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Abstract: Accurate approximation of the signal-independent (SI) and signal-dependent (SD) mixed
noise from hyperspectral (HS) images is a critical task for many image processing applications where
the detection of homogeneous regions plays a key role. Most of the conventional methods empirically
divide images into rectangular blocks and then select the homogeneous ones, but it might result
in erroneous homogeneity detection, especially for highly textured HS images. To address this
challenge, a superpixel segmentation algorithm is proposed in this paper, which can decompose a
noisy HS image into patches that adhere to the local structures and hence persist in homogeneous
characteristic. A novel spectral similarity measure is defined in the frequency domain to make the
superpixel segmentation algorithm more robust to the mixed noise. Combined with an improved
scatter-plot-based homogeneous superpixel selection and a multiple linear regression-based noise
parameter calculation, our method can accurately estimate SD and SI noise variances from HS
images with different noise conditions and various image complexities. We evaluate the proposed
method with both synthetic and real Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) HS
images. Experimental results demonstrate that the proposed noise estimation method outperforms
the state-of-the-art methods.

Keywords: hyperspectral image; noise estimation; mixed noise; superpixel segmentation; spectral
similarity; frequency domain

1. Introduction

Hyperspectral (HS) imaging is of growing interest as a key technique to Earth remote sensing.
In practice, HS spectrometers produce an amount of spectral bands with narrow intervals, so that
the signal energy is weak in each spectral band. Therefore, the HS images are more likely to be
corrupted by noise [1,2]. An accurate approximation of the noise distribution and noise level in
HS images is of benefit for improving the image quality, and is essential for subsequent HS image
processing applications such as denoising [3,4], band selection [5], classification [6], target detection [7],
and change detection [8].

In general, the noise in HS images can be grouped into two main classes: random noise and fixed
pattern noise [9]. In this study, we will mainly focus on the random noise, whose elimination is still a
challenge; fixed pattern noise can be removed by calibration routines or destriping approaches [10].
In many previous works, the random noise in HS images is modeled as a stochastic signal, which is
purely additive and independent to an image signal. Therefore, the noise is approximated by Gaussian
distribution with zero mean and various variances in each band. However, regarding the improvement
of the sensitivity in electronic components, recent studies find that the additive noise assumption is no
longer appropriate for HS images acquired by a part of new-generation HS spectrometers, where it is
more proper to model the noise as a mixture of signal-independent (SI) and signal-dependent (SD)
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noise components. The SI noise component mainly results from sensor electronics and is therefore
referred to as electronic noise; the SD noise component is usually denoted as photon noise, which is
mainly generated by the photon arrival or detection process [11].

Based on the additive noise assumption, different methods have been proposed to estimate noise
levels from HS images. Fujimoto et al. [12] approximated the noise intensity for each spectral band by
selecting a homogeneous region in the image. However, the manual selection of the homogeneous
region may lead to an inaccurate homogeneity judgment. Gao et al. [13] improved an automated
approach by first dividing an image into many non-overlapped rectangle blocks, then finding the
homogeneous blocks with a histogram statistical algorithm, and the image noise variance is calculated
in the selected homogeneous blocks. To better locate the homogeneity in HS images, Corner et al. [14]
adopted the convolution data-masking technique to identify the homogeneous blocks based on the
observation that image structures are generally smoother than noise. Qin et al. [15] used the Otsu
adaptive threshold algorithm to extract the background regions, where the backgrounds are assumed
to be more flat than the objects in HS images. Fu et al. [16] proposed an improved multi-directional
operator to detect the edges and textures from HS images; the blocks without any edges and texture
information are then considered the homogeneous ones. However, the aforementioned noise estimation
methods only exploit the image contents from each individual band and ignore the spectral correlations
in HS images. To overcome this weakness, a spectral and spatial de-correlation (SSDC) method [17]
was proposed to estimate noise levels from HS images. SSDC estimates spectral and spatial correlation
coefficients via the multiple linear regression (MLR) model, and the remaining residuals are considered
to be noise components. This method performs well on weakly textured HS images but always
produces inaccurate noise estimates as the image textures increases, which is mainly due to the lack of
an effective homogeneous region detection step. Gao et al. [18] improved a noise estimation method
by using an object-seeking (OS) algorithm, which can classify an image into homogeneous regions
based on the internal regularity of Earth objects. Unfortunately, the OS algorithm was demonstrated to
be defective [19], and thus the noise estimation method was unreliable for some HS images.

Under the assumption of the SD and SI mixed noise, two main steps are always essential for
the noise parameter estimation methods [20–25]. The first step is to split the noise signal and useful
signal from the noisy HS image, where the MLR model is usually applied. The second step is to
calculate SD and SI noise variances, and the maximum likelihood estimation (MLE) and scatter points
fitting (SPF) are two widely used approaches in the existing noise estimation methods. Acito et al. [20]
extracted the noise and useful signal by using the MLR model with the spectral information, and then
the noise parameters are approximated by using MLE. In practice, the accuracy of the noise-signal
splitting in this method may be reduced without any image spatial information. To overcome this
shortcoming, the method in [21] first segmented a HS image into non-overlapped blocks, and then
the blocks with weak textures were selected based on their statistics. Uss et al. [22] proposed a HS
image noise estimation method by introducing the fractal Brownian motion model; the spatial and
spectral correlations of the image signal are then exploited to calculate the SD and SI noise parameters
within the MLE framework. In summary, there are generally two main disadvantages in MLE-based
noise estimation methods: (1) the noise estimation results are sensitive to the initial value selection,
and (2) the optimal solution step is time-consuming.

The original SPF-based method was proposed in [23] to approximate additive and multiplicative
noise. A noisy image is first tessellated into a number of small blocks. A scatter plot is then formulated
with the mean values and noise variances of the blocks, and finally, the scatter points are fitted by
the Hough transform to calculate the noise parameters. The SPF-based method can be extended
to estimate mixed noise levels for HS images, where the intercept and slope of the fitted line are
used to approximate SI and SD noise intensities. However, the image structures exist in the HS
data may generate lots of abnormal points in the scatter plot and lead to an erroneous fitting result.
Alparone et al. [24] attempted to solve this issue by first detecting the homogeneous blocks in HS
images. The weakness of this approach is that a homogeneous judgment threshold should be calculated
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from a manually selected homogeneous region in the HS image, which may reduce the accuracy of the
homogeneous block detection and further produce inaccurate noise estimation results. An advanced
noise estimation method was proposed in [25], where the homogeneous regions are automatically
detected based on the classification of intensity variances of image blocks. This method produces
accurate mixed noise estimation results, especially for the weakly textured images.

As discussed above, the detection of homogeneous regions from highly textured HS images
is a crucial step in most noise estimation methods. In conventional methods, the HS image is
empirically divided into regular rectangular blocks and the homogeneous blocks are then selected
with different techniques, which may result in erroneous homogeneity detection, especially in the
case of richly textured images. To address this challenge, we design a novel superpixel segmentation
algorithm (SSA) for the mixed noise estimation. Completely different from the manner of regular
rectangular block division, the SSA decomposes a HS image into patches that accurately adhere to
the local image structures; to make this superpixel segmentation algorithm more robust to the noise,
a new frequency-based similarity measure is also defined. Leveraging the advantages of the SSA,
the proposed noise estimation method performs well on HS images with various noise conditions and
image complexities. Several experiments have been conducted with both synthetic HS data and real
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images to analyse the performance of the
proposed method, and the comparison with the state-of-the-art methods have also been performed.

2. Parametric Noise Model

A two-parameter noise model has been proposed to deal with different acquisition systems in [26].
A noisy HS image can be described by using the following parametric model:

g(x, y, p) = f (x, y, p) + n( f (x, y, p)) (1)

where (x, y) is the spatial location of a pixel and p represents its spectral band number. f (x, y, p)
denotes the useful noise-free image; g(x, y, p) is the observed noisy image degraded by the noise
component n( f (x, y, p)). Due to the high spectral resolution of HS spectrometers, the useful image
signal exhibits strong correlations between spectral bands. In contrast, the noise signal is often
modelled as a random process that is spatially and spectrally uncorrelated [20–22]. The random noise
in HS images can be described as:

n( f (x, y, p)) = nsi(x, y, p) + nsd( f (x, y, p)) (2)

where nsi(x, y, p) and nsd( f (x, y, p)) denote the SI and SD noise components, respectively. The SI noise
is produced mainly from electronics and can be modeled as Gaussian distribution; while photon noise
is dependent on the useful image signal and hereby is the primary source of SD noise, which is usually
modeled as Poisson distribution. Both SD and SI noise have null mean and stationary in each band of
HS images. Accordingly, the noise variance model for the pth spectral band can be formulated as:

σ2
n,p = σ2

si,p + σ2
sd,p (3)

where σ2
sd,p and σ2

si,p denote the variances of the SD and SI noise, respectively, and σ2
n,p is the total

mixed noise variance. In Equation (3), the variance of the SD noise is defined as:

σ2
sd,p = γsd,p·µ( f (x, y, p)) (4)

where γsd,p is a factor and µ(·) is defined to calculate the mean value of random variables. Since both
SD and SI noise components have zero mean values, thus µ( f (x, y, p)) = µ(g(x, y, p)) and Equation (3)
can be rewritten as:
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σ2
n,p = σ2

si,p + γsd,p·µ(g(x, y, p)) (5)

Particularly, when γsd,p = 0, the presented parametric model is suitable for the case of the purely
additive noise.

3. Proposed Mixed Noise Estimation Method for HS Images

The proposed mixed noise estimation method, hereafter named frequency superpixel
segmentation-based mixed noise estimation (FSSMNE), is implemented in three major steps:
(1) division of the noisy HS image into superpixels; (2) selection of a set of homogeneous superpixels;
and (3) approximation of SD and SI noise variances.

3.1. Superpixel Segmentation

To accurately approximate noise levels from homogeneous regions in a noisy HS image, we exploit
the notion of superpixels, which can segment an image into patches that adhere to the local image
structures. In [27], a widely used superpixel-generating algorithm was proposed for the segmentation
of natural images based on simple linear iterative clustering (SLIC). This algorithm produces good
performances on natural images with low noise levels, but suffers from fast degradation with increasing
noise intensities. In this paper, we propose a novel superpixel segmentation algorithm which performs
well on HS images with various noise levels.

For a HS image with spatial size X×Y and spectral band number P, we first decompose a spatial
(one band) image into K squares grids of equal size S× S, where S =

√
XY/K. The K initial centers

are sampled uniformly in the image. In the proposed SSA, a cluster center Cj is initialized with a set of
spatial coordinates and the spectral signatures of a pixel (HS vector) as:

Cj =
[
xj yj zj

]T (6)

where
[
xj yj

]
and zj represent the spatial coordinates and the spectra signatures of the cluster center

Cj, respectively.
Each pixel is labeled with the index of the nearest cluster center, based on a novel similarity

measure, which is composed of a spectral similarity term and a spatial similarity term. To better
distinguish the noise from the useful image signal, the spectral similarity in the proposed SSA model
is defined in the frequency domain. It is well known that the Fourier transform is an effective
technique to represent a signal in the frequency domain, where the signal can be expressed as a sum of
complex exponentials of varying magnitudes, frequencies, and phases [28]. In practice, the spectral
signatures reflect the property of the corresponding ground object, so that the frequency spectra
(frequency component’s magnitudes) of different ground objects exhibit different distributions. In this
study, we adopt the frequency spectrum to judge the spectral similarity of pixels in HS images. For the
reason that spectral signatures are discrete, the discrete Fourier transform (DFT) is applied to calculate
the frequency spectrum as follows:

F(k) =
P−1

∑
p=0

f (p) e−τ 2π
P pk, τ =

√
−1 (7)

where p represents the pth frequency component, P denotes the length of the spectral signatures, and k
is the frequency; f (p) and F(k) represent the discrete signal and frequency spectrum, respectively.
The inverse discrete Fourier transform (IDFT) is formulated as:
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f (p) =
1
P

P−1

∑
p=0

F(k) e−τ 2π
P pk (8)

Based on Equation (7), the spectral similarity dz(i, j) for pixel i and cluster center Cj is defined as:

dz(i, j) =
P

∑
p=1

∣∣FSi(p)− FSj(p)
∣∣

FSi(p) + FSj(p)
(9)

where FSi(p) and FSj(p) denote the frequency spectrum of the pth frequency component for the pixel
i and cluster center Cj, respectively. Based on the observation that most of the useful image signal
energies concentrate on the low frequencies rather than the noise energies on higher frequencies,
the proposed SSA exploits only a certain amount of the low frequency components to calculate the
spectral similarity, which may reduce the impact of the noise and meanwhile speed up the algorithm.
Thus, the definition of the spectral similarity in Equation (9) can be modified as:

dz(i, j) =
αP

∑
p=1

∣∣FSi(p)− FSj(p)
∣∣

FSi(p) + FSj(p)
(10)

where the parameter α is defined to control the ratio of the frequency spectrum. By using the novel
frequency-based spectral similarity, the neighbor pixels can be accurately assigned to the correct cluster
center even if the HS image is seriously corrupted by mixed noise. To better visualize the advantages
of the proposed spectral similarity, an example is shown in Figure 1. Figure 1a exhibits an ideal
original spectral curve of a HS image pixel with black colour, and Figure 1b shows the transformed
frequency spectrum of this spectral curve obtained with Equation (7). According to the property
of DFT, a small part of the low frequencies is enough to reconstruct the original spectral signatures.
By using Equation (8), the reconstructed spectral curve is shown in Figure 1c with a 20% ratio of the low
frequency spectrum, which is similar to the original spectral curve. When the HS image is corrupted
by mixed noise, the original spectral curve is significantly changed as shown in Figure 1a with red
colour, which may lead to an erroneous clustering result by directly using the noisy spectral signatures.
However, when we transform the spectral signatures to the frequency domain, it can clearly be seen
that the noise is mainly disturbed in the high frequency spectrum and exhibits marginal differences
in the low frequency part, as shown in Figure 1b. A benefit from this observation, the reconstructed
spectral curve from the low frequency spectrum is very close to the reconstruction result without any
noise affected. As illustrated in Figure 1, the inherent characteristics of the spectral signatures can be
well retained with the proposed SSA even for HS images degraded by heavy noise.

Regarding spatial similarity, SSA adopts the Euclidean distance (ED). For pixel i and cluster center
Cj, the spatial similarity dxy(i, j) is defined as:

dxy(i, j) =
√(

xi − xj
)2

+
(
yi − yj

)2 (11)

where (xi, yi) and
(

xj, yj
)

are the spatial coordinates of the pixel i and cluster center Cj, respectively.
Combining Equations (10) and (11), the novel similarity measure D(i, j) is defined as:

D(i, j) =

√
dz(i, j)2 +

(
dxy(i, j)

S

)2

λ2 (12)

where λ is introduced to weigh the relative importance between the spectral and spatial similarities.
For highly textured HS images, the spectral similarity is more perceptually meaningful than the spatial
similarity, so that a smaller λ is recommended; for HS images with simple structures, the converse
is true.
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Based on the proposed similarity measure, each pixel is associated with the closest cluster center.
To reduce the computation time of the assignment process, the search for similar pixels is done in a
limited region of size 2S× 2S around the cluster center. Once all the pixels in the image have been
assigned, the new cluster center C′j is updated according to the following equation:

C′j =
1
ρ′ ∑i∈φ′j

[xi yi zi]
T (13)

where φ′j represents the pixels belonging to cluster center C′j after assignment, and ρ′ is the
corresponding pixel number. Based on the expectation maximization optimization algorithm,
the assignment and update steps are repeated iteratively until the residual error, calculated as the L2

norm of the difference between the new and old cluster center locations, converges. Finally, any disjoint
pixels are reassigned to the nearby superpixels to enforce the connectivity.
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Figure 1. Illustration of the frequency spectrum transformation and its reconstruction under noise
corruption. (a) The original and noisy spectral curves; (b) the frequency transformation results of the
original and noisy spectral signatures; (c) the reconstruction results of the original and noisy spectra.

3.2. Selection of Homogeneous Superpixels

The superpixels generated by the SSA are expected to be small homogeneous regions without
any image structure information. Then, all the superpixels can be utilized to estimate the image noise
level. However, when the image texture size is much smaller than the initial size of the superpixels,
some of the generated superpixels may be not strictly homogeneous. Alparone et al. [24] proposed
a scatter-plot-based homogeneous block selection algorithm by exploiting the differences in statistic
characteristics of the noise and useful image signal. This algorithm provides an efficient approach to
find the homogeneous blocks in HS images with the disturbance of the mixed noise, but it requires
a manually selected homogeneous area to calculate the global homogeneity threshold, in which the
subjective judgment of the “homogeneous area” may make the algorithm unreliable. To address this
challenge, we improved an automated scatter-plot-based homogeneous superpixel selection (SPHSS)
algorithm in this paper. For a superpixel Cj generated by SSA, we first calculate the mean value µj and
the standard deviation σj of all the pixels belonging to Cj as follows:

µj =
1
ρ ∑

i∈φj

Zi (14)
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σj =

√√√√1
ρ ∑

i∈φj

(
Zi − µj

)2 (15)

where φj denotes the pixels belonging to the superpixel Cj, ρ is the number of these pixels, and Zi
represents the mean value of all the spectral bands of pixel i. Then, we draw the scatter plot of the mean
value versus the standard deviation of all the superpixels in the image. In practice, the homogeneous
superpixels contain mainly stationary noise information; in contrast, the inhomogeneous superpixels
generally contain abundant image structures, which results in larger variations of their local statistics.
Therefore, the points of homogeneous superpixels will cluster together tightly in the scatter plot,
whereas the inhomogeneous superpixels will distribute far away from them. Based on this observation,
the framework of the proposed SPHSS algorithm (illustrated in Figure 2) consists of two major steps:
(1) calculation of the global homogeneity threshold, and (2) selection of the homogeneous superpixels.

Step 1: Partition the scatter plot plane into a number of L× L sub-regions, and then find the
sub-region that contains the most scatter points, i.e., the most densely sub-region (illustrated as
sub-region R in Figure 2c). The global homogeneity threshold ξ is calculated as:

ξ =
1
M ∑

Cj∈R

σj −
1
M ∑

Cj∈R
σj

2

(16)

where M is the number of scatter points in the sub-region R.
Step 2: To avoid the selected superpixels having similar mean values, we first partition the whole

image into a number of T × T blocks. For any image block A, shown in Figure 2d, we draw the scatter
plot of the mean value versus the standard deviation of all the superpixels in this block, and then
calculate the homogeneity parameter ξA similar to Equation (16) as follows:

ξA =
1

MA
∑

Cj∈A

σj −
1

MA
∑

Cj∈A
σj

2

(17)

where MA is the number of generated superpixels in the image block A. If the homogeneity parameter
ξA is no larger than the global homogeneity threshold ξ, all of the superpixels in image block A are
considered as homogenous superpixels; otherwise, split the scatter plot plane into four sub-regions
and find the most dense sub-region, and then calculate the corresponding homogeneity parameter and
compare with ξ. Repeat this procedure until the sub-region whose homogeneity parameter satisfies
the global homogeneity threshold is found, or until it is determined that there is no homogeneous
superpixel in the image block A. As illustrated in Figure 2e, when the homogeneity parameter of
sub-region R′ meets the requirement of the global homogeneity threshold, the superpixels whose
corresponding scatter points located in the sub-region R′ are selected as the homogeneous superpixels.
Similar to the homogeneous superpixel selection process for the image block A, we then deal with the
rest image blocks and find all of the homogeneous superpixels in the whole image.
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Figure 2. The processing flow of the proposed automated scatter-plot-based homogeneous superpixel
selection algorithm. (a) The input HS image data (one spatial band); (b) the superpixel segmentation
result; (c) the most dense sub-region in the scatter plot; (d) the image block partition result; (e) the
eligibility sub-region in the scatter plot of block A; (f) the homogeneous superpixels selection results of
the whole image.

3.3. Approximation of SD and SI Noise Variances

After the homogeneous superpixels are selected in the HS image, we apply the MLR model
to remove the between-band and within-band correlations in homogeneous superpixels, where the
remaining unexplained residuals are considered as the mixed noise.

To deal with the mixed noise in band p of a HS image, the image data in bands p− 1, p, and p + 1
are used. For the observed image pixel g(x, y, p) within a homogeneous superpixel, its predicted value
ĝ(x, y, p) is computed as follows:

ĝ(x, y, p) = a0g(x, y, p− 1) + a1g(x, y, p + 1) + a2g(x′, y′, p) + a3 (18)

where a0, a1, a2, and a3 are the regression coefficients, and g(x′, y′, p) denotes a spatial neighbor pixel
of g(x, y, p) within the same homogeneous superpixel. In the proposed method, the pixel g(x′, y′, p)
is selected by searching the eight spatial neighbor pixels sequentially and choosing one neighbor
pixel that belongs to the same superpixel of g(x, y, p). The computation time for this process is
reasonable because only one spatial neighbor pixel is required, so that the first searched neighbor pixel
is likely to be an eligible one, except for the boundaries of superpixels. Note that, as a special case,
when calculating the predicted value for a pixel in the first or last band of a HS image, only one spectral
neighbor band and one spatial neighbor pixel are utilized for the de-correlation process. Based on the
predicted value computed by Equation (18), the residual r(x, y, p) is calculated as:

r(x, y, p) = g(x, y, p)− ĝ(x, y, p) (19)
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We use the unbiased estimate of the variance of residuals in the homogeneous superpixel to
approximate the mixed noise variance:

σ2
n,p =

1
ρh − 4

ρh

∑
x,y=1

r(x, y, p)2 (20)

where ρh is the number of pixels in the homogeneous superpixel, and degrees of freedom are reduced
from ρh to ρh − 4 as four parameters are used in the regression.

After mixed noise variances of the all selected homogeneous superpixels are estimated, we exploit
the SPE approach to calculate the variances of the SD and SI noise. According to Equation (5), for a
particular band p, the scatter points will cluster along a straight line (as illustrated in Figure 3),
whose intercept and slope are equal to σ2

si,p and γsd,p, respectively. To fit the scatter points more
accurately, we apply the least squares linear fitting (LSLF) in the proposed method, where the red line
represents the fitting results in Figure 3.
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4. Experimental Results and Discussion

In the experiment part, we evaluate the performance of the proposed mixed noise estimation
method by using both synthetic and real AVIRIS images. In Section 4.1, the descriptions of the
experimental HS images are first introduced, and then the quantitative evaluation metrics are defined.
In Section 4.2, the performance of the SSA is evaluated, where the parameter setting is also discussed.
In Section 4.3, the accuracy of the proposed FSSMNE is first evaluated with the synthetic HS images in
various noise conditions, and then the robustness of our method is verified on real AVIRIS data with
different complex image textures.

4.1. Experimental Images and Quantitative Evaluation Metrics

4.1.1. Synthetic and Real HS Images

In order to generate synthetic HS images, five spectra representing different Earth objects are
extracted from the real AVIRIS images (as shown in Figure 4). The synthetic HS image is simulated by
using the first 90 spectral bands of the extracted spectra, where Figure 5a shows typical example of the
50th band with the spatial size 200× 200.
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In experiments with real HS images, we exploit the AVIRIS image data, which has been widely
used for various applications [29,30]. The AVIRIS measures radiance through 224 contiguous
channels at 10 nm intervals with four spectrometers: A (bands 1–32, spectral range of 400–700 nm),
B (bands 33–96, 700–1300 nm), C (bands 97–160, 1300–1900 nm), and D (bands 161–224, 1900–2500 nm).
The utilized AVIRIS image, acquired over Moffett Field, is a radiance data set with 16-bit radiometric
resolution [31]. To evaluate the robustness of the proposed noise estimation method on HS images
with different complex land covers, two sub-images with the spatial size 200× 200 are cut from an
AVIRIS image, namely Date Set 1 and Data Set 2, respectively. Therefore, the noise levels of the two
data sets are treated the same. Figure 5b,c show the 50th band of the two data sets, where the image
scene of Data Set 1 is relatively simple, while Data Set 2 contains much more textures. Note that in the
experimental AVIRIS images, several spectral bands have extremely poor image qualities. They are not
mainly caused by random noise but by read-out errors of the detectors or weak signal energy acquired.
Similar to the literature [20,32], we remove these spectral bands before using the real HS data in our
experiments. After discarding bands 1–10 and 95–130 from Data Sets 1 and 2, we obtain a spectral
dimensionality of 178.

4.1.2. Quantitative Evaluation Metrics

In experiments with the synthetic HS image, mixed noise with various noise levels are simulated
according to the noise model in Equations (1)–(5). To set the values of the two noise parameters γsd,p
and σ2

si,p in band p, we use the metric signal-to-noise ratio (SNR) [33] to measure the mixed noise levels
as follows:

SNR(p) =
µ(g(x, y, p))

σn,p
(21)
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In addition, a new metric is defined to calculate the SD-to-SI noise ratio (SDSINR) as:

SDSINR(p) =
σ2

sd,p

σ2
si,p

(22)

To quantitatively evaluate the performances of the noise estimation methods in experiments with
synthetic images, we adopt the relative-mean-square-error (RMSE) of the noise estimates, which are
calculated as follows:

εsd =
1
P

P

∑
p=1

εsd,p =
1
P

P

∑
p=1

(
σ̂2

sd,p − σ2
sd,p

σ2
sd,p

)2

(23)

εsi =
1
P

P

∑
p=1

εsi,p =
1
P

P

∑
p=1

(
σ̂2

si,p − σ2
si,p

σ2
si,p

)2

(24)

where σ̂2
sd,p, σ̂2

si,p and σ2
sd,p, σ2

si,p are the estimates and true values of SD and SI noise for the band p,
respectively. εsd,p and εsi,p denote the estimation errors in the pth band, and εsd and εsi are the errors
averaged over all of the spectral bands.

In experiments with real AVIRIS images, we use the Euclidean distance to quantitatively evaluate
the robustness of the methods when HS images have different complexities, where the distances of
noise estimates between Data Sets 1 and 2 are calculated as:

δsd =

√√√√ 1
P

P

∑
p=1

(
σ̂2

sd,p(1)− σ̂2
sd,p(2)

)2

(25)

δsi =

√√√√ 1
P

P

∑
p=1

(
σ̂2

si,p(1)− σ̂2
si,p(2)

)2

(26)

δsnr =

√√√√ 1
P

P

∑
p=1

(
sn̂rp(1)− sn̂rp(2)

)2

(27)

where σ̂2
sd,p(1), σ̂2

si,p(1), and sn̂rp(1) are the estimates of SD noise variance, SI noise variance, and SNR

for the band p in Data Set 1; σ̂2
sd,p(2), σ̂2

si,p(2), and sn̂rp(2) are the corresponding estimates for the band
p in Data Set 2. δsd, δsi and δsnr denote the Euclidean distances of the corresponding estimates between
Data Sets 1 and 2, which are averaged over all of the utilized spectral bands for comparison.

4.2. Performance of the SSA

The superpixel-generating process is a crucial pre-step in the proposed noise estimation method.
In the SSA, the parameter α is important for the frequency-based spectral distance as it decides
the similarity of the original and the reconstructed spectral signatures. We first investigate the
selection of the parameter α by using the five spectra in Figure 4 with different parameter values:
α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, where the reconstruction results are shown in Figure 6. From the figure
we can observe that the reconstructed spectral curves become more similar to the original curves as
the value of parameter α increases, so that a larger parameter value is helpful to keep the inherent
characteristics of the original spectral signatures. However, a larger α may increase the computation
time of the superpixel generating process; to make it worse, it will be more sensitive to the image
noise. To balance the performance and the computation complexity, we set the parameter α = 0.2
in all experiments of this paper. Another parameter λ in the SSA is introduced to weigh the relative
importance between spectral similarity and spatial proximity. When λ is too small, the spectral
similarity weighs more than the spatial similarity and the resulting superpixels are quite irregular in
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shape, which is adverse to the formation of an interpretable image region and the extraction of locally
relevant features. On the other hand, when λ is too large, the generated superpixels will not adhere
adequately to the local image structures. The suggested value for parameter λ lies between 0.05 and
0.2, and we set λ = 0.1 in all experiments reported in this paper.
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To accurately approximate the noise parameters from HS images with diverse noise levels,
the superpixel-generating algorithm is required to be robust to the noise. To evaluate the noise
robustness of the superpixel-generating algorithms, the simulated mixed noise with SDSINR = 1
and SNR = 5, 10, 20, 30, 50, 100, 800 are added to the synthetic HS image. Superpixels are then
generated by using SSA and other three compared algorithms, including SLIC and two modified
superpixel-generating algorithms. SLIC is a widely used superpixel-generating algorithm for natural
images, which exploits the Euclidean distance of the pixel intensities to cluster the similar image
pixels. For a more comprehensive and fair comparison, we modify SLIC by using two widely applied
spectral similarities—spectral angle mapping (SAM) [34] and spectral correlation mapper (SCM) [35]
to cluster similar pixels in HS images and then produce superpixels, namely SLIC-SAM and SLIC-SCM,
respectively. Superpixel segmentation results with the four considered algorithms are displayed in
Figure 7. As shown, the superpixels generated by the four algorithms have marginal differences
with small noise levels. However, with the increase of the image noise levels, the performances
of SLIC, SLIC-SAM, and SLIC-SCM decrease considerably; in contrast, the proposed SSA can still
adhere to the local image structures. This advantage results mainly from the benefits of defining
the spectral similarity in frequency domain, which significantly reduces the impact of the image
noise. To quantitatively evaluate the performance of the compared superpixel-generating algorithms,
the measure boundary recall [36], widely used as an indicator of the boundary adherence ability,
is also adopted in this experiment. The boundary recall measures what fraction of the ground truth
image structures fall within at least two pixels of a superpixel boundary. A higher boundary recall
means that fewer image structures are missed, and therefore indicates a better performance of the
superpixel-generating algorithm. The boundary recall of each algorithm is plotted in Figure 8 for
increasing SNR values. From this figure we can see that with low noise levels, all of the compared
algorithms produce accurate superpixel segmentation results; when the image noise level increases,
the proposed SSA performs much better than the other three algorithms. We have also done some
experiments with different SDSINR values, and the results are similar to those in Figures 7 and 8.
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The experimental results in this section conclude that the proposed SSA is more robust than the
compared superpixel-generating algorithms in more severe noise conditions.
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Figure 7. Superpixels generated by SSA, SLIC, SLIC-SAM, and SLIC-SCM from the synthetic HS image at
various noise levels. (a) Original and noisy images with SDSINR = 1 and SNR = 800, 100, 50, 30, 20, 10, 5
from row 1 to the row 8; (b) superpixels generated by SSA from the corresponding images; (c) superpixels
generated by SLIC from the corresponding images; (d) superpixels generated by SLIC-SAM from
the corresponding images; (e) superpixels generated by SLIC-SCM from the corresponding images.
SSA, superpixel segmentation algorithm; SLIC, simple linear iterative clustering; SLIC-SAM, SLIC-spectral
angle mapping; SLIC-SCM, SLIC-spectral correlation mapper; SDSINR, SD-to-SI noise ratio.
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4.3. Performance of the FSSMNE Noise Estimation Method

To quantitatively evaluate the performance of the proposed FSSMNE noise estimation method,
we design three numerical experiments with the synthetic HS image: (1) evaluate the accuracy of the
FSSMNE and other three noise estimation methods with fixed SNR and SDSINR values; (2) evaluate
the accuracy of the FSSMNE with various noise levels; and (3) evaluate the accuracy of the FSSMNE
with various ratios of SD and SI noise. Furthermore, by using the real AVIRIS images, we evaluate
the robustness of the proposed FSSMNE and other three compared methods when HS images have
different complex land covers.

4.3.1. Experiments on the Synthetic HS Image

(1) Accuracy evaluation of FSSMNE and compared methods. In this experiment, SD and SI noise
are added to the synthetic HS image with SNR = 30 and SDSINR = 1, where the true values of
parameters γsd,p and σ2

si,p can be obtained according to Equations (21) and (22). The proposed FSSMNE
is compared with other three state-of-the-art noise estimation methods, including HS noise parameter
estimation (HSNPE) [20], signal-dependent noise estimation (SDNE) [24], and intensity-variance
homogeneity classification-based noise estimation (IVHCNE) [25].

First, we adopt the proposed SSA to segment the synthetic image into superpixels with initial size
S = 5, and then the most homogeneous superpixels are selected with SPHSS, where the parameters
are set as L = 10 and T = 10× S based on the estimation performance. The selected homogeneous
superpixels for the synthetic image are illustrated in Figure 9a with different colours. Note that in
the proposed noise estimation method, there is no need to locate all of the homogeneous superpixels,
but it is a must to make sure that the selected superpixels are strictly homogeneous.

The proposed FSSMNE and the compared noise estimation methods are applied to the synthetic
HS image data. Estimates of SD and SI noise variances obtained by the considered methods
are presented in Figure 10; the RMSEs of the noise estimation results are calculated according to
Equations (23) and (24) and recorded in Table 1. The curves in Figure 10 demonstrate that the FSSMNE
provides more accurate noise estimation results than the compared methods in most spectral bands.
Considering the quantitative results presented in Table 1, we can further confirm that the FSSMNE
outperforms the other three compared methods on the synthetic HS image. The HSNPE produces
less accurate estimates mainly due to the fact that this method only exploits the spectral information
of the HS image data but ignores the spatial information. In SDNE and IVHCNE, the homogeneous
image regions are first selected with the spatial information, and the accuracy of these two noise
estimation methods mainly depends on the performances of their respective homogeneous image
region selection approaches. From estimation results displayed in Figure 10 and Table 1, we find that
IVHCNE performs much better than SDNE but is still not in competition with our noise estimation
method. The main reason is that the homogeneous image regions are detected on each individual
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band of the HS data in IVHCNE and SDNE, while in the proposed FSSMNE, the spectral and spatial
information are effectively exploited to generate homogeneous superpixels.
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and IVHCNE methods. (a) Estimates of the SD noise variance; (b) estimates of the SI noise variance.
FSSMNE, frequency superpixel segmentation-based mixed noise estimation; HSNPE, hyperspectral
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Table 1. Estimation errors of SD and SI noise on the synthetic HS image with different methods.

Methods FSSMNE HSNPE SDNE IVHCNE

εsd 8.2 × 10−4 6.8 × 10−3 6.7 × 10−3 2.0 × 10−3

εsi 6.2 × 10−4 9.5 × 10−3 1.6 × 10−3 9.9 × 10−4

(2) Accuracy evaluation of FSSMNE with various noise levels. In the previous experiment,
the proposed FSSMNE has been demonstrated to be well-performing on the synthetic HS image
with a fixed noise level. In this experiment, we evaluate the performance of the proposed FSSMNE
on synthetic HS images with various noise levels. Mixed noise is added to the synthetic HS image
with SDSINR = 1 and SNR = 5, 10, 20, 30, 50, 100, 800 to test the noise estimation accuracy of the
FSSMNE. The two quantitative metrics εsd and εsi are calculated and recorded in Table 2. From the
experimental results in the table, we can observe that the proposed FSSMNE provides accurate SD and
SI noise estimates when the image noise levels vary in quite a big range. Particularly, when the SNR
value is larger than 20, the noise estimation errors are extremely small.

Table 2. Estimation errors of SD and SI noise on the synthetic HS image with various SNR values.

SNR 5 10 20 30 50 100 800

εsd 2.7 × 10−2 7.8 × 10−3 1.5 × 10−3 8.2 × 10−4 8.1 × 10−4 8.0 × 10−4 8.0 × 10−4

εsi 2.5 × 10−2 6.4 × 10−3 1.9 × 10−3 6.2 × 10−4 5.9 × 10−4 5.5 × 10−4 5.3 × 10−4

(3) Accuracy evaluation of FSSMNE with various ratios of SD and SI noise. We simply assumed that
the contribution of SD and SI noise is the same in the first two experiments. In order to evaluate the
proposed noise estimation method comprehensively, we add mixed noise to the synthetic HS image
with SNR = 30 and various SDSINR values: 1/4, 1/3, 1/2, 1, 2, 3, 4. The SD and SI noise estimation
errors with the proposed FSSMNE are recoded in Table 3. It is observed that our method performs
well when the ratio of SD and SI noise varies from 1/4 to 4. Particularly, the FSSMNE produces more
accurate SD noise estimates when the weight of the SD noise component increases; the same applies to
the SI noise estimation.

Table 3. Estimation errors of SD and SI noise on the synthetic HS image with various SDSINR values.

SDSINR 1/4 1/3 1/2 1 2 3 4

εsd 2.5 × 10−3 1.9 × 10−3 1.4 × 10−3 8.2 × 10−4 7.4 × 10−4 7.3 × 10−4 5.6 × 10−4

εsi 5.1 × 10−4 7.0 × 10−4 7.6 × 10−4 6.2 × 10−4 9.7 × 10−4 1.8 × 10−3 2.4 × 10−3

4.3.2. Experiments on AVIRIS Images

In this experiment, we evaluate the robustness of the noise estimation methods on real AVIRIS
images with different complex land covers. For this purpose, the simply textured Data Set 1 and the
highly textured Data Set 2 are utilized. First, the homogeneous superpixels are located in the two data
sets and the results are showed in Figure 9b,c. It is observed from the figures that the proposed method
can accurately detect homogeneous superpixels for both simple and complex images, which paves the
way for the subsequent noise parameter estimation. We use estimates of SD noise variance, SI noise
variance, and SNR to evaluate the performance of the noise estimation methods, where the estimation
results of the considered methods (FSSMNE, HSNPE, SDNE, and IVHCNE) are presented in Figure 11,
and the averaged Euclidean distances of noise estimates between Data Sets 1 and 2 are calculated
according to Equations (25)–(27) and recorded in Table 4. From Figure 11a–c, we can see that FSSMNE,
SDNE, and IVHCNE produce similar noise estimation results with the simply textured Data Set 1.
However, when dealing with the richly textured Data Set 2, the estimation results of SDNE and
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IVHCNE are significantly deviated from those obtained with Data Set 1. Leveraging the advantages of
the accurate superpixel segmentation, the proposed FSSMNE produces consistent noise estimation
results with the two data sets, where the quantitative results in Table 4 further demonstrate that our
method is more robust than SDNE and IVHCNE on HS images with different complex land covers.
Regarding HSNPE, the method produces more consistent noise estimates than FSSMNE with the
Data Sets 1 and 2; this is mainly because HSNPE only exploits the spectral information to approximate
the noise variances. However, the lack of spatial information may reduce the accuracy of the method,
which has been demonstrated in the experiments with synthetic images. In addition, Figure 11a–c
shows that the noise estimation results of HSNPE are quite different from those obtained by the
other three methods with simply textured images, which also implies that the HSNPE is less accurate
than the compared methods. It’s worth noting that there are some noise spikes existing in the noise
estimation results, especially in the SI noise variance estimates. As shown in Figure 11b, two obvious
spikes are existing in the graph. The first spike is presented at 700 nm, mainly because it is the border
of spectrometers A and B; the second spike is located near 1770 nm and is related to the detector
problems, which has been discussed in detail in [13]. Regarding the SNR estimates in Figure 11c,
we can see that the SNR values of the image data produced by spectrometers A and B are much
higher than those obtained by spectrometers C and D. Particularly, in the water absorption bands
(1850–1980 nm), the SNR values are extremely small. Note that in the noise estimation results of the
proposed method, the value of the SD noise variance varies from 0–10 in most bands and the SI noise
variance lies in the range 0–5, which further proves it is appropriate to model the noise as a mixture of
the SD and SI noise components in AVIRIS images.
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Figure 11. Noise estimates in each band of the real HS image using the FSSMNE, HSNPE, SDNE,
and IVHCNE methods. (a) Estimates of the SD noise variance with Data Set 1; (b) estimates of the SI
noise variance with Data Set 1; (c) estimates of the SNR with Data Set 1; (d) estimates of the SD noise
variance with Data Set 2; (e) estimates of the SI noise variance with Data Set 2; (f) estimates of the SNR
with Data Set 2.

Table 4. Averaged Euclidean distances of noise estimates between Data Sets 1 and 2 with different methods.

Methods FSSMNE HSNPE SDNE IVHCNE

δsd 1.545 1.302 9.242 3.710
δsi 0.770 0.409 4.045 1.209

δsnr 44.612 30.716 78.234 60.301

5. Conclusions

This paper proposes a hyperspectral image segmentation method for automated SD and SI
mixed noise estimation. In contrast with the conventional rectangular-block division algorithms,
the images are segmented into superpixels that exhibit better adherence to the local image structure,
thus generating a division into small regions that are more likely to be homogeneous regions.
Moreover, a novel frequency-based spectral similarity measure is proposed to make the SSA
more insensitive to the image noise. An improved homogeneous superpixel selection algorithm
and the MLR-based noise parameter estimation approach boost the performance of the proposed
FSSMNE to accurately approximate the mixed noise parameters with different image complexities
and various noise conditions. Experimental results with the synthetic HS image demonstrate
that the proposed FSSMNE outperforms the compared state-of-the-art noise estimation methods.
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Furthermore, experiments with real HS data verify the robustness of the FSSMNE when the images
have different complex land covers. It is worth noting that the proposed superpixel segmentation
algorithm can be used as the first step of many noise estimation methods with diverse noise types.
However, the use of the spectral information and the transformation process to the frequency domain
may increase the complexity of the method. Improvements to the efficiency of the proposed method
without decreasing its accuracy and robustness will be studied in future works.
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