×1 D1 ×2 D2 ×3 D3 ×4 D4

t ∼= (D4 ⊗D3 ⊗D2 ⊗D1)·x (11)

where ⊗ is the Kronecker product. Equation (11) is similar to the conventional linear sparse
representation formulation. Based on this equivalence, if the vectorized version t admits a s-sparse
representation over the Kronecker dictionary Dkron = (D4 ⊗D3 ⊗D2 ⊗D1), then the 4th-order tensor
T ∈ RI1×I2×I3×I4 also has a sparse representation with respect to the dictionaries D1, D2, D3, D4 on each
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mode. In the standard Tucker model, the core tensor usually has smaller size than the data tensor and
the main objective is to find such a decomposition, which is to compute both the core tensor and the
factor matrices. In our approach, the data tensor and dictionaries are known and the objective is to
calculate the core tensor X that can approximately recover the input tensor. Additionally, the core
tensor X is sparse and its size is larger than the data tensor. The TOMP algorithm is given in Table 1.

Table 1. The algorithm for TOMP (Tensor-based Orthogonal Matching Pursuit).

Algorithm: Tensor OMP

Require: input point tensor T ∈ RI1×I2×I3×I4 , Dictionaries D1 ∈ RI1×J1 , D2 ∈ RI2×J2 , D3 ∈ RI3×J3 , D4 ∈ RI4×J4 ,
maximum number of non-zeros coefficients sn in each mode.

Output: sparse tensor X ∈ RJ1×J2×J3×J4 , non-zeros coefficients index in sparse tensor (Γ1, Γ2, Γ3, Γ4)
Step:
1, initial: Γn = [∅](n = 1, 2, 3, 4), Residual R = T, X = 0, k = 0, t = vec(T)
2, while ‖ Γn ‖0 ≤ s do
3, [j1, j2, j3, j4] = argmax[j1,j2,j3,j4]

∣∣R×1 D1
T(:, j1)×2 D2

T(:, j2)×3 D3
T(:, j3)×4 D4

T(:, j4)
∣∣

4, Γn = Γn ∪ [j1, j2, j3, j4] (n = 1, 2, 3, 4). TD1 = D1(:, Γ1), TD2 = D2(:,Γ2), TD3 = D3(:,Γ3), TD4 = D4(:,Γ4);
5, x = arg minu‖ (TD1 ⊗ TD2 ⊗ TD3 ⊗ TD4)u− t ‖2

2;
6, X = tensorize(x);
7, R = T−X×1 TD1×2 TD2×3 TD3×4 TD4;
8, t = t + 1;
9, end while
10, return X, (Γ1, Γ2, Γ3, Γ4).

3.2.2. Structured and Discriminative Dictionary Learning

Dictionary learning aims to build a dictionary that is composed of basis vectors, which can
fully represent test samples by the sparse coding procedure. Regarding the 4th-order tensor data,
the dictionary set (D1, D2, D3, D4) on X, Y, Z, attribute mode should be learned. To improve the
performance of the dictionary learning method, a structured and discriminative dictionary is estimated in
our approach. Instead of learning a shared dictionary over all the classes, we derive a structured dictionary
D1 =

[
D1

1, D2
1, . . . , Dc

1

]
; D2 =

[
D1

2, D2
2, . . . , Dc

2

]
; D3 =

[
D1

3, D2
3, . . . , Dc

3

]
; D4 =

[
D1

4, D2
4, . . . , Dc

4

]
,

where Di
1, Di

2, Di
3, Di

4 is the class specified sub-dictionary associated with class i on X, Y, Z, and attribute
mode, and c is the total number of classes. With such a dictionary set, we can use the reconstruction error
for classification based on SRC.

Denote by T = [T1,T2, . . . , Tc] the set of training point tensors, where Ti is the subset of the training
tensor samples from class i. Correspondingly, Xi is the sparse tensor of Ti over the entire dictionary
set (D1, D2, D3, D4). Furthermore, Xi can be represented as Xi = [X1

i , X2
i , . . . , Xj

i , . . . , Xc
i ], where Xj

i is the
subset of sparse tensors corresponding to the class specific dictionary Di

1, Di
2, Di

3, Di
4.

The initial dictionaries are composed of k leading principal vectors of matrices along each mode
by Tucker decomposition. Denote by Tij the jth tensor from class i, Tij is tucker decomposed to get the
U1, U2, U3, U4, as shown in Equation (12), then the first k number of basis vectors of U1, U2, U3, U4 are
added into dictionaries Di

1, Di
2, Di

3, Di
4. Then, the initial dictionary set is optimized by the discriminative

dictionary learning model.

Tij
∼= Xij ×1 U1 ×2 U2 ×3 U3 ×4 U4 (12)

Besides requiring (D1, D2, D3, D4) should have strong reconstruction ability of for each tensor,
the dictionary set should also own the powerful capability to distinguish tensor samples between
various classes. Consequently, the discriminative fidelity terms are added to the dictionary learning
model. Firstly, the dictionary set (D1, D2, D3, D4) should be able to well recover the training tensor
set T, therefore, Ti ∼= Xi ×1 D1 ×2 D2 ×3 D3 ×4 D4. Then, since Di

1, Di
2, Di

3, Di
4 correspond to the class i,

Ti is expected to be well recovered by Di
1, Di

2, Di
3, Di

4, but not by Dj
1, Dj

2, Dj
3, Dj

4, j 6= i. This indicates
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that Xi
i should have some significant entries, such that Ti ∼= Xi

i ×1 Di
1 ×2 Di

2 ×3 Di
3 ×4 Di

4, meanwhile,
the entries in Xj

i should be nearly zero, such that ‖ Xj
i ×1 Dj

1 ×2 Dj
2 ×3 Dj

3 ×4 Dj
4 ‖F is small. As a result,

the dictionary learning model with the discriminative fidelity terms is defined as:

argmin
D1,D2,D3,D4

∑c
i=1(‖ Ti −Xi ×1 D1 ×2 D2 ×3 D3 ×4 D4 ‖F +

‖ Ti −Xi
i ×1 Di

1 ×2 Di
2 ×3 Di

3 ×4 Di
4 ‖F + ∑c

j=1 j 6= i‖ Xj
i ×1 Dj

1 ×2 Dj
2 ×3 Dj

3 ×4 Dj
4 ‖F)

s.t.‖ X ‖0 ≤ s

(13)

Again, c is the number of clasrses, and the ‖ X ‖0 ≤ s is the sparsity constraint, which means that
the sparsity of tensor X is s.

These discriminative tensor dictionaries are learned in an alternating minimization rule, all other
dictionaries and the sparse core tensors are fixed when learning one certain mode dictionary. Namely,
D1, D2, D3, D4 are learned independently between each other. To learn the dictionary on a certain mode,
we update the sub-dictionary Di class by class. When updating Di, all of the other sub-dictionary Dj,
j 6= i are fixed. Then, the objective function can be written as:

argmin
Di

1,Di
2,Di

3,Di
4

(‖ T−Xi ×1 Di
1 ×2 Di

2 ×3 Di
3 ×4 Di

4 −∑c
j=1 j 6= i Xj ×1 Dj

1 ×2 Dj
2 ×3 Dj

3 ×4 Dj
4 ‖F +

‖ Ti −Xi
i ×1 Di

1 ×2 Di
2 ×3 Di

3 ×4 Di
4 ‖F +∑c

j=1 j 6= i ‖ Xi
j ×1 Di

1 ×2 Di
2 ×3 Di

3 ×4 Di
4 ‖F)

s.t. ‖ X ‖0 ≤ s

(14)

Mathematically, the tensor equation can be represented in an unfolded form, the following two
equations are equivalent:

T ∼= X×1 D1 ×2 D2 ×3 . . .×n Dn . . .×N DN

T(n)
∼= DnX(n)(DN ⊗ . . .⊗Dn+1 ⊗Dn−1 ⊗ . . .⊗D1)

T (15)

where T(n) is the mode-n unfolding matrix of the tensor T, X(n) is the mode-n unfolded matrix of the
tensor X and n ∈ [1, 2, 3, 4]. Let ˇD−n = (DN ⊗ . . .⊗Dn+1 ⊗Dn−1 ⊗ . . .⊗D1), Equation (14) can be
rewritten into its unfolded version as:

argmin
Di

1,Di
2,Di

3,Di
4

‖ T(n) − Di
nXi

(n)
ˇDi
−n −∑c

j=1 j 6= i Dj
nXj

(n)
ˇ

Dj
−n ‖F

+ ‖ Ti(n) − Di
nXi

i(n)
ˇDi
−n ‖F +

∑c
j=1 j 6= i ‖ Di

nXi
j(n)

ˇDi
−n ‖F s.t. ‖ X ‖0 ≤ s

(16)

This is a conversion to a constrained convex quadratic optimization problem, and it can be solved
by the gradient algorithm in the paper [29]. Figure 3 shows the residuals of objective function (13)
along dictionary set (D1, D2, D3, D4) updating.

In this way, dictionaries on the four modes are updated. In the next iteration, these new learned
dictionaries are used to obtain the new sparse tensor in the sparse coding procedure. As a result,
this dictionary learning processing alternates between tensor dictionary learning and sparse tensor
update until a stopping criterion is reached.
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3.2.3. Tensor-Based Sparse Representation Classifier

Analogous to SRC, the class label of the test tensor Tk is determined by the minimal residual:

label = arg min
i=1,2,...,c

ei c = number of classes

where ei =‖ Tk −Xi
k ×1 Di

1 ×2 Di
2 ×3 Di

3 ×4 Di
4 ‖F.

Given a test tensor Tk, its sparse tensor Xk over the whole dictionary set (D1, D2, D3, D4) is
calculated by TOMP, then Xi

k is the subset of sparse tensor corresponding to the Di
1, Di

2, Di
3, Di

4 that is
associated with class i. The test tensor should be well recovered by its corresponding sub-dictionary
set and subset of sparse tensor, whereas the residual should be large when using other sub-dictionary
sets and subsets of sparse tensor.

4. Results

4.1. Data Description

We perform the classification on eight real airborne LiDAR datasets of Vienna city. The area
of each dataset is 100 × 100 m2. The densities of datasets mostly range from 8 to 75 points/m2.
Multiple echoes were recorded and the point clouds in all of the datasets are fully labeled. The datasets
contain various kinds of objects, such as: high-rising buildings with balcony, small detached houses,
single trees, grouped and low vegetation, ground with consistent height, and ground with slopes.
In the classification procedure, the objects are categorized into five classes: open ground which is
uncovered or not blocked by any objects; building roof ; vegetation; covered ground, which is usually
under the high trees or building roof; and, façade.

4.2. Feature Extraction

A set of 18 features are extracted from 3D LiDAR points, which contains height-based features,
local plane-based features, penetrability-based features and local shape-based features. The four
feature groups are detailed hereby.

4.2.1. Height-Based Features

1. Height difference. Height difference is measured between the LiDAR point and the lowest point
found in a multiple scale cylindrical neighborhood. By varying the size of the local cylindrical
neighborhood, height differences are calculated for each scale. The cylinder radii have been set
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experimentally to 10 m and 2 m, and correspondingly the height differences are denoted by ∆Hr1

and ∆Hr2. The height difference ∆H is given by:

∆H =

{
∆Hr1, ∆Hr1 ≥ λ

∆Hr2, ∆Hr1 ≤ λ

The threshold λ = 70%×max(∆Hr1), and the maximum is taken over the ∆Hr1 of all the points.
If the height difference value that is found in the large neighborhood is higher than the threshold,
then this is considered as the reliable height difference value for this object. Otherwise, the objects may
be points located on the slope, and the height difference should be calculated in a smaller neighborhood.
Normally, the ground point should be selected as the lowest point and have a low height difference
value. However, in the area of inclined ground, the ground points on the slope would also have
relatively high height difference values for a large neighborhood selection, which can be seen in the
rectangular area, as marked in Figure 4a. Figure 4a indicates that sloped ground areas have the same
height difference values with roof points, which will lead to misclassification. Therefore, a small
neighborhood is more suitable for sloped areas. The height difference values in the rectangular area
marked in Figure 4b is much more reasonable using the multiple neighborhood selection. The ground
area in the rectangle in Figure 4b shows a constant height difference values with most ground points.
Thus, the height difference can be calculated correctly in both sloped and flat environments by using
multiple neighborhood selections.Remote Sens. 2017, 9, 1216  11 of 20 
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4.2.2. Local Plane-Based Features

For a given 3D point set and its k closest neighbors, the local plane-based features are exploited
by estimating a local orthogonal regression plane. The local plane-based features contain:

2–4. Normal vector: Normal X; Normal Y; and, Normal Z. The normal vectors of local planes
are estimated by k neighbor points, normal X; normal Y; normal Z are the values in X, Y, Z
direction from the normal vectors.

5. NormalSigma0: the standard deviation of normal estimation. The value is high in rough areas
and low in smooth areas.

6. NormalZSigma0: the standard deviation of Normal Z estimation in a cylindrical neighborhood.
The value can reflect the penetrability of the object.

7. Normal planeoffset: the offset between the current point and its local estimated plane.
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8–10. Eigenvalues: Eigenvalue1; Eigenvalue2; and, Eigenvalue3. The covariance matrix used
for the normal vector computation is decomposed by eigenvalue analysis. This yields
Eigenvalue1 λ1; Eigenvalue2 λ2; Eigenvalue3 λ3(λ1 > λ2 > λ3). λ2 λ3 have low values for
planar object and higher values for voluminous point clouds.

4.2.3. Echo-Based Features

11. Echo Ratio: The ER (echo ratio) is a measure for local transparency and roughness. It is defined
as follows [30].

ER = n3D/n2D × 100

with n3D ≤ n2D, n3D is the number of neighbors found in a certain search distance measured in
3D and n2D is the number of neighbors found in the same distance measured in two-dimensions
(2D). The ER is nearly 100% for a flat surface, whereas the ER decreases for penetrable surface
parts since there are more points in a vertical search cylinder than there are points in a sphere
with the same radius.

12. Echo number ratio. The echo number ratio of each point is defined as:

Echo number ratio =
echo number

number o f echoes
× 100

The echo number is q-th echo for a certain pulse. The number of echo is the maximum number of
echoes that are detected for the pulse to which the echo belongs. The echo number ratio could indicate
the penetrability of objects.

4.2.4. Local Shape-Based Features

The local shape-based features are obtained by the normalized eigenvalues λi, which include:
linearity, planarity, sphericity, anisotropy, omivariance, and eigenentropy. The local shape-based
features are calculated based on the paper by Niemeyer et al. [7], and are defined as follows:

13–18. Linearity = λ1−λ2
λ1

; Planarity = λ2−λ3
λ1

; Sphericity = λ3/λ1

Anisotropy =
λ1 − λ3

λ1
; Omivariance = 3

√
λ1λ2λ3; Eigenentropy = −

3

∑
i=1

λ1 ln λ1

The nearest neighbors are selected for feature extraction, and kf is set to 30. The radius for ER and
NormalZSigma0 calculation is set to 1 m. After the feature extraction, all feature values are normalized
to the interval [0,1]. Then, a feature vector of 18 dimensions corresponding to each point is obtained
through the feature extraction, and attached as the 4th-order of the tensor data. Figure 5 shows a
selection of features extraction results of Dataset 3.
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4.3. Classification Results

Based on the 18 features described in Section 4.2, we conduct a series of experiments for TSRC.
Firstly, the general behavior of TSRC is analyzed in Section 4.3.1, then, KNN (k-nearest neighbors),
DT (Decision Tree), RF (Random Forest), SVM (Support Vector Machine) are used for comparison
in Section 4.3.2. In each experiment, the training data is randomly selected from the whole dataset,
and the remaining dataset is used as the test samples. For each class, always the same number of
training samples is selected. The overall accuracy (OA) is selected to evaluate all of the classifiers.

4.3.1. Tensor-Based Sparse Representation Classification Results and Discussion

For TSRC, all 3D LiDAR points are generated as the fourth-order tensor T ∈ R5×5×5×18,
which means that the points are sampled into 5 × 5 × 5 regular grids in the three-dimensional space,
and each grid is attached with a 1 × 18 feature vector. The sparsity level is set to 9, and 27 training
sample tensors are randomly selected from each class to learn the dictionary.

We conduct the TSRC on the eight real airborne LiDAR datasets. To avoid the biased result,
we repeated TSRC 10 times on each dataset. Visual inspection indicates that most objects are classified
correctly in Figure 6. The unlabeled points are objects that do not belong to any class mentioned in
the Section 4.1, such as fences, cars, power lines, and others. Unlabeled points are not involved in
the accuracy evaluation. The amount of points in each LiDAR dataset, percentage of training data,
and mean OA of 10 classification experiments and the standard deviation of OA are summarized in
Table 2. The overall accuracies of all the datasets are beyond 80%, which are rather good classification
results when considering that only a few training samples are used. Moreover, the OA deviations of all
datasets are less than 1%, and OA values of 10 TSRC experiments remain stable for all of the datasets.
It indicates that the TSRC is barely affected by the training data selection.
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Table 2. The percentage of training samples for all of the datasets.

Dataset Test Set Training Set Mean OA OA std.dev Data Set Test Set Training Set Mean OA OA std.dev

Dataset 1 665,466 0.02% 90.57% 0.77% Dataset 5 365,926 0.03% 82.16% 0.69%
Dataset 2 452,800 0.02% 91.85% 0.84% Dataset 6 222,702 0.06% 87.03% 0.71%
Dataset 3 352,318 0.03% 84.98% 0.63% Dataset 7 880,809 0.02% 85.09% 0.91%
Dataset 4 298,201 0.04% 88.44% 0.89% Dataset 8 320,716 0.04% 87.24% 0.64%
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The confusion matrices in Table 3 present the correctness and incorrectness for each class of
all the datasets. From the confusion matrices and qualification (Figure 7) of the classification, we
can see that the major confusions occur between open ground and covered ground. 14.44% of open
ground points are mislabeled as covered ground in Dataset 6, and 8.65% of covered ground points
are wrongly labeled as ground in Dataset 3. This is caused by the same attributes that open and
covered ground points share, such as same height difference, roughness, and local shape parameters.
Moreover, open and covered ground points are easily mixed in the neighborhood when generating
the tensor. Based on the Table 3, there are 4.45% of open ground points that are wrongly labeled as
roof in Dataset 3. Some slope areas and low roofs are confused with each other in this site. This is
due to the same feature values and geometry that they have. However, open and covered ground
points are scarcely classified to other classes for other datasets. Therefore, the ground points are well
distinguished from other objects by TSRC, which shows great potential ability for ground filtering.
As for roof classification result, incorrect points are found essentially on building edges (as seen in
Figure 7). They are labeled as vegetation, since such points behave similar for many attributes, such as
the low ER values, high NormalSigma0 values, and low planarity. Vegetation are well classified
with a high accuracy. The error points do not appear on certain classes, they randomly occur in the
other four classes based on the statistic in Table 3. Finally, the accuracy of façade is relatively low.
Large numbers of points are labeled as vegetation. They mainly correspond to the façade where points
are not sufficiently dense and co-planar. Those points will have high local-planar based feature values,
which behave similarly to vegetation points. Furthermore, some façade points are very close to roof and
ground, and they are often misclassified due to the neighborhood selection used for tensor generation.
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Table 3. The confusion matrices for each dataset and number of points per class in each dataset.
(Error rates above 3% are highlighted by italic type except the mixtures between open ground and
covered ground).

Reference Class

Predicted
Class Dataset Open

Ground Vegetation Roof Covered
Ground Facade Total

Points
Training

Points

Open ground

Dataset 1 89.34% 0.87% 0.97% 8.59% 0.13% 255,835 27
Dataset 2 90.07% 0.04% 0% 9.86% 0.02% 193,715 27
Dataset 3 85.3% 1.39% 4.45% 8.83% 0.03% 188,776 27
Dataset 4 91.69% 1.95% 0.58% 5.68% 0.1% 124,024 27
Dataset 5 90.11% 0.51% 0.02% 9.31% 0.04% 148,164 27
Dataset 6 84.59% 0.08% 0.83% 14.44% 0.04% 413,762 27
Dataset 7 87.68% 0.33% 2.67% 9.09% 0.22% 104,853 27
Dataset 8 90.53% 0.004% 0.007% 9.06% 0.4% 55,223 27

Vegetation

Dataset 1 1.02% 94.21% 1.57% 1.85% 1.35% 157,013 27
Dataset 2 0.83% 97.16% 1.14% 0.73% 0.15% 148,961 27
Dataset 3 0.97% 93.03% 3.33% 1.56% 1.11 65,191 27
Dataset 4 1.53% 94.39% 1.66% 1.41% 1.01% 35,545 27
Dataset 5 0.24% 97.02% 0.22% 1.22% 1.3% 34,462 27
Dataset 6 0.98% 93.01% 0.86% 3.48% 1.67% 57,892 27
Dataset 7 1.16% 93.65% 0.75% 2.19% 2.25% 15,905 27
Dataset 8 1.09% 92.19% 1.8% 2.34% 2.57% 20,949 27

Roof

Dataset 1 0.49% 2.63% 96.13% 0.26% 0.48% 144,671 27
Dataset 2 0.02% 1.16% 98.55% 0.15% 0.11% 26,430 27
Dataset 3 1.77% 5.88% 91.42% 0.59% 0.34% 45,955 27
Dataset 4 0.14% 6.52% 92.86% 0.2% 0.28% 36,137 27
Dataset 5 0.18% 1.19% 98.14% 0.07% 0.41% 72,738 27
Dataset 6 0.66% 0.38% 98.41% 0.31% 0.24% 248,716 27
Dataset 7 0.7% 1.94% 96.05% 0.34% 0.97% 112,417 27
Dataset 8 0.42% 0.17% 97.9% 0.17% 1.35% 164,376 27

Covered
ground

Dataset 1 4.47% 0.99% 0.16% 94.33% 0 53,491 27
Dataset 2 1.98% 1.27% 0.01% 96.71% 0.02% 64,778 27
Dataset 3 8.65% 1.69% 0.81% 88.8% 0.04% 31,373 27
Dataset 4 5.11% 0.57% 0.02% 94.09% 0.21% 13,910 27
Dataset 5 7.78% 2.06% 0 90.16% 0.003% 31,186 27
Dataset 6 1.4% 1.37% 0.24% 96.99% 0.008% 49,481 27
Dataset 7 3.35% 0.63% 0.14% 95.88% 0 11,000 27
Dataset 8 4.41% 0.008% 0 95.52% 0.05% 11,127 27

Facade

Dataset 1 1.71% 9.61% 4.96% 1.69% 82.02% 13,707 27
Dataset 2 3.45% 1.89% 1.84% 1.84% 90.97% 6,189 27
Dataset 3 0.08% 18.77% 0.5% 0.92% 79.73% 4,787 27
Dataset 4 4.68% 10.52% 0.65% 1.56% 82.60% 2,313 27
Dataset 5 1.09% 12.01% 10.49% 0.36% 76.06% 37,636 27
Dataset 6 1.57% 4.14% 8.9% 0.53% 84.85 47,506 27
Dataset 7 0.94% 6.25% 4.07% 1.01% 87.73% 24,852 27
Dataset 8 0.76% 5.22% 6.92% 0.25% 86.84% 40,815 27

In total, TSRC can lead to a good classification result on the airborne urban LiDAR points with a
few training data only. Based on the statistic of the number of points per class, the accuracy has no direct
relevance to the amount of training data. With 27 training samples given in each class, the performance
remains stable no matter whether dealing with classes with a large or a small amount of points. Finally,
when compared with the object points, the ground points are most likely to be correctly detected by
TSRC, which is meaningful for the filtering and generation of DTM (Digital Terrain Model).
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4.3.2. Classification Comparison

For the comparison, the classifiers KNN, DT, RF, and SVM are applied on the eight LiDAR
datasets. The training data are randomly selected for 10 repetitions of the experiment, and the same
training datasets are used in the TSRC dictionary learning, the training of the other classifiers, and the
optimization in each experiments. To find the optimal parameters for KNN, DT, RF, and SVM, we built
a misclassification rate function for each classifier based on the training dataset, then the minimum
error rate is searched by parameters optimization, and the best parameters of each classifier were
selected. The parameters to be optimized for each classifiers are listed in the following.

KNN: the k nearest neighborhood points, distance computation function.
DT: the minimum observations on each leaf, the minimum observations in each branch node,

and the maximum number of branch node splits.
RF: the number of predictors, and the parameters included for generating the decision tree,

which contains the minimum observations on each leaf, the minimum observations in each
branch node, and the maximum number of branch node splits.

SVM: the kernel function, the kernel size and the box constraint which is the weight of cost
of misclassification.

The mean OA and OA standard deviation of 10 experiments for all of the classifiers are
summarized in Table 4. Based on Table 4, TSRC shows the best performance over all of the datasets in
terms of mean OA, except for Dataset 1, where RF provides the best results. However, TSRC achieves
the second best OA and it is just 0.36% lower than the best OA value for this Dataset. As for OA
deviation, TSRC also has the lowest OA deviation for Datasets 2–8, while the OA deviation of TSRC for
Dataset 1 is only 0. 09% lower than that achieved by SVM. According to the OA deviation, the TSRC is
less affected by the training data selection than the other classifiers investigated.

Figure 8 shows the average accuracy per class for all eight datasets when using TSRC and other
classifiers in 10 repetitions of the experiment. For the ground classification, the TSRC has the best
accuracy in most cases; however, the accuracy of the TSRC is slightly lower than DT in Dataset 3 and
lower than DT, RF, and SVM in Dataset 8. The accuracy gap of vegetation classification among TSRC,
RF, and SVM is narrow for all of the datasets, but the vegetation classification accuracy is increased by
14.28% for Dataset 3 and 20.91% for Dataset 4 when compared to KNN. As displayed in Figure 8d,
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the accuracy of roof is significantly improved by TSRC for Dataset 4 and Dataset 5. As for covered
ground classification, the accuracies of TSRC are significantly higher than that of DT, and higher than
the accuracy obtained by KNN and RF for most cases. The difference between accuracies of TSRC
and SVM are small. Additionally, TSRC delivers the best results among all of the classifiers for façade
classification. The improvement is especially significant in façade detection for Dateset 3 and Dataset
4, the facades are badly distinguished by the other four classifiers. The accuracy of DT is only 51.03%
and 43.62%, while the accuracies increase to 79.73% and 84.97% by TSRC.

KNN directly searches the similar feature vectors from the training data, and all of the attributes
are used without any selection or weight assignment. Therefore, the classification results of KNN are
not as good as TSRC. The optimal parameters for DT, RF, and SVM is dependent on the large amount
of training data and multiple cross validation. Since only a few of training data are used to train DT,
RF, and SVM in this paper, the classifiers are easily overfitting and biased. The classifiers work well for
the training points, but it could not lead to a good the classification result for a large amount of test
points. However, TSRC has better performance than those classifiers by using the same amount of
training data.

In a nutshell, the classification results for the eight LiDAR datasets demonstrate the effectiveness
of TSRC in improving the classification performance, particularly enhancing the façade detection
accuracy. Since façade points are influenced by their sparse density and mini-structures on the
wall, and the feature values of façade points are not reliable and yield a bad detection result by the
feature-based classifiers. Due to the combination of points spatial distribution and feature values,
TSRC could effectively improve the façade detection accuracy.

Table 4. Mean overall accuracy (OA) and OA deviation for all dataset using different classifiers.
Bold values indicate the highest overall accuracy and the lowest standard deviation with the
respective classifier.

Dataset
Mean OA OA std.dev

TSRC KNN DT RF SVM TSRC KNN DT RF SVM

Dataset 1 90.57% 84.06% 89.72% 90.93% 90.15% 0.77% 1.07% 0.89% 0.77% 0.68%
Dataset 2 91.85% 87.88% 87.91% 89.91% 89.20% 0.84% 1.34% 1.94% 1.19% 0.91%
Dataset 3 84.98% 75.90% 75.72% 77.87% 76.98% 0.63% 1.58% 2.46% 1.81% 1.63%
Dataset 4 88.44% 82.21% 78.93% 82.25% 83.36% 0.89% 1.53% 2.53% 1.73% 2.17%
Dataset 5 82.16% 76.68% 74.75% 81.34% 82.07% 0.69% 0.84% 1.83% 2.81% 0.67%
Dataset 6 87.03% 81.53% 77.85% 82.14% 83.11% 0.71% 1.66% 2.84% 1.72% 1.77%
Dataset 7 85.09% 81.37% 80.55% 82.10% 80.99% 0.91% 1.70% 2.67% 1.32% 1.61%
Dataset 8 87.24% 81.52% 76.23% 82.63% 82.48% 0.64% 1.19% 2.48% 1.53% 1.24%
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Figure 8. Accuracy per class comparisons of tensor-based sparse representation classification (TSRC)
and other classifiers: (a) Overall accuracy; (b) Open ground accuracy; (c) Vegetation accuracy; (d) Roof
accuracy; (e) Covered ground accuracy; (f) Facade accuracy.

5. Discussion

One of our framework’s crucial parts is the tensor reconstruction. The tensor is reconstructed
by each sub-dictionary and its corresponding subset of the sparse tensor. Then, the class label is
determined by the minimum reconstruction error. Theoretically, it is possible that there are equal
reconstruction errors. However, this tie situation never happened in our experiments. Since the
bases in the sub-dictionary are different between each other, it is very unlikely that a sparse tensor
contains certain subsets of tensors that could recover the same tensors. Therefore, the tie situation of
reconstruction errors barely happens.

Since there are parameters need to set manually in this approach, such as the neighborhood size
in tensor generation, sparsity level in TOMP, and the number of training data, we conducted a series
of experiments on how those parameters influence the classification result. This is discussed below.

5.1. Impact of Neighborhood Size Selection in Tensor Generation

The impact of KNN neighborhood size in tensor processing on the classification results is assessed.
The neighborhood size indicates how many points are involved in the tensor generation, and it depends
on the scale parameter kt (k nearest neighbor points). Therefore, we utilize Dataset 4 and vary kt values
over the interval between kt = 20 and kt = 120 with ∆kt = 20 Dataset 4 contains various types of objects,
such as slopes, small detached houses, high-rising buildings, low vegetation, and high trees, so it
is used to test the impact of neighborhood size selection. The classification is evaluated by OA and
Kappa index in Table 5.

The OA and Kappa index slightly change by using various kt values, the tendency is similar across
the open ground, vegetation, roof and covered ground class. Only the façade objects are influenced by
the kt values; the accuracy of façade is lower when smaller kt values are used, and façade accuracy
increases when the kt value is larger than 80. In order to achieve the high accuracies of all types of
objects, kt value is suggested setting in the range of 80–120. We use a kt value of 80 in our classification.
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Table 5. Accuracy per class, OA and Kappa index of TSRC for Dataset 4 with different kt values.

kt 20 40 60 80 100 120

Open Ground 91.13% 88.62% 92.81% 88.52% 93.07% 90.65%
Vegetation 85.11% 93.07% 90.13% 91.79% 91.31% 86.91%

Roof 92.98% 89.35% 91.77% 93.65% 94.08% 92.16%
Covered ground 93.00% 96.82% 93.37% 97.07% 90.84% 96.45%

Facade 68.86% 73.93% 78.57% 83.63% 85.38% 93.3%
OA 86.83% 86.69% 89.27% 87.75% 90.39% 88.39%

Kappa Index 0.7946 0.7925 0.8327 0.809 0.8502 0.8189

5.2. Impact of Sparsity Level

The sparsity level indicates that the number of bases needed to be extracted from the dictionary
for data reconstruction in the sparse coding processing. As in Section 5.1 Dataset 4, which exhibits
large variety within each class, is used to test the impact of various sparsity levels on the classification
result. The sparsity level s is set from s = 5 to s = 18 as shown in Table 6. The OA and Kappa index
remain unchanged by using different sparsity level in the TOMP phase, which also demonstrates that
the classification result is not sensitive to the sparsity level. As the initial value of is S 9 only 0.1% less
than the optimal value, this initial value is kept for further experiments.

Table 6. Accuracy per class, OA and Kappa index of TSRC for Dataset 4 with different sparsity level.

s 5 7 9 11 13 15 17 18

Open Ground 91.36% 91.76% 92.13% 92.29% 92.43% 91.36% 92.42% 92.52%
Vegetation 92.44% 92.42% 92.21% 92.06% 91.55% 92.44% 86.67% 85.77%

Roof 95.44% 95.48% 95.47% 95.70% 95.44% 95.44% 95.76% 95.56%
Covered ground 95.17% 94.25% 93.73% 93.35% 93.24% 95.17% 92.5% 92.09%

Facade 86.49% 86.75% 88.7% 88.7% 85.71% 86.49% 81.82% 81.82%
OA 89.50% 89.69% 89.85% 89.92% 89.94% 89.49% 89.14% 89.01%

Kappa Index 0.8363 0.8392 0.8418 0.8428 0.8431 0.8361 0.8306 0.8286

5.3. Impact of Training Data

Since learning a classifier strongly depends on the given training data, we further consider
the influence of varying the amount of training data on the classification results. We focus on the
impact of 10 different amount of training examples, the parameter of training data amount Nt varies
from Nt = 9 to Nt = 90, with a step size of ∆Nt = 9. The general behavior of the TSRC and other
classifiers under various numbers of training samples is analyzed. KNN, DT, RF, and SVM are chosen
for classification comparison. Again, the LiDAR Dataset 4 is used for classification, which contains
352318 points.

The overall accuracy values are given in Figure 9. Generally, the TSRC performs better than the other
four classifiers independent of the number of training samples. The overall accuracy tends to increase for
all of the classification methods. The overall accuracy remains steady from Nt = 27 to Nt = 90 by TSRC.
Therefore, the training data amount is set as 27 in the classification experiments.
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6. Conclusions

In this paper, a tensor-based sparse representation classification frame work is proposed for 3D
LiDAR point cloud classification. In this framework, each point is considered as the fourth-order tensor
in order to make full use of geometry and feature information. 18 features per point are extracted
from the 3D LiDAR points, and all features are utilized for classification without any feature selection
procedure. Based on the Tucker Decomposition, the structured and discriminative dictionaries along
each mode are learned for tensor data classification. Then, the test tensor data is projected onto the
dictionary set to get its sparse tensor. After that, using different class-specific dictionary sets and its
corresponding subsets of the sparse tensor to recover the test tensor data, meanwhile the residuals per
class are determined. Finally, the label of the test tensor is determined by the minimal residual.

A series of experiments of TSRC suggest that the TSRC is barely dependent on the neighborhood
size of tensor generation and the sparsity level. The TSCR can be successfully conducted by using only
a few training samples. Based on the eight real airborne LiDAR points classification result, the OAs of
TSRC are beyond 80%, with only 27 training tensors being used per class. Additionally, TSRC achieves
a good classification when compared with other classifiers.. TSRC has respectable performance in
identifying objects with less distinguishable features, such as façade.
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