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Abstract: Decision tree classification is one of the most efficient methods for obtaining land use/land
cover (LULC) information from remotely sensed imageries. However, traditional decision tree
classification methods cannot effectively eliminate the influence of mixed pixels. This study aimed
to integrate pixel unmixing and decision tree to improve LULC classification by removing mixed
pixel influence. The abundance and minimum noise fraction (MNF) results that were obtained from
mixed pixel decomposition were added to decision tree multi-features using a three-dimensional (3D)
Terrain model, which was created using an image fusion digital elevation model (DEM), to select
training samples (ROIs), and improve ROI separability. A Landsat-8 OLI image of the Yunlong
Reservoir Basin in Kunming was used to test this proposed method. Study results showed that the
Kappa coefficient and the overall accuracy of integrated pixel unmixing and decision tree method
increased by 0.093% and 10%, respectively, as compared with the original decision tree method.
This proposed method could effectively eliminate the influence of mixed pixels and improve the
accuracy in complex LULC classifications.
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1. Introduction

Land use/land cover (LULC) information is urgently required for policy making for it provides
vital inputs for various developmental, environmental and resource planning applications, as well as
regional and global scale process modeling [1,2]. Remote sensing classification is an important way
to extract LULC information, and the selection of classification methods is a key factor influencing
its accuracy.

Traditional classification and intelligence methods have their own limitations. The most commonly
used maximum likelihood classification shows difficulty in extracting different objects with same
spectra and same objects with different spectra, which results in a low classification accuracy [3].
Artificial Neural Network (ANN) [4–6], Support Vector Machine (SVM) [7,8], and Fuzzy classification
methods [9–11], which are based on image spectral characteristics, cannot take multi-features (such as
Digital Elevation Model (DEM), spectral information, Iterative Self-organizing Data Analysis Technique
(ISODATA) result, Minimum Noise Fraction (MNF) result, and abundance) into account, and their
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complex algorithms may also lead to low classification efficiency. Object-oriented classification
delineates objects from remote sensing images by obtaining a variety of additional spatial and textural
information, which is important for improving the accuracy of remote sensing classification [12,13];
however, for low resolution imagery or fragmented landscapes and complex terrain, its classification
accuracy is much lower [14].

Decision tree (DT) has been widely used in remote sensing classification, for it can fuse complex
features related to terrain, texture, spectral, and spatial distribution to improve classification accuracy,
and its advantages include the ability to handle data measured at different scales and various
resolutions, rapid DT algorithms, and no statistical assumptions [15]. In recent years, many applications
have applied DT algorithms to classify remote sensing data, such as mapping tropical vegetation
cover [16] or urban landscape dynamics [17], and they obtained good results. Although DT is very
effective for LULC classification, it is also pixel-based and cannot effectively eliminate the influence
of mixed pixels during the classification process, especially for low resolution imagery, fragmented
landscapes, and complex terrain. The presence of mixed pixels reduces classification accuracy to a
great extent for low resolution imagery, and the cost of using high-resolution images is very great for
large-scale LULC classification.

There are two mainstream methods for eliminating mixed pixels: linear and nonlinear spectral
models. The gray value of a mixed pixel is a linear combination of different pure pixel’s gray value
in a linear spectral model, which has the advantages of clear physical meaning and strict theoretical
basis. This kind of model is widely used, and the linear least squares algorithm is usually applied to
decomposite mixed pixels. The construction and calculation of a nonlinear spectral model is much
more difficult than those of a linear model, and a nonlinear spectral mixture model uses the sum of
quadratic polynomials and residuals to represent the gray value. However, such a model is nonlinear
and cannot be calculated directly, and thus an iterative algorithm is needed to solve the problem of
nonlinear decomposition [18,19].

At present, mixed pixel unmixing methods are mainly emphasized in the selection of endmember
and abundance extraction, especially for endmember selection, Endmember selection is an important
part of mixed pixel decomposition, and the primary approaches are as follows: (1) obtaining spectral
signals by using a spectrometer to measure in field or selecting from an available spectral library,
such as ENVI standard spectral library, known as “Reference Endmembers” [20–22]; (2) directly
selecting endmembers from the image to be classified, and then adjusting and modifying the
endmembers until they are sufficient, known as “Image Endmembers”; and (3) using a combination of
“Reference Endmembers” and “Image Endmembers”, in order to ensure that endmembers are primarily
dependent on the adjustment of reference and the correction of image [23,24]. The key for mixed
pixel decomposition is the selection of appropriate endmembers [25]. Theoretically, the premise for
solving mixed pixel linear equations is to keep the number of endmembers as less than or equal to i + 1
(i is the number of image bands). The following methods are generally used to extract endmembers
from images: Geometric Vertex method, Pure Pixel Index (PPI) combination n-dimensional scatter plot
visualization tool [26], or Sequential Maximum Angle Convex Cone (SMACC) for automatic extraction.
In addition, mixed pixel unmixing also emphasized the specific location of each mixed component,
which can effectively improve image classification, object recognition, and extraction accuracy.

Little research has been done on integrating mixed pixel decomposition and decision trees to
improve LULC classification. Therefore, this study aimed to design a methodological framework to
carry out LULC classification by integrating pixel unmixing and decision tree, and a Landsat-8 OLI
image of the Yunlong Reservoir Basin in Kunming, China, was used to test this proposed framework.
The proposed method is provided in next section, followed by its main results and discussions in
Sections 3 and 4, and the conclusion is given at the end.
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2. Data and Methods

2.1. Study Area

Yunlong Reservoir Basin (102◦22′30′ ′~102◦32′18′ ′E, 25◦5′16′ ′~25◦58′6′ ′N), with a total runoff area
of 745 km2, is located in the northern Kunming City, Yunnan Province, China (Figure 1). The basin
primarily belongs to a karst-tectonic origin canyon landform, a valley that was caused by mountainous
tectonic erosion, and its landscape is fragmented. Yunlong Reservoir houses 70% of the total water
supply for Kunming City and is responsible for maintaining sufficient drinking water for Kunming
and its surrounding areas. Forest cover (including arboreal forest, shrubs, and herbs) makes up more
than 70% of the basin [27].
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2.2. Data Sources

2.2.1. Landsat-8 OLI Image

A Landsat-8 OLI image that was acquired on 4 August 2017 covering the study area was
downloaded from the USGS Global Visualization Viewer [28]. It has seven multispectral bands
with 30 m resolution (wavelength range of 0.43–2.29 um), one panchromatic band with 15 m
resolution (0.50–0.68 um), and two thermal infrared bands with 100 m resolution (wavelength range of
10.6–12.51 µm).

2.2.2. Digital Elevation Model (DEM)

The DEM of study area with a resolution of 30 m was downloaded from the GloVis platform, and it
is a subset of ASTER GDEM (Advanced Space borne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model) on 4 August 2017.

2.2.3. Ground Spectral Measurements

Ground spectral data were acquired on 4 August 2017 using an analytical spectral device (ASD)
spectrometer based on field measurements, and they covered the typical spectral objects that were
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found in Yunlong Reservoir Basin, including coniferous forest (Yunnan pine and fir), broadleaf forest
(e.g., eucalyptus trees), grassland, sparse shrub, and arable land (e.g., corn, potato, barley, and walnut).

2.2.4. LULC Classification Validation Data

603 field surveys of LULC evenly distributed across the study area were collected on 4 August 2017
for validating LULC classification, including: arable land (60 points), gardens (30 points), coniferous
forest (55 points), broad-leaved forest (55 points), sparse forest (50), sparse shrub (45), medium coverage
grassland (45 points), high coverage grassland (45 points), building region (43 points), roads (35 points),
dams (20 points), other structures (25 points), artificial piling and digging land (25 points), revetment
(25 points), desert and bare surface (25 points), and water (20 points), for a total of 16 LULC types.

2.3. Methods

The proposed methodological framework for improved decision tree classification (Figure 2)
includes, mixed pixel decomposition, construction of an improved decision tree feature dataset,
training sample selection based on three-dimensional (3D) Terrain, implementation of an improved
decision tree, and accuracy evaluation. The basic premise of building an improved decision
tree model is that (1) mixed pixel decomposition can be used to extract different endmember
abundance quantities (the proportion of different kinds of features) from multispectral or hyperspectral
data [29–33], (2) pixel unmixing can combine with classifier [34], and (3) the decision tree classification
method can fuse various data features (such as terrain, texture, spectral information, Iterative
Self-organizing Data Analysis Technique (ISODATA) results, Minimum Noise Fraction (MNF) results,
and abundance) [35–38]. Therefore, through decision tree algorithms, the potential ROI rules can be
mined to establish classification tree for improving LULC analysis.
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Figure 2. Methodological framework for proposed improved decision tree method. The abundance
data derived from mixed pixel decomposition as the most important features together with other
features to establish multi-feature dataset for decision tree, then using a three-dimensional (3D) Terrain
model to select training samples (ROIs) of land use/land cover (LULC), finally decision tree algorithms
(QUEST, CRUISE, See5.0/C5.0) were used to mine potential ROIs rules of LULC, and complete
LULC classification.
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2.3.1. Mixed Pixel Decomposition

(1) Establishment of Spectral Library

The spectral reflectance values in different regions are generally different due to the different
components and different influences of topography and phenology. To minimize the effects of spectral
differences on decomposition accuracy, this study collected spectral data from typical objects in the
study area. Environment for Visualizing Images (ENVI Version 5.3) software was used to construct
spectral library, and the spectral measurements that were acquired using an ASD spectrometer were
imported into ENVI. After smoothing, a typical object spectral database for the study area was built,
and it was used to identify spectral curves that were in the selection of endmembers.

(2) Minimum Noise Fraction (MNF)

MNF is a linear transformation of Principal Components Analysis (PCA) with two folds.
MNF transforms were used to separate noisy data and to reduce data dimensionality and the workload
of subsequent processing. The correlations between any two bands were eliminated after MNF
transformation, and noise was reduced [39]. Before MNF was applied, the Landsat OLI 30 m spatial
resolution multispectral bands were fused with the 15 m panchromatic band, using the Gram-Schmidt
(GS) fusion method. Such a fusion not only improves the spatial resolution of multi-spectral bands,
but also retains the spectral information of source imagery [40,41], which may improve the accuracy
and efficiency of endmember selection. In this study, the first four components of transformation
results (MNF1-MNF4) were used to select endmembers due to fact that they retained 93.65% of
original information.

(3) Endmember Selection

Based on the needs for this study and the available information (we found some land cover types
with obvious phenomenon of mixed pixels in our study area at field investigation, especially for forest,
arable land, and sparse shrub), the endmember selection method based on geometric vertex and PPI
methods was adopted to select nine types of endmember objects (inclusing arboreal forest, sparse
shrub, high albedo, grassland, water, arable land (including crops), arable land (no crops), low albedo,
desert-, and bare surface). A fully constrained least squares mixed pixel decomposition tool was
developed using Interactive data Language (IDL) for the extraction of abundance and ensuring no
negative values [42]. Root Mean Square Error (RMSE) was applied to assess the accuracy of the mixed
pixel decomposition results [43].

2.3.2. Construction of an Improved Decision Tree Feature Dataset

(1) Spectral Characteristics

Spectral characteristics represent the spectral information of objects in an image, and each object
has specific characteristics [44]. In this study, based on the selected Landsat 8 image, several spectral
characteristics were selected, including bands 1–7, Normalized Difference Vegetation Index (NDVI),
Positive Vegetation Index (PVI), Ratio Vegetation Index (RVI), Enhanced Vegetation Index (EVI),
Difference Vegetation Index (DVI) and the results of MNF1-MNF4 (Table 1).
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Table 1. Expression and characteristic table of vegetation index [44–47].

Vegetation Index Expression Index Characteristics

NDVI NDVI = ρNIR−ρRED
ρNIR+ρRED

The range of NDVI values is [−1, 1], the greater
the NDVI value, the more green vegetation cover
there is.

PVI PVI = 0.939ρNIR − 0.344ρRED + 0.09 PVI can better eliminate the influence of soil in
background.

RVI RVI = ρNIR
ρRED

The value of RVI is greater than 1 for green
healthy vegetation, while on a non-vegetated
land surface (bare soil, water bodies, artificial
buildings, serious disease, and insect pests or a
vegetation dead zone), the RVI value is near 1.
RVI is usually greater than 2.

EVI EVI = 2.5( ρNIR−ρRED
ρNIR+6ρRED−7.5ρBLUE+1 )

EVI can correct for the influence of soil
background and aerosol scattering. The range of
values is [−1, 1], and green vegetation is
generally [0.2–0.8].

DVI DVI = ρNIR − ρRED
DVI is extremely sensitive to changes in soil
background.

Note: ρNIR, ρRED and ρBLUE represent the reflectance in near infrared, red and blue regions, respectively.

(2) Texture Features

Generally, texture refers to the spatial variation of image’s hue as a function of rank, and it is
defined as a clear texture area, while a gray level relative to different texture regions must be relatively
close. A co-occurrence matrix was applied to extract texture features, which includes mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment, and correlation (Table 2).

Table 2. A commonly used model for texture characteristics [46,48].

Number Feature Name Expression Model

1 Mean ME =
n−1
∑

i,j=0
i× Pi,j

2 Variance VA =
n−1
∑

i,j=0
i× Pi,j(i−ME)2

3 Homogeneity HO =
n−1
∑

i,j=0
i× pi,j

1+(i−j)2

4 Contract CO =
n−1
∑

i,j=0
i× pi, j(1− j)2

5 Dissimilarity DI =
n−1
∑

i,j=0
i× pi, j|i− j|

6 Entropy EN =
n−1
∑

i,j=0
i× pi, j(−Lnpi, j)

7 Second Moment SM =
n−1
∑

i,j=0
i× pi, j2

8 Correlation CR =
n−1
∑

i,j=0
i× pi, j

[
(i−ME)(j−ME)√

VAi×VAj

]
Note: pi,j =

Vi,j
n−1
∑

i,j=0
Vij

, Vi, j represents the pixel brightness value at column j of line i, and n represents the size of the

moving window when calculating each texture measure.
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(3) Terrain Features

Terrain features affect the accuracy of LULC classification, especially in the regions with large
topographic fluctuations [48,49]. A DEM is an important data source for terrain feature extraction,
and the DEM, slope, and aspect were classified into terrain features to facilitate the construction of an
improved decision tree dataset.

The improved decision tree proposed in this study incorporated five kinds of feature datasets,
including ISODATA, texture, terrain, spectral characteristics and abundance of typical objects.
Based on ISODATA result, DEM, slope, aspect, bands 1–7, NDVI, PVI, RVI, EVI, DVI, MNF1–MNF4,
mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation, a total
of 38 indicators (some of which incorporate multiple bands) were used to create an improved decision
feature dataset, and the feature datasets were encoded in order to facilitate and improve the efficiency
of decision tree algorithms for mining training samples (Table 3).

Table 3. Feature dataset of improved decision tree.

Encode Feature Data Encode Feature Data

B1 OLI1 B20 Arable land (including crops) abundance
B2 OLI2 B21 Arable land (no crops) abundance
B3 OLI3 B22 Desert and bare surface abundance
B4 OLI4 B23 High albedo abundance
B5 OLI5 B24 Sparse shrub abundance
B6 OLI6 B25 Arboreal forest abundance
B7 OLI7 B26 Low albedo abundance
B8 MNF1 B27 DEM
B9 MNF2 B28 Slop

B10 MNF3 B29 Aspect
B11 MNF4 B30 Other topographic elements
B12 ISODATA B31 Mean
B13 NDVI B32 Variance
B14 PVI B33 Homogeneity
B15 RVI B34 Contract
B16 EVI B35 Dissimilarity
B17 DVI B36 Entropy
B18 Grassland abundance B37 Second moment
B19 Water abundance B38 Correlation

2.3.3. Training Sample Selection by 3D Terrain

Training sample selection (ROIs) is the most important component of most remote sensing
classification methods, and assessing the quality of ROIs is also needed for improving the classification
accuracy. However, the quality of ROIs is often overlooked when training samples are selected
with high priori knowledge. ROI separability is often used to measure the accuracy of training
samples. The ROI separability was determined by using the “Jeffries-Matusita and Transformed
Divergence separability” measures, and a separability index was computed between each pair of
training samples [50,51]. The values of ROI separability range from 0 to 2, and the value greater than
1.8 is often considered to be a high quality training sample [52]. Each training sample contains both
spectral and pixel information. ROI separability is higher, but the correlation between the categories is
lower, making it easier to distinguish between different categories and allow for classification algorithm
to mine information from samples [53]. Therefore, classification accuracy is largely determined by
ROI separability. However, for low or medium-resolution images and in regions with landscape
fragmentation or complex terrain, ROI separability is often unsatisfactory. In this study, we proposed a
new training sample selection method using a 3D terrain that was created by OLI image fusion with
DEM to select ROIs, which departs from the traditional method based on a two-dimensional image.

The 3D terrain training sample selection utilizes the principle of color synthesis and integrated
terrain from various angles (looking down, looking up, from top, from side) to select ROIs, and it can
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improve the efficiency and separability of samples to a great extent (Figure 3). In this study, the ROI
separability of LULC types was greater than 1.9, and most of them reached 2.0.
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2.3.4. Implementing Improved Decision Tree

Considering the “Contents and Indices of the First National Geographic Survey in Yunnan”,
the actual conditions in the study area and the limited spatial resolution of Landsat OLI image,
the LULC classification system of Yunlong reservoir basin was determined (Table 4).

Table 4. LULC classification system used in this study.

First Class Second Class Third Class

1 farming land 12 arable land -

2 garden - -

3 forest land
31 arbor forest 311 broad-leaved forest

312 coniferous forest
32 sparse forest -
33 sparse shrub -

4 grassland 41 natural grassland

411 high coverage
grassland
412 medium coverage
grassland

5 building region - -

6 roads - -

7 structure
71 hardened surface 711 revetment
72 hydraulic facilities 721 dams
73 other structures -

8 artificial piling and digging land - -

9 desert and bare surface - -

10 water - -

Note: “-” for classification only to the upper class in this study, not divided into “-” types.
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To complete the LULC classification and accuracy assessment for the study area, 3D terrain scene
was applied to select training samples of LULC types, and QUEST (Quick Unbiased Efficient Statistical
Tree) [54–56], CRUISE (Classification Rule with Unbiased Interaction Selection and Estimation,
1D 2D) [35,57], and See5.0/C5.0 [35,58] algorithm for the decision tree were applied to mine the
rules from training samples. The results that were derived from proposed improved decision tree
(QUEST, CRUISE 1D, CRUISE 2D, and See5.0/C5.0) classification were compared with those of the
original decision tree classification.

2.3.5. Accuracy Evaluation

Using 603 field surveys of LULC evenly distributed across the study area(Figure 4), the results
derived from proposed decision tree (QUEST, CRUISE 1D, CRUISE 2D, and See5.0/C5.0) classification
were compared with those of original decision tree classification to access the accuracy of the proposed
method. Confusion matrix as the accuracy assessment standard, the basic precision index of overall
accuracy and Kappa coefficient were used to assess the accuracy of LULC classification (Table 5).
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Table 5. Precision index of LULC classification.

Number Precision Index Expression Model

1 Overall
accuracy

po =
n
∑

i=1
Nii/N

2 Kappa
coefficient Kappa =

N
n
∑

i=1
Nii−

n
∑

i=1
(Ni+N+i)

N2−
n
∑

i=1
(Ni+N+i)

n and N represent the number of classes, and the total number of samples, respectively. Nii, Ni+ and N+i represent
the correctly classified pixel, the sum of the class i in the classified data, and the sum of class i in the validation data,
respectively. The statistical significance of the difference between classifications was evaluated using McNemar’s
test [59,60]. This non-parametric test is based on a binary distinction between correct and incorrect class allocations
(Table 6). McNemar’s test is also based on the standardized normal test statistic, expressed as following Equation:

Z =
f 12− f 21√

f 12 + f 21
.
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The test is focused on the cases that are correctly classified by one classifier but misclassified
by the other. With this test, two classifications may exhibit different accuracies at the 95% level of
confidence, if Z > |1.96| [60].

Table 6. Assessment of the statistical significance between two classifications using McNemar’s test.

Classification 2

Allocation Correct Incorrect ∑

Classification 1
Correct f 11 f 12

Incorrect f 21 f 22
∑

f 12, the test pixels that are correctly classified by classification 1 but misclassified by classification 2; f 21, the test
pixels that are correctly classified by classification 2 but misclassified by classification 1.

3. Results

3.1. Mixed Pixel Decomposition

The abundance maps of nine endmembers that were derived from mixed pixel decomposition,
including arboreal forest, sparse shrub, high albedo, grassland, water, arable land (including crops),
arable land (no crops), low albedo, and desertand bare surface, were shown in Figure 5. Decomposition
accuracy gradually increases with decreasing RMSE, and the overall RMSE error for endmember
abundance was approximately 0.174913 (Table 7), which satisfied the demands of this study.
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Figure 5. Endmember abundance maps of mixed pixel unmixing, (a) Grassland abundance; (b) Water
abundance; (c) Arable land (including crops) abundance; (d) Arboreal forest abundance; (e) Low albedo
abundance; (f) Arable land (no crops) abundance; (g) Desert and bare surface abundance; (h) High
albedo abundance; (i) Sparse shrub abundance. The range of abundance values is 0–1, and the brighter
(values closer to 1) indicates the greater probability of approaching pure pixel.
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Table 7. Root Mean Square Error (RMSE) error.

Endmember Abundance Combination RMSE Error RMSE Mean Value

Grassland, water, arable land (including crops) RMSE1 0.174913
Arboreal forest, high albedo, sparse shrub RMSE2 0.174913

Arboreal forest, low albedo, arable land (including crops) RMSE3 0.174914
Low albedo, desert and bare surface, arable land (no crops) RMSE4 0.174913

3.2. LULC Classification

Some LULC types were divided into Level 2 to Level 3 classes (Table 4), including: arable land,
gardens, coniferous forest, broad-leaved forest, sparse forest, sparse shrub, medium coverage grassland,
high coverage grassland, building region, roads, dams, other structures, artificial piling and digging
land, revetment, desert and bare surface, and water, for a total of 16 LULC types (Figure 6).
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Figure 6. Land use/land cover classification results derived from the original and improved decision
tree, respectively.

The basic precision index of overall accuracy, user’s accuracy and Kappa coefficient were
calculated, as shown in Table 8. The classification accuracy for the improved decision tree method was
generally higher than that of the original decision tree (Table 8). Accuracy was gradually reduced from
QUEST, CRUISE 2D, CRUISE 1D to See5.0/C5.0. Kappa coefficients, overall accuracies of the original
and improved decision tree method using QUEST were more than 85%, and the improved decision
tree method even reached 95%. On the contrary, the accuracies of the original decision tree method
using CRUISE 2D, CRUISE 1D and See5.0/C5.0 were no more than 85%, while the improved decision
tree method were more than 85%, and those results were better than those of the original decision tree
method using QUEST. The Kappa coefficient and overall accuracy of the QUEST improved decision tree
were 0.1% and 10%, respectively, and they were better than those of the original method. Those values
also increased by 0.1% and 10% for CRUISE 1D, by 0.06% and 8% for CRUISE 2D, by 0.11% and 12%
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for See5.0/C5.0. Overall, the Kappa coefficients and overall accuracy of the improved decision tree
method were improved by averages of 0.093% and 10%, respectively.

Table 8. Accuracy comparison derived from the original and improved decision tree, respectively.

Algorithms Kappa
Coefficient

Overall
Accuracy Algorithms Kappa

Coefficient
Overall

Accuracy

Original
decision tree

QUEST 0.8409 87.84%
Improved

decision tree

QUEST 0.9519 96.26%
CRUISE 1D 0.7572 81.69% CRUISE 1D 0.8621 89.55%
CRUISE 2D 0.8111 85.81% CRUISE 2D 0.8971 92.14%
See5.0/C5.0 0.7405 79.36% See5.0/C5.0 0.8495 88.52%

McNemar’s test confirmed that the improved decision tree method was significantly better than
original decision tree method using QUEST (Z = 5.35, p < 0.05), CRUISE 2D (Z = 5.01, p < 0.05), CRUISE
1D (Z = 4.30, p < 0.05) and See5.0/C5.0 (Z = 4.12, p < 0.05). These results indicate that each of the
proposed improved decision tree methods plays important roles in LULC classification.

3.3. Classification Error Analysis

The areas of all the LULC types that were derived from the original and improved decision
tree were calculated to analyze the classification accuracy and error (Table 9). The areas for LULC
types with clear spectral and texture features (arable land, coniferous forest, dams, desert and bare
surface, and water) were consistent across different extraction algorithms, considering the original and
improved decision tree method.

Table 9. Area comparison using the original and improved decision tree. Unit: (km2).

LULC Types
Original Decision Tree Improved Decision Tree

QUEST CRUISE
1D

CRUISE
2D See5.0/C5.0 QUEST CRUISE

1D
CRUISE

2D See5.0/C5.0

Arable land 154.15 163.50 169.40 162.00 154.18 163.70 169.47 162.03
Garden 1.08 2.10 2.01 0.77 1.28 3.10 3.01 1.77

Coniferous forest 350.29 381.53 379.21 361.97 356.29 381.53 379.14 361.99
Broad-leaved forest 26.29 11.94 10.38 22.52 20.26 11.94 10.38 22.48

Sparse forest 39.67 45.92 33.53 30.61 27.67 34.92 26.53 20.60
Sparse shrub 66.87 55.61 70.86 50.03 76.87 65.41 76.86 59.04

Medium coverage grassland 24.33 10.43 26.65 24.88 34.33 20.43 36.65 34.88
High coverage grassland 32.44 27.83 27.25 36.77 17.44 11.82 10.25 24.77

Building region 19.39 9.04 8.06 7.60 24.38 12.04 8.75 9.59
Roads 6.85 10.28 1.47 7.58 6.86 13.29 1.48 7.59
Dams 0.16 0.18 0.08 0.08 0.14 0.18 0.08 0.09

Revetment 0.95 0.70 0.16 1.78 0.97 0.75 0.16 1.77
Other structure 3.47 5.40 2.12 4.89 1.46 3.34 0.11 2.87

Artificial piling and digging land 3.48 6.08 2.86 9.71 5.49 8.09 4.87 11.73
Desert and bare surface 11.35 9.29 12.64 18.55 11.33 9.24 12.54 18.45

Water 6.97 6.10 5.53 6.17 6.99 6.15 5.63 6.27
Total 745.94 745.93 745.91 745.92 745.94 745.93 745.91 745.92

There were significant differences, however, in the areas for LULC types with spectral confusion
and mixed pixels, such as sparse shrub, sparse forest, high coverage grassland, building region,
other structures, and artificial piling and digging land. Clear under- or over-estimations occurred,
in particular, in high coverage grassland, medium coverage grassland, and construction areas.
For example, the area results from the original decision tree using QUEST, CRUISE 1D, CRUISE
2D and See5.0/C5.0 were 24.33, 10.43, 26.65 and 24.88 km2 for medium coverage grassland, and 32.44,
27.83, 27.25, and 36.77 km2 for high coverage grassland, respectively, while under the improved
decision tree method, they were 34.33, 20.43, 36.65, and 34.88 km2 for low coverage grassland,
and 17.44, 11.82, 10.25, and 24.77 km2 for high coverage grassland, respectively; and, on average, the
area estimations for these classes were improved by nearly 10 km2. The area estimations for gardens
and structures differed by an order of magnitude. While the area results from the original decision tree
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using QUEST and CRUISE 1D were 9.39 and 9.04 km2 for building region, but under the improved
decision tree method, they were 24.38 and 12.04 km2, respectively; and on average, the area estimations
for this class was improved by nearly 3 km2.

4. Discussion

We found that the improved decision tree classification method that was proposed in this study
was very effective in improving LULC classification accuracy. This result may be explained by that
the improved decision tree method not only combined multi-features, but also fused mixed pixel
decomposition theory and introduced abundance into decision tree calculations, which has rarely been
done in prior classifications. This method solved issues that the original decision tree classification for
LULC types with serious spectral confusion and mixed pixels was poor, such as arboreal forest, sparse
shrub, high albedo, grassland, water, arable land (including crops), arable land (no crops), low albedo,
desert, and bare surface. These objects contained mixed pixels, resulting in lower classification accuracy,
but for the classification of the LULC types with obvious characteristics, such as water and arable
land, it was more accurate. The improved decision tree method was able to successfully classify mixed
pixels, and it had high accuracy, especially in regions with fragmented landscape and complex terrain.
When abundance maps were introduced into the decision tree dataset, the decision tree algorithms
could better mine potential classification rules that increased the probability of identifying objects.
Therefore, it was easy to identify LULC types like sparse shrub, sparse forest, grassland, construction
area, other structures and artificial digging pile.

Due to the fragmented landscape and complex terrain in this study area, the traditional training
sample selection method that was based on two-dimensional imagery was limited. Although it was
attempted repeatedly, it was impossible to select 16 LULC types, while ensuring that their ROI
separability was greater than 1.8. Unqualified training samples can reduce the classification accuracy
to a large extent. To overcome this limitation, we proposed a new training sample selection method
using a 3D terrain that was created by OLI image fusion DEM to select ROIs, which circumvented
the traditional method that was based on a two-dimensional image. This method was not limited
to the color synthesis principle, but also used different 3D angles (looking-down, looking-up,
head, side-looking) to select ROIs. It allowed for us to efficiently select 16 LULC samples and to
improve their ROI separability to greater than 1.9, and most of them reached 2.0. These highly qualified
training samples helped improving the accuracy of subsequent classification.

Although the improved decision tree method for LULC classification that is proposed in
this study was effective and obtained a high classification accuracy, only the main decision tree
algorithms (QUEST, CRUISE 2D, CRUISE 1D, See5.0/C5.0) were tested, while other algorithms,
such as Classification and Regression Tree (CART) and Iterative Dichotomiser 3 (ID3), were not tested.
We just used linear spectral model to obtain abundance maps of nine endmembers, not using non-linear
spectral model in this study. It is worthwhile to study whether non-linear spectral models can obtain
better abundance of mixed pixel decomposition. We also did not compare this proposed method with
other methods, such as maximum likelihood, ANN, and SVM. The future works should be carried
out to simplify the decision tree dataset without affecting the classification accuracy, and to try to use
additional decision tree algorithms to finalize the comparison. In addition, non-linear spectral models
will be used to obtain abundance maps in this study, and the results should be compared with the
linear spectral model. Besides, we will strengthen the contrast of different methods and establish an
adaptive method to implement the comparative assessment of classification accuracy.

5. Conclusions

Because of the accuracy and application limitations of the traditional decision tree method,
we proposed a classification method integrating decision tree classification method and mixed
pixel decomposition theory, while using 3D Terrain to select training samples to improve the ROI
separability. This method improved the LULC classification in the study area, and resolved the
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problem of distinguishing between LULC types with severe spectral confusion or clearly mixed pixels.
The improved decision tree classification method was able to adapt, not only to a complex LULC
classification problem, but also to other classification efforts as well, such as vegetation classification
and built-up urban area extraction, making it a promising tool for future remote sensing applications.
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