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Abstract: Although sparse multinomial logistic regression (SMLR) has provided a useful tool for
sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually
set initial regressor values. This has significantly constrained its applications for hyperspectral
image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial
logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is
projected to a new feature space with randomly generated weight and bias. Second, an optimization
model is established by the Lagrange multiplier method and the dual principle to automatically
determine a good initial regressor for SMLR via minimizing the training error and the regressor
value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both
the spectral and spatial features. A combinational linear multiple features learning (MFL) method is
proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic
regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in
the proposed framework for reducing the computational time. Experiments are conducted on
two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset,
which have shown the fast and robust performance of the proposed ESMLR framework.

Keywords: hyperspectral image (HSI) classification; sparse multinomial logistic regression (SMLR);
extreme sparse multinomial logistic regression (ESMLR); extended multi-attribute profiles (EMAPs);
linear multiple features learning (MFL); Lagrange multiplier

1. Introduction

Although the rich spectral information available in a hyperspectral image (HSI) allows classifying
among spectrally similar materials [1], supervised classification of HSI remains a challenging task,
mainly due to the fact that unfavorable ratio between the limited number of training samples and
the large number of spectral band [2]. It may result in the Hughes phenomenon when the spectral
bands increase and lead to poor classification results [3]. To tackle such challenges, a number of
state-of-the-art techniques have been proposed, such as the support vector machine (SVM) [4],
the multi-kernel classification [5], the extreme learning machine (ELM) [6] and the sparse multinomial
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logistic regression (SMLR) [2,7–10]. In addition, many approaches have also been proposed for
dimensionality reduction and feature extraction [11,12], which include the principal component
analysis (PCA) and its variations [13–16], the extended multi-attribute profiles [17,18] (EMAPs),
the singular spectrum analysis (SSA) [19–22] and the segmented auto-encoder [12,22]. Among these
methods, the SMLR has drawn a lot of attentions due to its good performance [23,24].

The SMLR has been proved to be robust and efficient under the Hughes phenomenon and is
able to learn the class distributions in a Bayesian framework [25]. Hence, it can provide a degree of
plausibility for performing these classifications [26]. Moreover, the logistic regression via the variable
splitting and the augmented Lagrangian (LORSAL) has been proposed for dealing with large datasets
and multiple classes efficiently. Since it can effectively learn a sparse regressor with a Laplacian prior
distribution of the SMLR, the combination of SMLR and LORSAL is found to be one of the most
effective methods for coping with the high dimensional data of HSI [26,27].

However, the existing SMLR framework suffers from some severe drawbacks. First, the SMLR
with the original spectral data of the HSI as features is inefficient, thus it is necessary to find a
better representation of the HSI data for improved classification accuracy. The second is the manually
set initial value for the regressor, which may result in poor classification of HSI due to improper
initial value used. Recently, some deep learning algorithms such as the convolutional neural
network [28,29] (CNN) and the extreme learning machine (ELM) have drawn lots of attentions due
to their good classification results for the HSI [30–32]. However, CNN requires huge computational
time and seem unrealistic. ELM is a generalized single layer feedforward neural networks (SLFNs),
which characterizes fast implementation, strong generalization capability and a straightforward
solution [6]. The main goals of ELM are to minimize the output weights of the hidden layer and
maintain the fast speed. According to the Bartlett’s neural network generalization theory [33],
the smaller norm of the weights will lead to better generalized performance. Hence, a feedforward
neural network can reach a smaller training error [34].

For efficiency, the input weights and the bias between the input layer and the hidden layer
of the ELM are randomly generated. It has been proved to be a fast and good data representation
method [30–32]. In fact, besides ELM, some other models, such as the liquid state machines [35] and
the echo state networks [36,37] have also adopted the random weight selection technique with great
success [38]. Therefore, the problem of the poor data representation in the SMLR can be addressed
using the random weight selection technique. Hence, in this paper, we propose the extreme sparse
multinomial regression (ESMLR) for the classification of HSI. First, the data in the HSI will be
represented by randomly generated weight and bias for SMLR, which also maintain the fast speed of
the SMLR and improve the representation performance. Second, we set up an optimization model to
minimize the training error of the regressor value, which is solved by using the Lagrange multiplier
method and dual principle in order to automatically find a better initial regressor value for the SMLR
(detailed in Section 2).

In addition to spectral features, spatial information is also very important for the classification
of the HSI. In the proposed ESMLR framework, the extended multi-attribute profile (EMAP) is
used for feature extraction, as both morphological profiles (MPs) [39] and the attribute profiles
(APs) [16,17] have been successfully employed for performing the spectral and spatial HSI classification.
Moreover, the linear multiple feature learning (MFL) [7] is employed to maintain the fast speed and
further improve the classification results. The MFL has been proposed for adaptively exploiting the
information from both the derived linear and nonlinear features. As a result, it can potentially deal
with the practical scenarios that different classes in the HSI datasets need different (either nonlinear or
linear) strategies [7]. According to the Li’s works [7], the nonlinear feature such as the kernel feature
contributes little to the HSI classification when the MFL is utilized. Moreover, it requires much more
computational efforts for processing the nonlinear features. Therefore, a linear combination of the
MFL which just utilizes the linear features of the HSI is proposed for the ESMLR. Hence, this operation
can not only improve the classification results but also maintain the fast speed of the ESMLR.



Remote Sens. 2017, 9, 1255 3 of 22

The main contributions of the proposed ESMLR framework in this paper can be highlighted
as follows. First, the problem of the SMLR that uses the initial data of the HSI for performing the
classification is addressed by randomly generating the input weights and bias of the input data, which
will not only maintain the fast processing speed but also improve the classification results of the HSI.
Second, a new principle is introduced to automatically determine a suitable initial regressor value for
SMLR to replace the manually settings. Third, the linear combination of the MFL that integrates the
spectral and spatial information of HSI extracted by EMAPs followed by LORSAL is employed to the
ESMLR for fast and robust data classification of HSI.

The remainder of this paper is structured as follows. Section 2 describes the experimental data
and the proposed ESMLR framework. The experimental results and discussions are summarized
in Section 3. Finally, Section 4 concludes this paper with some remarks and suggestions for the
plausible futures.

2. Materials and Methods

In this section, we first introduce the experimental data sets and then elaborate the proposed
ESMLR framework.

2.1. The Study Datasets

The experimental data sets include two well-known HSI datasets, which are detailed below.

(1) The Indian Pines dataset: The HSI image was acquired by the AVRIS sensor in 1992. The image
contains 145 × 145 pixels and 200 spectral bands after removing 20 bands influenced by the
atmospheric affection. There are 10,366 labelled samples in 16 classes within the HSI dataset.

(2) The Pavia University dataset: The system was built by the University of Pavia of Italy in
2001. The Pavia University dataset was acquired by the ROSIS instrument. The image contains
610 × 340 pixels and 103 bands after discarding 12 noisy and water absorption bands. In total,
there are 42776 labelled samples in 9 classes within this dataset.

2.2. Review of EMAPs

The APs are obtained by applying attribute filters (AFs) to a gray-level image [16]. The AFs are
connected operators defined via a mathematical morphological mean for a gray level image to keep or
to merge their connected components at different gray levels [39]. Let γ and φ be an attribute thinning
and an attribute thickening based on an arbitrary criterion Tλ. Given an image fi and a sequence of
thresholds

{
λ1, λ2, . . . , λp

}
, an AP can be obtained by applying a sequence of attribute thinning and

attribute thickening operations as follows:

AP(fi) = {φλp(fi), φλp−1
(fi), . . . ,φλ1

(fi), fi, γλ1
(fi), . . . ,γλp−1

(fi), γλp−1
(fi)}. (1)

Note that in Equation (1) the AP is defined on each spectral band, hence the dimensionality of the
APs will be very high when it is applied for the full spectral bands of the HSI [39]. In [40], the principal
component analysis (PCA) was suggested to solve this problem. Actually, many dimensionality
reduction (DR) techniques can be used for DR [39], including linear DR (LDR) and non-linear DR
(NLDR) approaches. For simplification, we choose PCA for consistency as it is one of the widely used
LDR techniques to solve this problem. As a result, the extended AP (EAP) is acquired by generating
an AP on each of the first c PCs below [41].

EAP = {AP(PC1), AP(PC2), . . . , AP(PCc)} (2)

Then, the EMAPs is defined as the composition of b different EAPs based on a set of b attributes
{ a1, a2, . . . , ab} as follows:

EMAPs =
{

EAPa1 , EAPa2 , . . . , EAPab

}
. (3)
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Although a wide variety of attributes can be applied to the APs [42] for performing the HSI
classification, in this paper we only consider the area attribute in order to maintain the fast speed
whilst incorporating the spectral and spatial information. Here, the code of the APs is from online
http://www.lx.it.pt/~jun/. The threshold values of the area attribute were chosen as 100, 200, 500 and
1000. The first c PCs are determined to have the cumulative eigenvalues larger than 99% of the
total value.

2.3. Review of SMLR

Let t = {1, . . . , M} be a set of M class labels. Denote S = {1, . . . , n} as a set of integers indexing the n
pixels of any HSI and x = (x1, . . . , xn) ∈ Rd×n be the HSI. Here, each pixel in the HSI is a d-dimensional
feature vector and y = (y1, . . . , yn) denote the labels of x. Let Dn = {(x1, y1), . . . , (xL, yn)} be the
training set. All the above parameters will be discussed in Section 3.

First of all, the posterior class probabilities are modeled by the MLR [2,7] as follows:

p(yi = m|xi, w)
exp
(

w(m)T
h(xi)

)
∑M

m=1 exp
(

w(m)T
h(xi)

) , (4)

where w = [w(1), . . . , w(M−1)]
T ∈ RM−1×d denotes the regressors and h(xi) denotes the input feature.

Here, the superscript ‘T’ denotes the transpose operator of a matrix. wM is set to be 0 because the
densities of Equation (4) do not depend on the translation of the regressor, wM [7]. The input features
h can be linear or nonlinear. In the former case, we have:

h(xi) = [xi1, . . . , xid]
T , (5)

where xi,j is the j-th component of xi.
If h(.) is nonlinear, it can be formulated as follows:

h(xi) = [1, ϕ1(xi), . . . , ϕd(xi)]
T , (6)

where ϕ(.) is a nonlinear function.
According to [2,7], the regressor w of the SMLR can be obtained by calculating the maximum a

posteriori estimate as follows:

ŵ = argmax
w
{`(w) + log(p(w))}, (7)

Here, `(w) is the logarithmic likelihood function given by:

`(w) := log
n

∏
i=1

p(yi|xi, w) =
n

∑
i=1

(
hT(xi)w(yi) − log

M

∑
m=1

exp
(

hT(xi)w(m)
))

, (8)

It is worth noting that log p(w) is a prior over w which is irrelevant to the observation x.
For controlling the complexity and the generalization capacity of the classifier, w is modeled as
a random vector with the Laplacian density denoted as

p(w) ∝ exp(−λ‖ w ‖1)

Here, λ is the regularization parameter controlling the degree of sparsity [2]. Hence, the solution
of SMLR can be expressed as follows:

ŵ = argmax
w
{

n

∑
i=1

(
hT(xi)w(yi) − log

M

∑
m=1

exp
(

hT(xi)w(k)
))

+ logp(w)} (9)

http://www.lx.it.pt/~jun/
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The LORSAL algorithm is applied to SMLR to cope with the larger size problem of the HSI data.

2.4. The Proposed ESMLR Framework

The MLR can be modeled as follows [24,43]:

p(yi = m|xi, w) =
exp(w(m)T

h(xi))

1 + ∑M−1
m=1 exp(w(m)T

h(xi))
(10)

and

p(yi = M|xi, w) =
1

1 + ∑M−1
m=1 exp(w(m)T

h(xi))
= 1−

M−1

∑
m=1

p(yi = m|xi, w), (11)

where h(xi) is the input feature of the MLR and w = [w(1), . . . , w(M−1)]
T ∈ R(M−1)×d denotes the

regressors. wM is set to be 0, as the densities of Equations (10) and (11) do not depend on the translation
of the regressor wM [7]. The input features h can be linear or nonlinear.

If the input feature is linear, then we have:

h(xi) = [xi,1, . . . , xid]
T , (12)

where xi,j is the j-th component of xi.
If h is nonlinear, it can be formulated as:

h(xi) = [1, ϕ1(xi), . . . , ϕd(xi)]
T , (13)

where ϕ(.) is a nonlinear function.
The initial regressor value can be used to find a better representation of the HSI for the ESMLR

via determining the solution of the following optimization problem:

Minimize ‖ wH− Y ‖2 and ‖ w ‖2, (14)

where Y =
[
y∗1 , . . . , y∗n

]
∈ R(M−1)×n and

H =

 h(a1, b1, x1) · · · h(a1, b1, xn)
...

. . .
...

h(aL, bL, x1) · · · h(aL, bL, xn)

, h(ai, bi, xi) =
1

1 + exp(−(ai
Txi + bi))

.

Here, if xi belongs to the j-th class, y∗i,j = 1. Otherwise, y∗i,j = 0. In fact, the activation function h()
can be either linear or nonlinear and L is the dimension of the feature space which we want to project;
ai ∈ Rd and bi ∈ R1 are randomly generated. Actually, a wide range of feature mapping functions can
be considered in our work which include but not limit to:

(1) Linear function: h(ai, bi, xi) = aT
i xi + bi;

(2) Sigmoid function: h(ai, bi, xi) =
1

1+exp (−(ai
T xi+bi))

;

(3) Gaussian function: h(ai, bi, xi) = exp (−bi‖ ai
Txi ‖

2
);

(4) Hardlimit function: h(ai, xi) =

{
1 i f ai

Txi ≥ 0
0 otherwise

;

(5) Multiquadrics function: h(ai, bi, xi) = (‖ xi − ai ‖2 + bi
2)

2
, etc.

From Equation (14), it can be seen that the objective of the optimization is not only to reach a
smaller training error but also to reach a smaller value of the regressor w. According to the Bartlett’s
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theory [33], this will help the proposed approach to achieve a good performance. From the optimization
theory viewpoint [30–34], Equation (14) can be reformulated as follows:

min
w

1
2
‖ w ‖2

F + C
1
2

n

∑
i=1
‖ ξi ‖2

2,s.t. wh(xi) = yT
i − ξT

i for i = 1, . . . , n, (15)

where C is a regularization parameter and ξi is the training error for the samples xi.
Based on the Karush Kuhn Tucker optimality conditions and the Lagrange multiplier method [44],

we have:

LESMLR =
1
2
× ‖ w ‖2

F + C× 1
2

n

∑
i=1
||ξi||22 −

n

∑
i=1

M−1

∑
j=1

αij

(
wjh(xi)− yT

ij + ξT
ij

)
, (16)

where αi,j is the Lagrange multiplier.
Then, the optimization condition can be expressed as follows:

∂LESMLR
∂w

= 0→ w = αHT (17)

∂LESMLR
∂ξi

= 0→ αi = Cξi, (18)

∂LESMLR
∂αi

= 0→ wh(xi)− yT
i + ξT

i for i = 1, . . . , n, (19)

where αi = [αi,1, αi,2, . . . , αi,M−1]
T and α = [α1, α2, . . . , αn].

Hence, the solution of the optimization defined in (15) can be analytically expressed as

w = H(
I
C
+ HT H)

−1
YT , (20)

or

w = (
I
C
+ HHT)

−1
HYT . (21)

From Equations (20) and (21), it can be seen that the initial regressor value w0 is good for the
ESMLR satisfying the optimization condition. Here, the random weight function h() can be used not
only to find a better representation of the HSI data but also to maintain the fast speed for the proposed
framework. Based on the principles of the SMLR algorithm [23], the regressor w of the proposed
ESMLR at the k-th iteration can be computed by the maximum a posterior estimate as follows:

ŵk = argmax
w

`(wk−1) + log p(wk−1) for k = 1, 2, . . . , (22)

where p(wk−1) ∝ exp(−λ‖ wk−1 ‖1) and λ is the regularization parameter for controlling the degree
of sparsity [23].

The solution of Equation (22) at the k-th iteration can be addressed by introducing the linear or
nonlinear input features. That is, for the linear case: h(xi) = [h(xi,1), . . . , h(xid)]

T); for the nonlinear
(kernel) case: h(xi) = [1, φ1(xi, x1), . . . , φd(xi, xd)]

T, where φ is a nonlinear function. Also, we have:

ŵk = argmax
w

n

∑
i=1

(
wyi

k−1h(xi)− log
M−1

∑
m=1

(
1 + exp(wm

k−1h(xi)
)
)

)
+ logp(wk−1). (23)

Similar to K-SMLR [2,26], the proposed ESMLR can also be extended to form a kernel-based
ESMLR (K-ESMLR). The performance of the proposed ESMLR and K-ESMLR are evaluated in the
next section. In order to address the larger size problem of the HSI data, including large datasets
and the number of classes, the LORSAL [45] algorithm is adopted. Moreover, the EMAPs are utilized
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for performing the efficient feature extraction and incorporating the spectral information and the
spatial information.

2.5. ESMLR with A Linear MFL

As mentioned above, the spectral information and the spatial information are integrated to further
improve the performance of the proposed framework. It is well known that the kernel transform
will increase the size of the input feature. As shown in [2,7], the kernel transform may contribute
slightly on the HSI classification accuracy when nonlinear features are utilized for the MFL. The kernel
feature will also slow the speed of algorithms. Based on this perspective, a combinational linear MFL
is proposed for improved HSI data classification whilst maintaining the low computational time of the
proposed ESMLR.

Let hspe(xi) and hspa(xi) be the input spectral features of the raw/original HSI data and the
spatial features extracted by the EMAPs, respectively. The input features of the proposed ESMLR can
be expressed as follows:

h(xi) = [hspe(xi), hspa(xi)]
T . (24)

Then, Equation (23) can be reformulated as:

ŵk = argmax
w

log p(wk−1)+∑n
i=1(w

yi
k−1hspe(xi) + wyi

k−1hspa(xi)−

log ∑M−1
m=1

(
1 + exp(wm

k−1hspe(xi) + wm
k−1hspa(xi))

) (25)

From Equation (25), it can be seen that Equations (23) and (25) have the same structure. Therefore,
the LORSAL algorithm will be adopted in the proposed framework. Figure 1 shows the flowchart of
the proposed spectral spatial ESMLR framework.Remote Sens. 2017, 9, 1255  7 of 22 
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Figure 1. The flowchart of the proposed extreme sparse multinomial logistic regression (ESMLR) framework.

3. Experimental Results and Discussion

In this section, the proposed ESMLR and K-ESMLR will be evaluated and relevant results are
summarized and discussed in detail as follows.

3.1. Compared Methods and Parameter Settings

The proposed ESMR framework are compared with the classical classifiers such as the K-SVM [34]
(The codes of the K-SVM are obtained from http://www.fst.umac.mo/en/staff/fstycz.html/), the SMLR

http://www.fst.umac.mo/en/staff/fstycz.html/
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and the K-SMLR [2,7] (The codes of the SMLR and the K-SMLR are from online http://www.lx.it.
pt/~jun/). For simplification, all experiments are conducted in MATLAB R2015a and tested on a
computer with 3.40 GHz i7 CPU and 8.0 G RAM. It is worth noting that the proposed method is very
efficient and just needs a few seconds to classify the HSI. This can be further improved when applying
parallelization computing with GPU and FPGAs. All data are normalized via the unit max method,
i.e., each data of a HSI is divided by the largest value of the whole dataset.

For all kernel-based/nonlinear methods, the Gaussian radial basis function (RBF) kernel is used.
For the parameter σ of the RBF in the K-SMLR and the K-ESMLR, it is set to be 0.85 for the Indian Pines
dataset and 0.35 for the Pavia University dataset as suggested by Sun et al. [26]. The LIBSVM toolbox of
the MATLAB R2015a is used for the implementation of the K-SVM approach [46]. The parameter of the
K-SVM were chosen according to [34]. For the cost parameter in (20) or (21), C = 2a is chosen where a
is in the range {1, 2, . . . , 20}. The regularization parameter in (22) is set to λ = 2b. The total number
of dimension of the new feature space L is chosen in the range {50, 100, . . . , 1450, 1500}. If there is
no special emphasis required, the dimension of the new feature space in the proposed ESMLR is set
to be L = 300 for spectral information only and the combined spectral-spatial information (EMAPs).
Similarly, L = 500 is chosen for the situation that utilize spectral and spatial information (linear MFL).
For other parameters in the SMLR, K-SMLR, ESMLR and K-ESMLR, details will be discussed in
the subsections below. All experiments are repeated 10 times with the average classification results
reported for comparison.

We use the following criteria to evaluate the performance of different methods for HSI
classification used in this paper, which include:

(1) Overall accuracy (OA): The number of correctly classified HSI pixels divided by the total number
of test number [47];

(2) Average accuracy (AA): The average value of the classification accuracies of all classes [47];
(3) Kappa coefficient (k): A statistical measurement of agreement between the final classification and

the ground-truth map [47].

3.2. Discussions on The Robustness of The ESMLR Framework

In the following experiments, the robustness of the proposed framework is evaluated. For the
Indian Pines dataset and the Pavia University dataset, in total 515 and 3921 samples are randomly
selected for training, respectively. The remaining samples are used for testing based on the overall
accuracy (OA) of classification. For the two datasets, the number of samples used for training and
testing from each class are summarized in Tables 1 and 2, respectively, along with the classification
results under different experiments settings as detailed below.

Experiment 1: In this experiment, the proposed ESMLR approach is evaluated in three different
situations, i.e., using only the spectral information as features, using both spectral and spatial
information yet in combination with EMAPs and the linear MFL, respectively. For the Indian Pines
and the Pavia University datasets, the results are shown in Figures 2 and 3, respectively. As seen,
the proposed framework shows the good performances in all the situations when L > 150. The fusion
of spectral and spatial information can successfully improve the OA, where the combination of ESMLR
and MFL slightly outperforms ESMLR and EMAPs.

http://www.lx.it.pt/~jun/
http://www.lx.it.pt/~jun/
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Table 1. Classification accuracy (%) with 5% labeled samples in Indian Pines dataset (Best result of each row is marked in bold type).

No Train Test
Spectral Information

Spectral and Spatial Information

EMAPs Proposed Linear MFL

K-SVM SMLR K-SMLR ESMLR K-ESMLR K-SVM SMLR K-SMLR ESMLR K-ESMLR SMLR ESMLR

1 3 51 58.04 ± 16.46 5.88 ± 4.98 35.10 ± 14.66 17.65 ± 8.77 45.10 ± 23.69 82.35 ± 27.36 87.06 ± 2.48 89.41 ± 4.36 89.02 ± 3.72 87.25 ± 3.10 88.04 ± 2.99 88.04 ± 2.35

2 71 1363 77.83 ± 2.25 76.00 ± 2.72 77.49 ± 3.69 75.76 ± 2.82 78.02 ± 4.15 86.07 ± 2.66 86.63 ± 2.10 87.33 ± 2.60 88.88 ± 2.64 88.45 ± 2.00 88.82 ± 1.22 89.79 ± 1.62

3 41 793 66.39 ± 5.48 45.80 ± 3.80 62.24 ± 3.28 51.13 ± 4.89 62.48 ± 3.61 92.85 ± 4.95 90.08 ± 4.94 95.12 ± 3.45 91.95 ± 4.67 93.63 ± 3.91 89.55 ± 5.79 93.57 ± 3.41

4 11 223 58.43 ± 7.33 16.19 ± 4.64 44.26 ± 5.01 28.07 ± 7.88 44.89 ± 11.13 80.63 ± 9.44 79.87 ± 6.01 77.49 ± 9.02 79.10 ± 7.22 77.98 ± 10.07 72.83 ± 5.94 83.36 ± 5.26

5 24 473 89.41 ± 3.26 73.57 ± 6.58 86.83 ± 5.90 80.82 ± 4.81 87.61 ± 4.92 92.22 ± 4.53 90.66 ± 1.70 88.77 ± 3.34 90.47 ± 4.53 92.18 ± 2.89 89.05 ± 2.66 91.71 ± 4.50

6 37 710 95.1 ± 1.47 94.01 ± 0.71 94.20 ± 2.12 94.00 ± 2.11 95.13 ± 1.11 97.52 ± 1.22 96.59 ± 1.25 98.61 ± 1.02 98.13 ± 0.95 98.54 ± 1.01 97.94 ± 0.70 98.90 ± 0.99

7 3 23 84.78 ± 9.45 13.04 ± 7.39 33.04 ± 11.26 17.39 ± 9.83 53.48 ± 9.62 94.35 ± 4.12 86.09 ± 12.60 90.43 ± 7.04 90.87 ± 11.68 92.61 ± 4.61 86.96 ± 0.85 94.35 ± 2.10

8 24 465 97.12 ± 2.00 99.55 ± 0.24 99.33 ± 0.34 99.33 ± 0.51 99.14 ± 0.39 99.46 ± 0.11 99.29 ± 0.54 99.40 ± 0.20 97.87 ± 0.90 99.42 ± 0.45 98.97 ± 0.83 99.27 ± 0.41

9 3 17 77.65 ± 14.36 3.53 ± 5.68 55.88 ± 16.23 28.24 ± 11.70 79.41 ± 15.25 98.82 ± 2.48 63.53 ± 23.00 81.18 ± 23.98 81.18 ± 21.80 88.82 ± 20.08 67.06 ± 15.74 90.00 ± 17.11

10 48 920 69.25 ± 3.70 51.13 ± 4.73 66.50 ± 3.12 56.63 ± 4.37 69.87 ± 4.63 83.28 ± 2.71 81.60 ± 3.14 88.54 ± 1.70 88.13 ± 2.65 88.96 ± 1.47 82.84 ± 2.77 87.87 ± 2.54

11 123 2345 82.52 ± 2.95 78.85 ± 2.25 82.01 ± 0.99 76.44 ± 1.42 81.73 ± 1.82 93.73 ± 2.38 92.59 ± 1.76 91.89 ± 2.88 94.08 ± 1.46 93.25 ± 1.89 94.48 ± 1.65 95.05 ± 1.55

12 30 584 75.26 ± 5.99 53.83 ± 4.99 73.65 ± 4.49 60.80 ± 5.30 76.46 ± 4.36 85.02 ± 5.31 74.13 ± 4.84 84.28 ± 2.48 85.48 ± 4.43 85.80 ± 5.82 81.87 ± 5.35 86.99 ± 4.49

13 10 202 96.29 ± 2.92 96.14 ± 2.46 99.36 ± 0.33 98.81 ± 1.15 99.46 ± 0.37 99.36 ± 0.33 99.11 ± 0.51 99.60 ± 0.21 99.46 ± 0.28 99.51 ± 0 99.01 ± 0.70 99.51 ± 0.02

14 64 1230 95.63 ± 1.60 93.24 ± 2.15 95.75 ± 1.08 93.29 ± 1.40 95.46 ± 1.05 98.59 ± 0.52 99.29 ± 0.98 98.92 ± 0.62 99.15 ± 0.49 99.36 ± 0.21 99.49 ± 0.64 99.42 ± 0.28

15 19 361 47.26 ± 5.61 52.63 ± 3.97 56.79 ± 6.08 54.99 ± 5.62 59.48 ± 6.80 92.96 ± 3.80 86.98 ± 6.16 90.03 ± 5.45 88.25 ± 4.37 88.48 ± 5.13 87.17 ± 5.07 90.39 ± 3.76

16 4 91 81.54 ± 12.71 70.00 ± 5.93 56.70 ± 12.15 67.14 ± 9.07 48.68 ± 13.96 93.41 ± 7.80 81.10 ± 8.97 78.79 ± 10.49 71.76 ± 8.79 80.55 ± 6.72 83.41 ± 9.61 78.24 ± 8.67

OA 80.77 ± 1.02 72.57 ± 0.71 79.43 ± 1.08 74.16 ± 0.80 80.18 ± 0.57 91.92 ± 1.11 90.23 ± 0.65 91.93 ± 0.81 92.35 ± 0.76 92.61 ± 0.70 91.42 ± 0.63 93.37 ± 0.74

AA 78.28 ± 1.25 57.72 ± 1.25 69.95 ± 2.02 62.53 ± 2.01 73.52 ± 2.45 91.91 ± 1.94 87.16 ± 1.94 89.99 ± 1.69 89.61 ± 1.55 90.92 ± 1.74 87.97 ± 1.15 91.65 ± 1.07

k 78.01 ± 1.17 68.31 ± 0.86 76.43 ± 1.26 70.30 ± 0.94 77.29 ± 0.66 90.79 ± 1.27 88.85 ± 0.74 90.81 ± 0.91 91.27 ± 0.87 91.57 ± 0.80 90.21 ± 0.72 92.43 ± 0.85

Time(Seconds) 7.56 0.12 0.11 0.20 0.11 2.71 0.06 0.08 0.20 0.08 0.15 0.37
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Table 2. Classification accuracy (%) with 9% labeled samples in Pavia University dataset (Best result of each row is marked in bold type).

No. Train Test
Spectral Information

Spectral and Spatial Information

EMAPs Proposed Linear MFL

K-SVM SMLR K-SMLR ESMLR K-ESMLR K-SVM SMLR K-SMLR ESMLR K-ESMLR SMLR ESMLR

1 548 6083 90.47 ± 0.87 72.84 ± 1.44 88.99 ± 1.16 87.16 ± 0.71 89.577 ± 0.83 98.23 ± 0.39 90.45 ± 0.55 97.77 ± 0.57 98.10 ± 0.42 98.41 ± 0.27 96.73 ± 0.21 97.93 ± 0.30

2 540 18109 94.02 ± 0.54 79.2 ± 1.74 94.30 ± 0.40 92.82 ± 0.74 94.366 ± 0.40 98.04 ± 0.50 92.84 ± 0.55 98.68 ± 0.42 97.83 ± 0.33 98.54 ± 0.31 96.67 ± 0.43 99.04 ± 0.17

3 392 1707 84.45 ± 0.43 70.91 ± 1.70 83.82 ± 1.37 80.25 ± 1.10 84.28 ± 1.66 96.78 ± 0.35 83.62 ± 1.38 97.06 ± 0.51 97.13 ± 0.61 97.22 ± 0.52 93.16 ± 0.89 96.55 ± 0.84

4 524 2540 97.55 ± 0.47 94.98 ± 1.06 97.50 ± 0.47 97.04 ± 0.27 97.53 ± 0.39 99.33 ± 0.34 97.50 ± 0.59 99.06 ± 0.24 99.04 ± 0.24 99.33 ± 0.32 98.34 ± 0.40 99.05 ± 0.18

5 265 1080 99.63 ± 0.28 99.48 ± 0.21 99.34 ± 0.35 99.38 ± 0.33 99.23 ± 0.30 99.68 ± 0.16 99.53 ± 0.28 99.58 ± 0.19 98.99 ± 0.41 99.63 ± 0.14 99.56 ± 0.31 98.97 ± 0.42

6 532 4497 94.433 ± 0.92 74.75 ± 1.79 94.43 ± 0.58 92.93 ± 0.65 94.38 ± 0.76 97.91 ± 0.43 93.94 ± 0.31 97.97 ± 0.31 97.68 ± 0.36 98.09 ± 0.47 96.90 ± 0.51 98.62 ± 0.19

7 375 955 92.91 ± 1.09 77.34 ± 1.90 92.73 ± 0.82 90.32 ± 1.13 93.21 ± 0.833 98.12 ± 0.53 93.40 ± 1.14 98.49 ± 0.55 98.20 ± 0.59 98.52 ± 0.45 96.64 ± 0.98 98.48 ± 0.57

8 514 3168 89.83 ± 1.22 75.15 ± 1.05 86.10 ± 0.72 85.71 ± 1.31 88.80 ± 1.16 97.94 ± 0.45 95.03 ± 0.49 98.10 ± 0.26 98.22 ± 0.29 98.15 ± 0.32 96.67 ± 0.40 97.86 ± 0.31

9 231 716 99.86 ± 0.16 96.87 ± 0.98 99.75 ± 0.18 99.41 ± 0.31 99.79 ± 0.14 99.94 ± 0.12 99.75 ± 0.23 99.94 ± 0.07 99.39 ± 0.32 99.94 ± 0.07 99.39 ± 0.48 99.39 ± 0.26

OA 93.22 ± 0.38 78.88 ± 0.68 92.77 ± 0.26 91.33 ± 0.38 93.133 ± 0.21 98.16 ± 0.20 93.00 ± 0.25 98.41 ± 0.17 98.00 ± 0.15 98.48 ± 0.15 96.79 ± 0.22 98.51 ± 0.10

AA 93.68 ± 0.288 82.39 ± 0.34 93.00 ± 0.22 91.67 ± 0.25 93.46 ± 0.19 98.44 ± 0.12 94.01 ± 0.23 98.52 ± 0.09 98.29 ± 0.14 98.65 ± 0.08 97.12 ± 0.18 98.43 ± 0.09

K 90.83 ± 0.51 72.15 ± 0.76 90.21 ± 0.344 88.30 ± 0.50 90.70 ± 0.28 97.49 ± 0.27 90.55 ± 0.33 97.83 ± 0.22 97.28 ± 0.20 97.93 ± 0.20 95.64 ± 0.29 98.09 ± 0.12

Time (Seconds) 106.37 0.26 3.77 0.72 3.81 53.11 0.16 3.54 0.69 3.54 0.29 1.25
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Experiment 2: In this experiment, the impact of the parameter C (C = 2a) in the proposed
K-ESMLR under the aforementioned three different situations are evaluated. As shown in Figure 4,
the proposed ESMLR achieves a very good performance when C is larger than 0, where the classification
results are very stable even though a or C is significantly changed. This again demonstrates the
robustness of the proposed framework.
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Figure 4. The robustness of the proposed framework under different values of cost C: (a) The proposed
ESMLR with the Indian Pines dataset (using the original HSI dataset, i.e., 200 features, b = −15) and
the K-ESMLR with the EMAPs (36 features, b = −17); (b) The proposed K-ESMLR with the Pavia
University dataset (using the original HSI dataset, i.e., 103 features, b = −10) and the K-ESMLR with
the EMAPs (36 features, b = −12).

Experiment 3: The impact of the sparse parameter b (λ = 2b) on (22) is evaluated in this
experiment. More precisely, we evaluate the performance using a logarithmic function, where the
ERROR is shown in logarithmic scale for improved visual effect. As shown in Figure 5, the proposed
ESMLR achieves better classification results compared with the SMLR when only spectral information
is utilized, especially for the Pavia University dataset. Also, it seems K-ESMLR slightly outperforms
K-SMLR. This has demonstrated that the proposed framework achieves a better performance compared
with the conventional SMLR framework for both linear and nonlinear (kernel) cases. When EMAPs
are applied to extract both the spectral and spatial information, the proposed framework also achieves
better classification results compared with SMLR. When combining our ESMLR framework with the
proposed combinational linear MFL, it also outperforms SMLR. Note that K-SMLR and K-ESMLR
cannot be combined with linear MFL, hence the results are not shown. In summary, thanks to
the proposed improvements, the proposed ESMLR and K-ESMLR framework has outperformed
conventional SMLR and K-SMLR for effective classification of HSI, respectively.
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3.3. Discussions on Classification Results and The Running Time of Different Algorithms

In this subsection, the classification results and the running (executed) time based on the proposed
classifiers are compared with other state-of-the-art approaches. For Indian Pines and the Pavia
University datasets, the results are summarized in Tables 1 and 2, respectively. It is worth noting that
all the classification results were based on the corresponding best parameters.

From Tables 1 and 2, it can be concluded that:

(1) Compared with the SMLR, the proposed ESMLR achieves better classification results yet the
running time is quite comparable under the aforementioned three different situations. Also,
it seems ESMLR has a strong learning ability for a small number of training samples when
only spectral information is used. For a class with the classification accuracy less than 60%,
the improvement is dramatic. This demonstrates the fast and robustness performance of the
proposed framework.

(2) Compared with K-SVM, they achieve better classification results compared to the ESMLR
when only the spectral information is used. However, it requires much more computational
time than the proposed approach. When both the spectral and spatial information was used,
the proposed ESMLR framework achieves better classification results than K-SVM. This again
clearly demonstrates the robustness and efficiency of the proposed framework.

Moreover, we show the confusion matrix of the method that obtain the best classification results
in term of OA, AA and kappa, i.e., the proposed ESMLR with linear MFL for further investigation.
The results are given in Tables A1 and A2 in Appendix A for comparison.

3.4. Classification Results with Different Numbers of Training Samples

In this section, we evaluate the robustness of the proposed framework with different numbers
of training samples. We vary the number of training samples Q randomly selected from each class,
where we have Q = 5, 10, 15, 20, 25, 30, 35 and 40 in our experiments. If Q becomes more than
50% of the total samples within a class, only 50% of samples within that class are used for training.
For the Indian Pines and the Pavia University datasets, relevant results are summarized in Tables 3
and 4, respectively.



Remote Sens. 2017, 9, 1255 14 of 22

Table 3. Classification accuracy (%) with different numbers of labeled samples in Indian Pines dataset (Best result of each row is marked in bold type).

Spectral Information
Spectral and Spatial Information

EMAPs Proposed Linear MFL

Q Index K-SVM SMLR K-SMLR ESMLR K-ESMLR K-SVM SMLR K-SMLR ESMLR K-ESMLR SMLR ESMLR

5

OA 51.72 ± 5.53 45.09 ± 2.90 55.49 ± 2.74 53.21 ± 2.77 56.54 ± 3.58 66.66 ± 4.20 68.75 ± 4.52 67.61 ± 3.39 70.54 ± 2.62 69.84 ± 2.66 69.20 ± 4.18 71.41 ± 2.23

AA 64.24 ± 4.65 57.74 ± 2.17 66.65 ± 1.88 66.68 ± 1.75 68.43 ± 1.88 78.48 ± 2.30 78.38 ± 2.13 78.0 ± 1.85 80.31 ± 1.71 80.49 ± 1.47 78.34 ± 2.26 80.60 ± 2.13

k 46.23 ± 5.88 38.70 ± 2.99 50.53 ± 2.86 47.93 ± 2.69 51.52 ± 3.64 62.70 ± 4.51 64.95 ± 4.84 63.85 ± 3.83 66.92 ± 2.86 66.07 ± 2.81 65.34 ± 4.59 67.80 ± 2.52

10

OA 64.49 ± 2.48 53.28 ± 2.03 62.52 ± 2.04 58.79 ± 3.18 63.90 ± 2.29 74.94 ± 2.12 77.07 ± 2.40 77.00 ± 2.17 80.67 ± 2.31 79.68 ± 2.08 77.58 ± 3.54 80.33 ± 2.76

AA 75.84 ± 1.60 65.73 ± 1.48 73.64 ± 1.12 72.44 ± 1.23 75.04 ± 1.45 84.70 ± 0.90 85.08 ± 1.78 85.19 ± 1.29 86.96 ± 1.57 86.90 ± 1.33 85.02 ± 1.64 87.52 ± 1.74

k 60.29 ± 2.75 47.77 ± 2.06 58.19 ± 2.07 54.05 ± 3.32 59.51 ± 2.49 71.8 ± 2.28 74.17 ± 2.67 74.23 ± 2.37 78.14 ± 2.56 77.02 ± 2.34 74.72 ± 3.92 77.77 ± 3.09

15

OA 68.68 ± 1.19 59.75 ± 2.05 66.75 ± 1.18 62.34 ± 2.37 68.35 ± 1.61 80.10 ± 2.04 82.00 ± 2.70 81.03 ± 1.65 83.84 ± 2.10 83.22 ± 2.28 83.03 ± 2.29 84.68 ± 1.22

AA 78.05 ± 1.16 70.61 ± 1.67 77.75 ± 0.88 75.37 ± 1.08 79.21 ± 0.63 88.10 ± 1.58 88.11 ± 1.31 89.01 ± 1.13 89.44 ± 1.31 89.78 ± 1.20 88.97 ± 1.13 90.26 ± 0.56

k 64.77 ± 1.25 54.93 ± 2.17 62.83 ± 1.24 57.85 ± 2.61 64.38 ± 1.63 77.51 ± 2.32 79.6 ± 2.99 78.66 ± 1.81 81.69 ± 2.36 81.04 ± 2.55 80.85 ± 2.52 82.66 ± 1.35

20

OA 71.18 ± 1.81 62.55 ± 2.24 70.65 ± 1.17 65.04 ± 1.48 71.44 ± 1.54 82.5 ± 2.28 86.05 ± 1.26 83.40 ± 1.78 86.76 ± 1.66 85.54 ± 2.11 86.51 ± 1.19 87.16 ± 1.06

AA 81.56 ± 1.19 72.29 ± 2.37 80.67 ± 1.16 77.42 ± 0.97 81.89 ± 1.24 89.88 ± 1.03 90.49 ± 0.61 90.24 ± 0.90 91.64 ± 0.90 91.56 ± 0.86 90.75 ± 1.21 92.08 ± 0.46

k 67.66 ± 1.94 58.07 ± 2.45 67.04 ± 1.26 60.80 ± 1.58 67.92 ± 1.63 80.27 ± 2.51 84.14 ± 1.40 81.25 ± 1.96 84.98 ± 1.88 83.63 ± 2.33 84.70 ± 1.34 85.43 ± 1.18

25

OA 73.23 ± 1.54 63.14 ± 1.56 72.04 ± 1.33 66.40 ± 1.76 74.60 ± 1.71 84.23 ± 1.94 86.05 ± 1.26 86.03 ± 1.76 87.67 ± 1.67 87.17 ± 1.53 86.98 ± 1.53 89.45 ± 1.29

AA 82.27 ± 1.41 73.25 ± 1.80 81.26 ± 0.79 78.00 ± 1.42 84.17 ± 1.07 90.77 ± 0.68 90.49 ± 0.61 91.74 ± 1.29 92.57 ± 0.88 92.73 ± 0.91 91.89 ± 0.60 93.30 ± 0.71

k 70.03 ± 1.71 58.77 ± 1.67 68.57 ± 1.44 62.32 ± 1.92 71.35 ± 1.85 82.15 ± 2.14 84.14 ± 1.40 84.18 ± 1.97 86.02 ± 1.87 85.46 ± 1.71 85.23 ± 1.69 87.99 ± 1.46

30

OA 74.57 ± 2.74 65.51 ± 1.83 72.95 ± 1.84 67.70 ± 0.76 75.20 ± 1.19 86.22 ± 2.29 86.65 ± 1.71 87.38 ± 1.02 89.10 ± 0.97 88.79 ± 1.05 88.81 ± 1.95 89.96 ± 1.74

AA 83.49 ± 1.31 74.36 ± 1.62 82.62 ± 1.07 78.59 ± 1.60 84.2 ± 1.25 92.32 ± 1.25 90.77 ± 1.07 92.55 ± 0.55 93.18 ± 0.58 93.34 ± 0.45 92.66 ± 0.80 93.89 ± 0.64

k 71.37 ± 2.94 61.38 ± 2.00 69.61 ± 1.95 63.73 ± 0.83 71.99 ± 1.32 84.38 ± 2.57 84.83 ± 1.91 85.68 ± 1.13 87.60 ± 1.09 87.25 ± 1.18 87.26 ± 2.16 88.58 ± 1.94

35

OA 76.31 ± 1.54 65.96 ± 2.47 75.47 ± 1.37 69.28 ± 2.08 76.37 ± 0.87 87.37 ± 1.70 88.65 ± 0.94 88.32 ± 1.44 90.29 ± 1.44 89.72 ± 1.19 89.93 ± 1.40 91.22 ± 0.76

AA 84.71 ± 1.07 74.72 ± 2.29 83.93 ± 1.64 79.89 ± 1.53 85.53 ± 0.65 92.80 ± 0.81 92.23 ± 0.78 93.26 ± 0.81 93.60 ± 0.50 93.71 ± 0.45 93.35 ± 0.83 94.74 ± 0.58

k 73.23 ± 1.71 61.89 ± 2.67 72.31 ± 1.49 65.42 ± 2.23 73.31 ± 0.96 85.65 ± 1.91 87.04 ± 1.06 86.74 ± 1.61 88.94 ± 1.61 88.30 ± 1.33 88.52 ± 1.58 90.00 ± 0.85

40

OA 77.76 ± 1.31 67.16 ± 1.06 75.69 ± 1.07 69.96 ± 1.11 76.93 ± 1.16 87.28 ± 1.66 89.35 ± 1.33 89.57 ± 0.92 90.53 ± 1.04 91.11 ± 0.77 90.13 ± 1.37 91.73 ± 0.98

AA 85.20 ± 0.95 75.12 ± 1.70 84.66 ± 1.08 79.37 ± 1.02 85.40 ± 1.34 93.02 ± 0.71 92.75 ± 1.01 94.05 ± 0.65 94.34 ± 0.74 94.55 ± 0.38 93.64 ± 0.73 94.77 ± 0.87

k 74.81 ± 1.44 63.20 ± 1.13 72.53 ± 1.16 66.22 ± 1.19 73.91 ± 1.31 85.55 ± 1.85 87.84 ± 1.49 88.13 ± 1.02 89.20 ± 1.16 89.85 ± 0.87 88.74 ± 1.55 90.55 ± 1.11
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Table 4. Classification accuracy (%) with different numbers of labeled samples in Pavia University dataset (Best result of each row is marked in bold type).

Spectral Information Spectral and Spatial Information

EMAPs Proposed Linear MFL

Q Index K-SVM SMLR K-SMLR ESMLR K-ESMLR K-SVM SMLR K-SMLR ESMLR K-ESMLR SMLR ESMLR

5

OA 62.82 ± 7.62 52.84 ± 6.38 62.51 ± 6.13 64.64 ± 5.64 62.51 ± 5.51 68.90 ± 5.14 65.58 ± 3.73 63.01 ± 5.97 69.36 ± 7.34 66.21 ± 4.91 66.26 ± 4.66 72.02 ± 5.58

AA 73.71 ± 3.54 62.75 ± 2.03 71.10 ± 3.08 70.23 ± 3.62 72.78 ± 3.98 77.48 ± 2.86 71.42 ± 2.25 73.04 ± 4.23 74.60 ± 3.54 77.36 ± 2.37 71.14 ± 2.19 76.74 ± 2.56

k 54.1 ± 8.01 42.82 ± 5.86 53.80 ± 6.46 55.45 ± 6.20 53.57 ± 5.99 61.30 ± 5.68 57.22 ± 3.85 55.01 ± 6.22 61.77 ± 7.91 58.45 ± 5.10 57.71 ± 4.84 64.75 ± 5.95

10

OA 70.01 ± 4.46 61.29 ± 3.54 68.05 ± 2.27 70.31 ± 2.73 68.18 ± 3.82 77.77 ± 5.20 74.54 ± 2.47 72.14 ± 3.74 77.62 ± 5.45 75.41 ± 3.17 76.75 ± 2.11 80.70 ± 2.50

AA 79.00 ± 1.58 70.30 ± 1.79 78.27 ± 1.39 75.92 ± 1.40 78.20 ± 1.86 84.18 ± 2.44 77.25 ± 1.45 79.84 ± 2.22 82.02 ± 1.68 84.15 ± 1.61 80.67 ± 2.65 84.22 ± 1.28

k 62.54 ± 4.85 51.99 ± 3.73 60.42 ± 2.28 62.38 ± 3.06 60.46 ± 4.08 71.85 ± 5.96 67.45 ± 2.64 65.23 ± 4.04 71.52 ± 6.39 69.00 ± 3.74 70.30 ± 2.53 75.20 ± 2.90

15

OA 74.66 ± 5.26 67.12 ± 3.78 74.45 ± 2.58 73.19 ± 4.48 74.68 ± 2.97 82.69 ± 4.39 79.16 ± 1.64 77.27 ± 3.93 83.65 ± 2.65 80.17 ± 3.95 80.96 ± 3.48 84.32 ± 3.41

AA 81.47 ± 2.57 73.94 ± 1.12 81.53 ± 1.80 77.93 ± 1.64 81.71 ± 1.09 88.05 ± 2.07 81.41 ± 1.43 83.86 ± 1.67 87.08 ± 2.19 87.21 ± 1.83 83.71 ± 2.61 88.23 ± 1.17

k 67.84 ± 6.13 58.54 ± 3.99 67.64 ± 3.14 65.85 ± 5.00 67.91 ± 3.28 77.91 ± 5.28 73.18 ± 1.93 71.31 ± 4.50 78.93 ± 3.27 74.81 ± 4.67 75.59 ± 4.16 79.82 ± 4.01

20

OA 76.42 ± 3.81 67.99 ± 2.79 77.63 ± 3.74 74.62 ± 3.20 77.64 ± 2.06 84.22 ± 3.31 80.64 ± 1.61 79.60 ± 2.5 86.85 ± 0.82 84.68 ± 2.78 83.21 ± 2.50 87.61 ± 1.03

AA 83.00 ± 1.21 74.46 ± 1.13 84.29 ± 1.50 79.22 ± 1.75 83.71 ± 1.07 89.24 ± 1.27 84.68 ± 1.52 86.47 ± 1.05 89.51 ± 0.71 89.76 ± 1.20 86.65 ± 1.47 89.95 ± 0.92

k 70.09 ± 4.35 59.55 ± 3.01 71.66 ± 4.22 67.58 ± 3.72 71.49 ± 2.43 79.74 ± 3.96 75.22 ± 1.97 74.11 ± 2.96 82.93 ± 1.02 80.34 ± 3.26 78.40 ± 3.04 83.89 ± 1.26

25

OA 81.01 ± 2.31 68.50 ± 1.89 79.22 ± 1.54 76.20 ± 1.98 79.12 ± 2.60 87.99 ± 2.95 83.00 ± 2.00 84.49 ± 2.52 87.00 ± 1.58 86.17 ± 1.62 85.92 ± 1.58 89.19 ± 1.63

AA 85.81 ± 1.10 75.83 ± 1.80 84.63 ± 0.88 80.63 ± 1.24 85.17 ± 0.85 91.23 ± 1.67 86.38 ± 1.06 89.38 ± 1.04 90.59 ± 0.71 90.47 ± 1.02 88.59 ± 1.23 91.49 ± 1.06

k 75.67 ± 2.67 60.46 ± 1.96 73.45 ± 1.85 69.62 ± 2.34 73.36 ± 2.98 84.41 ± 3.68 78.15 ± 2.35 80.11 ± 3.01 83.19 ± 1.96 82.07 ± 2.03 81.77 ± 1.91 85.94 ± 2.05

30

OA 81.93 ± 1.42 69.87 ± 1.96 80.49 ± 1.65 76.38 ± 2.54 81.34 ± 2.08 88.81 ± 2.64 84.46 ± 1.54 85.97 ± 2.27 89.55 ± 1.32 87.29 ± 1.81 86.59 ± 1.89 89.76 ± 1.1

AA 86.24 ± 0.71 76.38 ± 0.91 85.49 ± 1.06 80.86 ± 1.19 86.00 ± 0.72 91.80 ± 0.84 87.48 ± 1.13 90.23 ± 1.10 92.40 ± 0.82 91.30 ± 1.09 89.73 ± 0.91 91.71 ± 0.78

k 76.72 ± 1.68 61.91 ± 2.12 74.99 ± 2.01 69.87 ± 2.84 76.04 ± 2.43 85.44 ± 3.28 79.94 ± 1.84 81.93 ± 2.78 86.42 ± 1.66 83.52 ± 2.25 82.70 ± 2.32 86.64 ± 1.50

35

OA 82.14 ± 1.96 69.56 ± 2.18 81.65 ± 2.86 77.78 ± 1.41 81.72 ± 2.35 90.39 ± 1.72 84.63 ± 2.09 87.26 ± 1.76 90.23 ± 2.12 89.12 ± 1.69 87.94 ± 0.87 91.49 ± 1.38

AA 86.81 ± 1.01 76.14 ± 1.28 85.70 ± 1.32 81.79 ± 0.71 86.48 ± 0.74 92.87 ± 0.61 87.91 ± 0.90 91.13 ± 0.66 92.70 ± 0.82 92.34 ± 0.74 90.89 ± 0.68 93.09 ± 0.66

k 77.04 ± 2.34 61.49 ± 2.37 76.42 ± 3.45 71.51 ± 1.58 76.53 ± 2.74 87.44 ± 2.11 80.19 ± 2.54 83.52 ± 2.14 87.28 ± 2.60 85.80 ± 2.14 84.37 ± 1.05 88.86 ± 1.76

40

OA 84.01 ± 1.88 70.63 ± 2.37 83.42 ± 2.24 78.14 ± 1.79 83.88 ± 0.94 90.26 ± 2.30 85.21 ± 1.16 88.9 ± 1.02 91.11 ± 1.24 89.76 ± 1.53 89.18 ± 1.21 91.99 ± 1.46

AA 87.40 ± 1.17 76.97 ± 0.99 86.93 ± 0.60 82.82 ± 0.75 87.60 ± 0.76 92.95 ± 1.21 88.50 ± 0.86 92.08 ± 0.68 93.46 ± 0.68 92.91 ± 0.87 91.50 ± 1.06 93.56 ± 0.54

k 79.26 ± 2.30 62.77 ± 2.68 78.60 ± 2.60 72.08 ± 2.01 79.16 ± 1.18 87.29 ± 2.88 80.92 ± 1.42 85.59 ± 1.25 88.40 ± 1.57 86.64 ± 1.95 85.92 ± 1.50 89.53 ± 1.83
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As seen in Tables 3 and 4, the proposed ESMLR framework improves the classification accuracy
of SMLR dramatically even for a small number of training samples. When both spectral and spatial
information are utilized, the proposed framework outperforms K-SVM. As K-SVM requires much more
computational time in comparison to the proposed framework, we can conclude that the proposed
ESMLR framework provides a fast and robust solution for the classification of HSI.

In addition, Figures 6 and 7 show the classification results from different classifiers for the Indian
Pines dataset and the Pavia University dataset, respectively. For each class, the number of training
samples is set to 40. Also, we use the Wilcoxon signed-rank test [48] to evaluate the performance of the
proposed ESMLR with 40 training samples in both the Indian Pines dataset and the Pavia University
dataset. The results are presented in Table A3 of Appendix B for comparison. Again, this has clearly
shown the superior performance of the proposed approach in effective classification of HSI.
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= 83.58); (b) SMLR (spectral; OA = 70.74); (c) K-SMLR (spectral; OA = 83.22); (d) ESMLR (spectral; OA 
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OA = 77.14); (b) SMLR (spectral; OA = 67.05); (c) K-SMLR (spectral; OA = 75.84); (d) ESMLR (spectral;
OA = 69.14); (e) K-ESMLR (spectral; OA = 77.22); (f) K-SVM (EMPAs; OA = 89.15); (g) SMLR (EMAPs;
OA = 89.65); (h) K-SMLR (EMAPs; OA=89.82); (i) ESMLR (EMAPs; OA = 90.44); (j) K-ESMLR (EMAPs;
OA = 90.44); (k) SMLR (proposed linear MFL; OA = 90.79); (l) ESMLR (proposed linear MFL; OA=91.78).
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Figure 7. Results in Pavia University dataset (40 training samples per class): (a) K-SVM (spectral; OA 
= 83.58); (b) SMLR (spectral; OA = 70.74); (c) K-SMLR (spectral; OA = 83.22); (d) ESMLR (spectral; OA 
= 78.41); (e) K-ESMLR (spectral; OA = 83.47); (f) K-SVM (EMPAs; OA = 90.07); (g) SMLR (EMAPs; OA 
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Figure 7. Results in Pavia University dataset (40 training samples per class): (a) K-SVM (spectral;
OA = 83.58); (b) SMLR (spectral; OA = 70.74); (c) K-SMLR (spectral; OA = 83.22); (d) ESMLR (spectral;
OA = 78.41); (e) K-ESMLR (spectral; OA = 83.47); (f) K-SVM (EMPAs; OA = 90.07); (g) SMLR (EMAPs;
OA = 85.64); (h) K-SMLR (EMAPs; OA = 87.90); (i) ESMLR (EMAPs; OA = 91.24); (j) K-ESMLR
(EMAPs; OA = 90.17); (k) SMLR (proposed linear MFL; OA = 89.07); (l) ESMLR (proposed linear MFL;
OA = 92.30).
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3.5. Comparing the Proposed ESMLR with CNN and Recurrent Neural Networks (RNN)

In this subsection, we compare the classification results and consuming time of the proposed
methods with CNN and recurrent neural networks (RNN)-based deep learning approaches.
The classification results and training time of CNN and RNN-based methods are directly taken
from [47] and shown in Table 5. In our method, the number of training samples and testing samples
are the same as those in [47]. Although the computer used in [47] is slightly different from ours,
the proposed approach is 1000 times faster in training, which clearly shows the superior efficiency
of our approach in this context. In addition, the proposed method achieves higher classification
accuracy than both CNN and RNN-gated recurrent unit-parametric rectified tanh (RNN-GRU-Pretanh).
This again demonstrates the superiority of the proposed method.

Table 5. The classification results of CNN, RNN and the proposed method. The best accuracy/least
training time in each row is shown in bold.

Datasets Indexes CNN [47] RNN-GRU-Pretanh [47] ESMLR-Linear MFL

Indian Pines data
set with 6.7%

training samples

OA 84.18 88.63 92.75 ± 0.47
AA 80.08 85.26 95.42 ± 0.39

k 68.52 73.66 91.71 ± 0.53
Training Time 8.2 min 19.9 min 0.58 s

Pavia University
data set with 9%
training samples

OA 80.51 88.85 98.68 ± 0.09
AA 88.51 86.33 98.58 ± 0.08

k 74.23 80.48 98.25 ± 0.13
Training Time 33.3 min 77.4 min 1.22 s

4. Conclusions

In this paper, we propose a new ESMLR framework to solve the two main drawbacks SMLR for
the effective classification of the HSI. By combining linear MFL for incorporating the spectral and
spatial information of HSI, the classification accuracy has been successfully improved. Compared
with conventional SMLR method, the proposed ESMLR framework has yielded better classification
results with a comparable computational time. In comparison to K-SVM, ESMLR requires much less
computation time and can better exploit the combination of spatial and spectral information with
different labeled numbers of training samples. Furthermore, the proposed approach consistently
achieves higher classification accuracy even under a small number of training samples.

The future works will focus on the optimization of the required computational time for K-ESMLR
by using sparse representation, and further improvement of the classification accuracy by resorting
the ideal regularized composite kernel [49].
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Appendix A

Table A1. The confusion matrix of the proposed ESMLR with linear MFL from the Indian Pines dataset corresponding to Table 1.

- Predicted-

Actually

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 44.9 1.5 0 0 1.2 0.2 0 0 0.1 1.3 0.9 0.9 0 0 0 0
2 0 1223.9 15.6 2 0.2 1.4 0 0 0.8 30.3 86.3 1.8 0 0.1 0.6 0
3 0 28.3 742 6.8 0.1 0 0 0 0.4 5.3 5.9 4.2 0 0 0 0
4 0.1 6.3 7.6 185.9 0.6 0 0 0 0.3 7.7 6.3 8.10 0 0.1 0 0
5 0.3 3.3 1.5 1.8 433.8 11.4 5.4 0 0 6.5 2.5 6.1 0 0 0.4 0
6 0 0.6 0 1.5 0.8 702.2 0 0 0.1 2.1 1.1 0.1 0 0.1 1.4 0
7 0.2 0 0 0 0.8 0.1 21.7 0 0 0.2 0 0 0 0 0 0
8 0 1.1 0 0 0.5 0.3 0 461.6 0 0.1 0.6 0.7 0 0 0.1 0
9 0 0 0.9 0.2 0 0 0 0 15.3 0 0.6 0 0 0 0 0
10 0 31.6 2.3 0.5 0.6 2.9 0 0 0.2 808.4 55 18.5 0 0 0 0
11 0.3 52.5 2.8 0.3 0.8 1.5 0 0 0.4 52.5 2228.8 5 0 0 0.1 0
12 0 6.4 13.2 6.4 1.1 0.4 0 0 0.2 32.4 13.3 508 0 0 1.2 1.4
13 0 0 0.4 0 0 0 0 0 0.2 0.3 0.1 0 201 0 0 0
14 0 0 0.3 0 0 3.5 0 0 0 0.4 0.4 0.2 0 1222.9 2.3 0
15 0.7 7.6 2.8 0.2 6.0 1.5 0.7 0 0.2 2.8 3.3 4.6 1.6 2.7 326.3 0
16 0 3.7 1.6 1.6 1.9 0 0 0 0.1 1.4 6 3.3 0 0.2 0 71.2

Table A2. The confusion matrix of the proposed ESMLR with linear MFL from the Pavia University dataset corresponding to Table 2.

- Predicted

Actually

Class 1 2 3 4 5 6 7 8 9

1 5957.2 5.2 33.6 0.1 0 9 50.8 27.1 0
2 2.3 17934.3 1.5 40.5 0 124.7 0.4 5.3 0
3 3.8 1.1 1648.1 0 0 0 1.1 52.9 0
4 1.5 11.3 3.6 2515.9 0 2.2 1.6 3.9 0
5 2.5 0.4 1.4 0 1068.9 0.7 1.7 4.4 0
6 3.9 27.3 3.1 0.2 0 4434.8 0.8 26.9 0
7 13.6 0 0.6 0 0 0.2 940.5 0.1 0
8 8.7 0.3 49.1 0 0 8.1 1.6 3100.2 0
9 1.2 0.1 0.7 0 0 0.5 0.8 1.1 711.6
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Appendix B

In this appendix, we further evaluate the proposed ESMLR using the Wilcoxon signed-rank
test [48] and the results are given in Table A3. In Table A3, we also show the classification results in
term of OA (%) with randomly running 20 times using of SMLR and ESMLR under the strategy of
the proposed linear MFL as well as those from KSVM under the strategy of EMAPs. The number of
training samples is capped to 40 (or 50%, whichever is less) per class. We use i to denote the results
from the i-th run, ESMLRi denotes the classification by ESMLR with the proposed linear MFL, SMLRi
denotes the classification by SMLR with the proposed linear MFL, SVMi denotes the classification by
KSVM with EMAPs, sgn denotes the sign function, and abs refers to the absolute value. Ri is the rank.
Av denotes the average accuracies (OA) over 20 runs.

(1) H0: There are no salient difference between SMLR-linear MFL and EMSLR-linear MFL in term
of OA;

H1: There are salient difference between SMLR and ESMLR in term of OA, reject hypothesis H0.

According to the results in Table A3, we use ranksum function of Matlab [50] to perform a Wilcoxon
two-sided rank sum test under a significance level of 0.05. We get the probabilities of accepting
hypothesis H0 (see [48] for therein) is 0.00024706 and 0.000041658 for the Indian Pines dataset and
the Pavia University dataset, respectively. As a result, we reject the hypothesis H0 and accept the
hypothesis H1 that there are salient differences between SMLR-linear MFL and EMSLR-linear MFL in
term of OA.

(2) H0: There are no salient difference between SVM-EMAPs and the proposed EMSLR-linear MFL
in term of OA;

H1: There are salient difference between SVM-EMAPs and the proposed ESMLR-linear MFL in
term of OA, reject H0.

According to the results in Table A3, we apply again the ranksum function to perform a Wilcoxon
two-sided rank sum test under a significance level of 0.05. We get the probability of accepting
hypothesis H0 is 0.00000012313 and 0.00075788 for the Indian Pines dataset and the Pavia University
dataset, respectively. Therefore, we deny the hypothesis H0 and accept the hypothesis H1 that there
are salient difference between SMLR-EMAPs and ESMR-linear MFL in term of OA.

Based on the analysis above and the Av given in the last line of Table A3, we can conclude that the
proposed ESMLR obtains the best performance which significantly improves the existing approaches
including KSVM and SMLR.

Table A3. Wilcoxon signed-rank test.

Indian Pines Dataset Pavia University Dataset

i ESMLRi ESMLRi
ESMLRi − SMLRi KSVMi ESMLRi SMLRi KSVMi

sgn abs Ri sgn(ESMLRi − SMLRi) ∗Ri

1 90.5370 89.6000 1 0.9370 13 13 89.8326 90.8077 90.9727 91.9417
2 92.7624 91.3100 1 1.4524 10 10 89.8326 93.2549 89.4710 92.0360
3 92.8236 89.3500 1 3.4736 1 1 89.1078 92.8541 89.0607 88.9004
4 90.0980 89.9200 1 0.1780 19 19 87.2805 89.9967 89.8387 93.1535
5 92.9563 90.7500 1 2.2063 6 6 88.6382 92.3590 91.4537 91.7696
6 91.4047 89.2800 1 2.1247 8 8 89.1793 92.1822 88.3369 90.6568
7 90.1388 89.2900 1 0.8488 14 14 88.9955 92.7622 87.2525 92.9107
8 92.3438 89.7000 1 2.6438 4 4 85.5349 89.4285 86.2693 88.7825
9 91.2617 90.8700 1 0.3917 16 16 88.3932 92.1893 90.3928 86.2434

10 92.1294 90.6900 1 1.4394 11 11 87.2805 93.0592 90.8054 89.7232
11 91.7211 91.7700 -1 0.0489 20 -20 89.1180 93.0993 92.5028 91.2392
12 92.8440 90.8600 1 1.9840 9 9 89.7407 93.7217 87.6273 87.9597
13 93.0073 89.7100 1 3.2973 2 2 88.1993 93.9457 90.1617 89.5676
14 90.3328 90.0100 1 0.3228 18 18 88.0870 93.1064 89.2776 91.1543
15 91.1188 92.3600 1 1.2412 12 12 89.7305 93.1182 91.0576 89.9330
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Table A3. Cont.

Indian Pines Dataset Pavia University Dataset

i ESMLRi ESMLRi
ESMLRi − SMLRi KSVMi ESMLRi SMLRi KSVMi

sgn abs Ri sgn(ESMLRi − SMLRi) ∗Ri

16 91.5680 88.7800 -1 2.7880 3 -3 90.8942 91.7177 87.8489 90.6002
17 92.0682 89.8800 1 2.1882 7 7 89.4345 92.9272 90.5602 89.0301
18 91.3842 90.9400 1 0.4442 15 15 87.9543 93.4812 91.7673 90.4800
19 92.8644 90.5100 1 2.3544 5 5 88.8220 90.8148 91.3948 92.1374
20 91.1801 91.5100 1 0.3299 17 17 87.8216 90.4894 89.6407 90.6238
Av 91.7272 90.3545 - - - - 88.6939 92.2658 89.7846 90.4422
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