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Abstract: Urban green spaces can yield considerable health benefits to urban residents. Assessing
these health benefits is a key step for managing urban green spaces for human health and wellbeing
in cities. In this study, we assessed the change of health benefits generated by urban green spaces
in 28 megacities worldwide between 2005 and 2015 by using availability and accessibility as proxy
indicators. We first mapped land covers of 28 megacities using 10,823 scenes of Landsat images
and a random forest classifier running on Google Earth Engine. We then calculated the availability
and accessibility of urban green spaces using the land cover maps and gridded population data.
The results showed that the mean availability of urban green spaces in these megacities increased
from 27.63% in 2005 to 31.74% in 2015. The mean accessibility of urban green spaces increased from
65.76% in 2005 to 72.86% in 2015. The increased availability and accessibility of urban green spaces in
megacities have brought more health benefits to their residents.
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1. Introduction

Urban green spaces are important for urban residents’ health [1,2]. Extensive studies have
demonstrated that viewing or visiting green spaces can yield positive health effects [1–3], such as
accelerating recovery from surgery [4], improving cardiovascular health [5], mental health [6],
and self-reported general health [7], and lowering all-cause mortality [8]. The mechanism underlying
the health benefits of urban green spaces is complex [1] but can largely be attributed to various
ecological and social functions of green spaces. Green spaces can contribute to public health through
improving air quality, alleviating the urban heat island effect, lowering the level of noise [1,9]. They can
also enhance physical activity [10], reduce stress, improve social cohesion [11], and enhance functioning
of immune systems [12]. Therefore, maintaining urban green spaces and enhancing their health benefits
is an important component of urban health management.

Compositional and structural attributes of urban green spaces are associated with health benefits
that urban green spaces can generate, such as availability, accessibility, configuration, and vegetation
composition [1,3,13]. Availability measures the quantity of urban green spaces in a city, i.e., the acreage
or percentage of urban green spaces [1]. Studies have linked the increased availability of urban green
spaces to lowered mortality for residents 35 years old and over in Ontario, Canada [14]. Increased
availability was also linked to increased walking for residents in London, UK [15] and physical activity
for preschoolers in central Illinois, USA [16] and people in England [17]. Availability also contributed
to better mental health of adults in Wisconsin, USA; Adelaide, Australia; and England [18–20]. It was
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found in South Africa that higher availability of urban green spaces was associated with lower
incidence of depression for middle-income participants [21,22]. Furthermore, availability of urban
green spaces was associated with the general self-reported health outcomes among all age groups in
England [23]. Availability of urban green spaces was also inversely associated with coronary heart
disease or stroke for adults in Perth, Australia [24].

Accessibility, often measured as the proximity (linear distance or walking distance) of urban
green spaces to communities, is also associated with various health benefits such as improved mental
health for women in Sweden [25], reduced risk of non-fatal cardiovascular diseases for older adults
(aged 45–72 years) in Kaunas, Lithuania [26], and reduced risk of stroke mortality in northwest
Florida, USA [27]. Because of the importance of accessibility of urban green spaces, the World Health
Organization (WHO) has developed an accessibility indicator for public health [1,3]. The WHO
suggests that green spaces with a minimum size of one ha and a maximum distance of 300 m to
people’s residence should be used as threshold values for accessibility [1,3]. This indicator provides
a reference standard for constructing green spaces for health benefits. Other attributes of urban green
spaces, such as vegetation composition (e.g., species richness or biodiversity), have also been associated
with human health, mainly mental health [13,28,29]. Studies have shown that high level of species
richness or biodiversity in Sheffield [13] and Berlin [29] was related to increased psychological benefits.

Remote sensing has provided a convenient way to monitor the statuses and changes of attributes
of urban green spaces. Acreages or percentages of urban green space in cities have been derived from
remote sensing data commonly. For example, based on classified Landsat data between 1990 and 2010,
the rising trend of urban green coverage in 30 major Chinese cities has been identified [30]. In 111
Southeast Asian cities, it was found that richer cities had more green spaces while cities with higher
population densities had less green spaces through classifying Landsat images of these cities [31].
Land cover maps derived using remote sensing data have been used to calculate the accessibility
indicator. Liu et al. [32] used SPOT images to assess the change of accessibility of urban green spaces
in Beijing and found that accessibility of urban green spaces in Beijing improved notably between 1986
and 2004. Greenness was derived from NDVI and were linked to health outcomes in Ontario, Canada;
central Illinois and Wisconsin, USA; and Perth, Australia [14,16,19,24]. Other attributes of urban green
spaces that have been retrieved from remotely sensed data include 3D landscape pattern [33,34], urban
green volume [35], and tree species composition [36]. Factors such as climatic and socio-economic
variables can affect the abundance and dynamic of urban green spaces [30]. For examples, studies
have shown that cities with higher population density tended to have less urban green spaces [31,37].
Wealthier (higher per capital GDP) cities tended to have more green spaces [31]. Therefore, to better
understand the changes of availability and accessibility of urban green spaces, it is helpful to study the
relationships between these driving forces and the detected changes.

Despite the extensive studies on the attributes of urban green spaces, they are rarely studied from
the point of view of health. As shown in our early discussion, the attributes of urban green spaces
are associated with various health benefits. Therefore, they can be used as coarse proxy indicators for
assessing health benefits generated by urban green spaces. The WHO’s suggestion [1,3] on accessibility
of urban green spaces reflects this potential well. Due to the wide spatiotemporal coverage and data
availability, remote sensing can play an important role in assessing the statuses and dynamics of
attributes of urban green spaces, which in turn provides an indirect measure of the change of their
health benefits. Nevertheless, thus far, very few studies have addressed this potential. In this study,
we used availability and accessibility—two proxy indicators of health benefits generated by urban
green spaces—to analyze the change of health benefits provided by urban green spaces in megacities
(cities with populations greater than 10 million) worldwide between 2005 and 2015. Specifically,
we have the following objectives: (1) to quantify availability of urban green spaces in these cities in
2005 and 2015 with Landsat images and Google Earth Engine (GEE); (2) to calculate accessibility of
urban green spaces in these cities in 2005 and 2015 with extracted urban green spaces and population
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grid data; and (3) to assess changes of availability and accessibility of urban green spaces in these cities
between 2005 and 2015 and discuss the influencing factors and possible health implications.

2. Materials and Methods

2.1. Study Area

By 2014, there were 28 megacities according to the United Nation Population Division [38].
We selected all of them as our study area. These megacities are distributed in 18 countries (Figure 1).
Their socio-economic and climate conditions are varied (detailed information in Table S1). It is estimated
that around one in eight of the world’s urban inhabitants live in these megacities.

Figure 1. Distribution of the 28 megacities included in this study.

2.2. Reference Samples Collection

Reference samples of six types of land covers, including impervious surface, tree/shrub, grass,
crop, water, and bare soil, were collected from Landsat images by using high-resolution images on
Google Earth as references. We collected 30 to 100 polygons for each class in each megacity for year
2005 and 2015, respectively. In total, 156,478 pixels were collected for 2005 and 205,609 pixels were
collected for 2015 as training samples (Table 1). We then uploaded the reference samples to GEE,
which is a planetary-scale platform for earth science data and analysis [39]. The samples were used as
training samples for land cover classification.

Table 1. The number of training samples for land cover classification.

Class Type
2005 2015

Number of
Polygons or Sites Number of Pixels Number of

Polygons or Sites Number of Pixels

Bare soil 2008 9840 2616 15,643
Crop 2581 9717 3364 15,408
Grass 2886 14,615 3761 21,213

Impervious surfaces 4818 72,404 6279 85,196
Tree/shrub 4610 37,474 6007 48,482

Water 2294 12,428 2990 19,667
Sum 19,197 156,478 25,018 205,609
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2.3. Landsat Imagery and Feature Extraction on GEE

We used all available standard terrain corrected (L1T) Landsat 5 TM, 7 ETM+ and 8 OLI/TIRS
imagery of 2004–2006 (circa 2005), 2014–2016 (circa 2015) with cloud cover <70%. The data format
is the pre-processed top of atmosphere (TOA) reflectance Landsat data [39]. We did not use the
atmospherically corrected Landsat images in this study because when we performed this study the
atmospherically corrected Landsat images had not yet been ingested into GEE platform completely.
Winter images were excluded as we mainly focused on the growing seasons. In total, 4452 scenes
for 2004–2006 and 6371 scenes for 2014–2016 that covering the study area were used for compositing
images and land cover classification.

We used a simple cloud score algorithm available in GEE (https://developers.google.com/earth-
engine/landsat) to mask pixels that had high potential of clouds. This algorithm scores Landsat pixels
by their relative cloudiness with a value ranging from 0 to 100 [40]. A threshold value of 20 was used
to mask the cloudy pixels. We calculated the Normalized difference vegetation index (NDVI) [41],
modified normalized difference water index (MNDWI) [42], and Normalized difference built-up index
(NDBI) [43] to enhance the information on vegetation, water, and impervious surface. They were used
together with the blue, green, red, near infrared, and two shortwave infrared bands of the Landsat
image for further processing.

To deal with the inconsistent coverage of clouds, we used percentile-based image compositing
method [44,45] to extract selected percentile value of each pixel for each of the nine bands
(i.e., blue, green, red, near infrared, shortwave infrared band1-2, NDVI, MNDWI, and NDBI).
The percentile-based image compositing method is a pixel-based compositing method, so it is different
from the traditional scene-based mosaicking. In this method, all available image values of a specific
pixel location for each band were ranked from minimum to maximum. Then values for specific
percentiles were selected. For example, the 0 percentile value refers to the minimum value of
the pixel for a specific band. This percentile-based compositing method can capture phenology
information without any explicit assumption and prior knowledge of the timing of phenology [46].
Land cover classification with good accuracy has been achieved using the percentile based composite
method [45–47]. In this study, we included percentile values at 0%, 10%, 25%, 50%, 75%, 90% and 100%
by following Hansen’s method [45]. In total, 63 features (nine bands multiplied by seven percentile
values) were extracted and used for land cover classification.

2.4. Land Cover Classification and Accuracy Assessment

Land cover classification was performed on the GEE platform using random forest (RF) classifier.
RF is an ensemble classifier consists of many tree-structured classifiers [48]. RF can handle many
training data and variables and keep accuracy when a proportion of data is missing [49–51]. In this
study, the number of trees was set to 100, and the number of variables per split was set to the square
root of the number of variables.

After classification, we extracted 300 pixels from each classified image using a proportional
stratified random sampling method. The proportion of pixels sampled in stratum (i.e., a land cover
class) was in accordance to the percentage of the land cover class in all land cover types. We also
set a minimum sample size of 20 pixels for each class. We then interpreted these validation samples
visually on the composited Landsat images and Google Earth high-resolution images. Based on the
interpretation result, we estimated the accuracy of classification results.

2.5. Urban Green Space Extraction

We created the border of urban built-up areas for each city from the land cover map.
First, we generated single class intensity maps for impervious surface, water bodies, crop, and bare
soil. The intensity maps were created using a 1 km by 1 km moving window [52,53] in ArcMap 10.1
(Esri Inc., Redlands, CA, USA). The intensity map was a ratio (0–1) map of a specific type of land cover.

https://developers.google.com/earth-engine/landsat
https://developers.google.com/earth-engine/landsat


Remote Sens. 2017, 9, 1266 5 of 15

Then we used a multiple-criteria approach to determine whether a pixel (1 km resolution) belonged to
the urban built-up area. Urban built-up areas usually have a relatively high proportion of impervious
surfaces and low proportions of agricultural lands, water, and barren lands. The criteria were: (1) the
impervious surface intensity of a pixel was greater than 0.2 [54]; and (2) the sum of water, crop and
bare soil of a pixel was less than 0.5. The result was a built-up/non built-up map at 1-km resolution.
We then converted the built-up/non built-up map to polygons and excluded small (less than 5 km2)
and dispersed polygons. These are mainly dispersed rural settlements. The boundary of built-up
areas for each megacity was then generated by choosing the largest built-up polygon and keeping
polygons in 2 km from the largest built-up polygon [52,53]. The boundaries were manually modified
by referencing to the high-resolution image on Google Earth if necessary. The generated boundaries
files were available as supplementary files.

Finally, we extracted out tree/shrub and grass cover within the border of built-up area from the
land cover map and merged them as urban green spaces.

2.6. Calculating Availability and Accessibility of Urban Green Spaces

Here, we chose the percentage of urban green spaces to indicate availability of urban green space
in each megacity. The percentage of urban green space was calculated as follows:

PUGS =
UGS
BUA

× 100% (1)

where PUGS is percentage of urban green space, UGS is area of urban green space, and BUA is area of
built-up area.

In this study, we used an accessibility indicator of urban green space proposed by the WHO [1,3].
This indicator is relevant to public health, and is suitable for inter-city comparison. It was calculated as
follows [3]:

AI =
NACC

NTOTAL
× 100% (2)

where AI is accessibility indicator, which measure the proportion of urban population that lives within
an accessible distance to urban green spaces. NACC is the number of urban inhabitants who live nearby
(in 300 m linear distance) to an urban green space with a size of one ha and over. NTOTAL is the total
number of urban inhabitants within the city.

We extracted all patches of urban green spaces that have a size of one ha and over for each
megacity. Then, these patches were buffered for 300 m. NACC was calculated by counting the number
of population within the boundary of the buffered areas. NTOTAL was calculated by counting the
total number of population within the boundary of built-up areas. We obtained the distribution of
population in studied cities in 2000 and 2015 from the Global Human Settlement project website
(http://ghslsys.jrc.ec.europa.eu/ghs_pop.php) [55]. The data format is 250-m grid data, which are
produced by combining the population census data with the built-up grid data of the Global Human
Settlement project [55]. We derived the distribution of population in 2005 by using the mean growth
rate of population between 2000 and 2015 to extrapolate the population of 2000 to 2005.

2.7. Statistical Analysis

We used the paired t-test to examine whether changes of availability and accessibility indicators
of urban green spaces between 2005 and 2015 were significant. We first performed correlation
analysis (Supplementary Materials Figure S8) to explore the correlation between explanatory factors
(i.e., climatic and socio-economic factors) and availability and accessibility of urban green spaces.
Then we performed the multiple general linear model regression analysis to examine the influence
of climatic and socio-economic factors on availability and accessibility of urban green spaces.
The correlation analysis and general linear regression analysis were performed using package cor.test
and lm with R (version 3.3.1; R Development Core Team, Vienna, Austria), respectively. Annual

http://ghslsys.jrc.ec.europa.eu/ghs_pop.php
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precipitation (AP), annual mean temperature (AMT), population density (PD), and per capita GDP
(PCGDP) were included in this study. We chose these climatic and socio-economic variables because
they were widely used in studies [30,31] and the data needed for analysis are available. Values
of climatic variables were collected from WorldClim [56] and values of socio-economic variables
were obtained from Dobbs et al. [57]. Values of these variables for each city can be found in the
Supplementary Materials (Table S1). The explanatory variables (AP, AMT, PD and PCGDP) were
normalized to avoid differences in the magnitude of these variables before running the multivariate
regression analysis. All data analyses were performed using R.

3. Results

3.1. Accuracy Assessment Result

The mean overall accuracy of classification was 90.92 ± 3.26% in 2005 and 88.13 ± 2.78% in 2015.
The mean kappa coefficient was 0.87 ± 0.06 and 0.83 ± 0.03 for 2005 and 2015, respectively. The mean
overall accuracy of classification met the suggested accuracy for land cover analysis, i.e., 85% [58].
The classified land cover maps and the confusion matrix of classification for each megacity can be
found in the Supplementary Materials (Figures S1–S7, and Tables S2–S57).

3.2. Availability of Urban Green Space

Availability of urban green space varied a lot among these megacities (Table 2, Figure 2).
One megacity (Moscow) in 2005 and three megacities (London, Paris, and Moscow) in 2015 had
more than 50% of urban green space coverage. However, the percentage of urban green spaces in
Karachi was less than 5% in both years (3.24% in 2005, 2.73% in 2015).

Overall, the percentage of urban green spaces increased significantly (Difference = 4.11%,
p < 0.0001) between 2005 and 2015. However, five megacities, including Los Angeles-Long Beach-Santa
Ana, Cairo, Lagos, Karachi, and Osaka, had a slight decrease of the percentage of urban green space.

The results of the multiple general linear model regression showed that availability of urban green
spaces in these megacities were highly correlated with the climate factors. Socio-economic factors did
not have a significant correlation with availability of green spaces. Megacities with lower AMT and
higher AP had significant higher availability of urban green spaces than others (Table 3).

Figure 2. Distributions of urban green spaces in 2005 and 2015, examples of: the least green (Karachi)
(1), median green (Shenzhen) (2), and greenest (Moscow) (3) megacity in 2005; and the least green
(Karachi) (4), median green (Shenzhen) (5), and greenest (Moscow) (6) megacity in 2015.
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Table 2. Availability and accessibility of urban green spaces for the 28 megacities in 2005 and 2015.

Megacity PUGS (%) AI (%)

2005 2015 ∆05–15 2005 2015 ∆05–15

Los Angeles-Long Beach-Santa Ana 20.29 18.20 −2.09 56.12 52.75 −3.37
Mexico City 21.70 28.00 6.30 52.21 57.81 5.60

New York-Newark 41.72 44.56 2.84 73.36 78.34 4.98
Rio de Janeiro 37.86 38.43 0.57 78.59 80.08 1.48

São Paulo 27.40 30.15 2.75 67.92 71.46 3.54
Buenos Aires 32.99 34.10 1.11 71.83 72.99 1.16

London 46.38 58.42 12.04 95.66 98.53 2.88
Paris 42.30 52.50 10.20 83.70 91.66 7.96

Moscow 52.79 56.61 3.82 98.51 99.25 0.75
Istanbul 23.70 28.95 5.25 59.60 68.07 8.46

Cairo 12.15 11.83 −0.32 32.28 27.79 −4.49
Lagos 20.17 18.55 −1.62 61.54 57.76 −3.78

Kinshasa 9.32 23.53 14.21 26.78 55.60 28.82
Karachi 3.24 2.73 −0.51 11.57 10.84 −0.72

Delhi 26.01 32.47 6.46 69.41 75.19 5.78
Mumbai 26.01 27.63 1.62 77.15 80.23 3.08
Kolkata 29.34 35.21 5.87 77.78 89.06 11.28
Dhaka 17.10 20.9 3.80 62.48 68.86 6.37
Beijing 33.88 41.82 7.94 77.91 91.97 14.06
Tianjin 21.35 23.44 2.09 60.09 74.02 13.93

Chongqing 35.97 47.58 11.61 78.22 98.32 20.09
Shanghai 31.11 32.01 0.90 63.19 85.50 22.30

Guangzhou 28.70 36.08 7.38 59.11 76.42 17.31
Shenzhen 24.74 30.05 5.31 70.44 83.93 13.50

Manila 24.69 31.82 7.13 67.40 74.84 7.44
Jakarta 34.87 36.03 1.16 85.60 86.92 1.33
Osaka 22.50 21.37 −1.13 56.67 59.14 2.46
Tokyo 25.32 25.85 0.53 66.08 72.77 6.69

Average 27.63 31.74 4.11 65.76 72.86 7.10

PUGS: Percentage of urban green space; AI: Accessibility indicator of urban green space.

Table 3. Results of multiple general linear model regression for availability in 2005 and 2015.

Factor
2005 2015

Coefficient SE t p Coefficient SE t p

Intercept 27.629 1.609 17.175 <0.001 31.744 1.964 16.165 <0.001
Annual mean temperature −7.164 3.017 −2.374 0.026 −9.715 3.683 −2.638 0.015

Annual precipitation 4.733 2.032 2.329 0.029 6.142 2.481 2.476 0.021
Population density −0.597 2.292 −0.261 0.797 0.009 2.798 0.003 0.998

Per capita GDP 1.642 2.687 0.611 0.547 0.375 3.28 0.114 0.91

SE: Standard error.

3.3. Accessibility of Urban Green Space

Accessibility of urban green space also varied greatly among these megacities (Table 2 and
Figure 3). According to the AI value, less than 12% of the urban populations in Karachi lived within
300 m distance to an urban green space larger than 1 ha in both years. However, in Moscow, nearly all
of the urban population met the WHO standard in both years. Totally, there were two megacities in
2005 and five megacities in 2015 where more than 90% of urban inhabitants lived in the 300-m radius
of urban green spaces with sizes ≥ 1 ha.
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Figure 3. Distribution of urban green spaces (≥1 ha) and their 300 m buffered areas, examples for
megacities of: low (Karachi) (1), median (Delhi) (2), and high (Moscow) (3) values of accessibility
indicator in 2005; and low (Karachi) (4), median (Delhi) (5), and high (Moscow) (6) values of accessibility
indicator in 2015.

Overall, accessibility of urban green spaces in the megacities increased between 2005 and 2015.
Values of AI increased significantly (Difference = 7.10%, p < 0.001) from 65.76% in 2005 to 72.86% in
2015. Values of AI for four cities, Cairo, Lagos, Karachi, and Los Angeles–Long Beach–Santa Ana,
decreased between 2005 and 2015.

Similar to availability, accessibility of the 28 cities were significantly affected by climate factors
but not socio-economic factors. Megacities with lower AMT and higher AP had significantly higher
accessibility of urban green spaces than others (Table 4).

Table 4. Results of multiple general linear model regression for accessibility in 2005 and 2015.

Factor
2005 2015

Coefficient SE t p Coefficient SE t p

Intercept 66.349 3.042 21.812 <0.001 73.263 3.061 23.937 <0.001
Annual mean temperature −11.998 5.705 −2.103 0.047 −16.215 5.74 −2.825 0.01

Annual precipitation 11.197 3.843 2.914 0.008 13.561 3.867 3.507 0.002
Population density 0.39 4.334 0.09 0.929 −1.859 4.361 −0.426 0.674

Per capita GDP 1.703 5.08 0.335 0.74 −3.888 5.112 −0.761 0.455

SE: Standard error.

4. Discussion

4.1. Availability of Urban Green Spaces and Changes of Health Benefit

Availability of urban green spaces varied among megacities with different natural and
socioeconomic conditions. According to the results of multiple regression analysis, megacities
with higher AMT had significantly lower availability of urban green spaces than others (Table 3,
Figure S8a). Conversely, megacities with higher AP had significantly higher availability of urban
green spaces (Table 3, Figure S8b). Dobbs et al. [59] also found that cities with higher rainfall and
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lower AMT had higher percentages of green cover for 100 cities worldwide, but the relationship
was not significant. Wealthier megacities such as New York–Newark, London, and Moscow tend
to have higher availability of urban green spaces (Table 2 and Table S1), but the influence of wealth
(per capita GDP) on availability of urban green spaces is not significant. This was partly in agreement
with observations by Richards et al. [31], who found that richer cities had more urban green spaces.
Availability of urban green spaces in Karachi was the lowest because of its warm and dry climate
and relatively low level of economic performance (Table S1). For megacities with the same level of
economic performance, climate conditions can significantly influence the availability of urban green
spaces. For example, the availability of urban green spaces in New York–Newark was higher than
Los Angeles–Long Beach–Santa Ana because the latter had a drier climate (Table 2 and Table S1).

Between 2005 and 2015, the availability of urban green spaces increased by 4.11%. Similar
trends are also found in other studies. For 202 European cities, Kabisch and Haase [60] identified
an overall increase of 0.54% of urban green spaces annually between 2000 and 2006. Yang et al. [30]
found an increase of urban green coverage by a mean annual rate of 1.51% between 1990 and 2010
for 30 major Chinese cities. This pattern may reflect the fact that cities worldwide are increasingly
paying attention to create and preserve urban green spaces during development. However, despite
the overall increasing trend, there are exceptions. For example, in Los Angeles-Long Beach-Santa
Ana, the percentage of urban green spaces decreased from 20.29% in 2005 to 18.20% in 2015. This was
in agreement with the analysis of Nowak et al. [61], in which they also found that the tree cover in
Los Angeles declined because the tree cover was converted to impervious surfaces and grass cover.

Availability of urban green spaces is closely linked to human health benefits. High availability can
increase physical activity [15,16] and improve mental health and general self-reported health [18,23].
The overall increasing trend indicates that the contribution of urban green spaces to residents’ wellbeing
in megacities is increasing. However, the contribution varied among megacities and there were gaps
among cities. For example, compared to other megacities, residents in Karachi might obtain less
health benefits from urban green spaces because availability of urban green spaces in Karachi was
the lowest among all studied cities. Unfortunately, due to the high population density [62], severe
air pollution [63], and the urban heat island problem [64] in Karachi, the health benefits of urban
green spaces are needed more than anywhere. The environmental inequality and its potential health
consequence has long been a focus of international development [65]. Clearly, urban greening should
be included into an integrated package of urban development for these cities.

4.2. Accessibility of Urban Green Spaces and Changes of Health Benefit

Using the accessibility indicator, we found that accessibility of urban green spaces also varied
among megacities. With the lowest availability of urban green spaces, Karachi also had the lowest
accessibility of urban green spaces. Less than 12% of urban inhabitants in Karachi were within 300 m
of an urban green space with a size ≥ 1 ha. In Moscow, nearly all of the urban inhabitants were
within the 300-m radius of urban green spaces with sizes ≥ 1 ha. Usually, accessibility of urban green
spaces increased with the availability. However, patch size and distribution of urban green spaces
can affect the accessibility of urban green spaces [66]. Large amount of small urban green spaces can
provide more even accessibility for urban inhabitants [67]. For example, availability of urban green
spaces in Shanghai and Buenos Aires was 32.01% and 34.1% in 2015, respectively. However, values of
accessibility in Shanghai and Buenos Aires in 2015 were 85.50% and 72.99%, respectively. It is worth
noting that small green spaces may provide less extensive opportunities for recreation so contribute
less health benefits than large-size green spaces. The health benefits of many small urban green spaces
need to be studied further. Similar to availability, accessibility of urban green spaces was also mainly
influenced by climate factors according to the multiple regression analysis. Megacities with higher AP
and lower AMT had significantly higher accessibility of urban green spaces than others (Table 4 and
Figure S8a,b). With a warmer and drier desert climate condition typical for desert zones, Karachi had
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a very low accessibility of urban green spaces compared with megacities distributed in the deciduous
forest zones (e.g., London, Moscow, New York–Newak) (Table 2 and Table S1).

Overall, accessibility of urban green spaces in megacities has been improved between 2005
and 2015. However, despite the improvement, only a few cities could fully meet the WHO’s standard
on accessibility. In Karachi city, more than 85% urban inhabitants could not meet the WHO standard
in 2015. Rapid urbanization and loss of urban green spaces in Karachi [68] will make this situation
even worse. It is therefore important to improve accessibility in cities that have low accessibility and
maintain the high accessibility in cities such as Moscow, London and Paris.

Accessibility is also closely related to health benefits of green spaces [1,3,28]. The overall rising
trend of accessibility in the global megacities indicated that urban inhabitants could potentially
gain more health benefits from urban green spaces. Similar to the pattern revealed by availability,
we found that there were megacities that have experienced a decrease in accessibility, despite the
overall increasing trend of accessibility. For example, in parallel with the decrease of availability,
accessibility indicator value of Los Angeles-Long Beach-Santa Ana decreased from 56.12% to 52.75%
between 2005 and 2015.

4.3. Joint Influences of Availability and Accessibility

We found that changes in accessibility of urban green spaces usually occurred in parallel with
changes of availability. However, there were also a few exceptions. For example, the availability of
urban green spaces in Osaka decreased slightly (−1.13%), but accessibility of urban green spaces in
Osaka increased by 2.46%. This might be due to the change of configurations of urban green spaces in
Osaka between 2005 and 2015.

Accessibility is a good supplementary indicator to availability because it can reflect the spatial
configuration of urban green spaces (i.e., spatial arrangement and structural characteristics of urban
green space patches [69]). For example, De Clercq et al. (2007) [70] examined relationships between
spatial pattern of recreational forests and these forests’ accessibility. They found that number of forest
patches was positively correlated with accessibility, which indicated that if quantity of forest cover
was the same, higher patch density can improve the accessibility. Different configurations of the same
quantity of urban green spaces might have different health benefits. For example, a study of the cooling
service of urban green spaces with different configuration patterns showed that dispersed urban green
spaces can lead to higher overall regional cooling than clustered green spaces, although the clustered
green spaces can enhance local cooling [71].

To improve the health benefits contributed by urban green spaces, cities can increase the amount
of urban green spaces, i.e., their availability. At the same time, accessibility can be improved by
allocating small- and medium-size urban green spaces more evenly rather than pouring all resources
into building few big and clustered green spaces [66,72].

Providing universal access to urban green spaces is already a target of the sustainable development
goals (SDGs) adopted by the international society in 2015: “By 2030, provide universal access to safe,
inclusive and accessible, green and public spaces, in particular for women and children, older persons
and persons with disabilities” [73]. Due to the symbolic importance of megacities, there is an urgent
need to improve both availability and accessibility of urban green spaces to realize this goal, especially
for these megacities that are falling behind.

4.4. Limitations of the Current Study

We combined the availability and accessibility indicators to assess the change of health benefits
generated by urban green spaces in megacities in the last decade. In this study, we focused on
the physical dimension of these two indicators because they can be conveniently derived from
remotely sensed data. However, one must realize that these two indicators also contain socioeconomic
dimensions. The availability and accessibility indicators used in this study can roughly reflect the use
of green spaces by people but cannot quantify the use accurately. For example, increased availability
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of urban green spaces was commonly associated with increased physical activity. However, how many
people actually used the urban green spaces for physical activity were not clear. Urban residents may
even not have access to a nearby green space due to social exclusion [65]. For example, some green
spaces (e.g., private gardens) were not publicly accessible. Although these green spaces can yield health
benefits, the amount of urban inhabitants they served is less than public green spaces. This shows
the limitation of using remote sensing to study the health benefits of urban green spaces. Remote
sensing can track the spatiotemporal changes of biophysical features of urban green spaces. However,
it is difficult to use remote sensing, especially medium-resolution remote sensing data, to track
human activities occurring in urban green spaces and associated health benefits. It is also difficult to
quantify the quality of urban green space using remote sensing data [23], which might influence health
benefits, especially the benefit to mental health [28]. Furthermore, urban green space maps derived
from medium or coarse resolution remote sensing data cannot capture small patches of urban green
spaces [74], which have important health benefits too. Therefore, as we discussed in the introduction,
availability and accessibility of urban green spaces derived using a remote sensing approach can
only be viewed as coarse proxy indicators of health benefits from urban green spaces. Despite these
limitations, remote sensing data can play an important role in assessing statuses and changes of
attributes of urban green spaces that have proved links with human health. This is especially useful
for conducting large-scale inter-city comparisons. Except for adopting finer remotely sensed data and
population data, a better understanding of health benefits from urban green spaces can be obtained by
combining remotely sensed data with social sensing data such as point of interest data and with health
monitoring data provided by wearable sensors.

5. Conclusions

Urban green spaces can bring considerable health benefits to urban inhabitants. Due to the large
population of megacities, the health benefits generated from urban green spaces are especially valuable.
Assessing the magnitude and spatial distribution of these benefits is therefore important for planning
and designing urban green spaces to generate more health benefits. In this study, we developed
a method based on remote sensing data to conduct a quick assessment of the potential supply of health
benefits by urban green spaces in 28 megacities. We used two indicators to quantify availability and
accessibility of urban green spaces in these cities. Our analysis utilized a large amount of Landsat
images and the RF classifier provided by the GEE platform, which allowed us to obtain accurate
estimate of statuses and dynamics of attributes of urban green spaces in these cities. Our results
showed that overall both availability and accessibility of urban green spaces in these cities increased
between 2005 and 2015. We thus inferred that more residents in these cities enjoyed the health benefits
generated by urban green spaces in this period. At the same time, we noted that there were a few
megacities (e.g., Karachi) that showed declining trends of availability and accessibility. In the future,
to build more green spaces and preserve existing ones should be a priority in these cities. The action
can be included into an integrative urban health management package. The information produced by
this study can help these megacities to adjust their management of urban green spaces to achieve the
target included in SDGs.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1266/s1,
Table S1: Values of climatic variables and socioeconomic variables of the 28 megacities, Tables S2–S57: Confusion
matrix of classification, Figures S1–S7: Classification maps of megacities, Figure S8: Correlations between:
availability (a–d); and accessibility (e–h) of urban green spaces and climatic and socio-economic variables,
and built-up boundary files.
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